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On the Possible Trajectories of Spinning Particles in an External Electromagnetic Fields 

A.N.Tarakanov 
*
 

By means of the method of moving Frenet-Serret frame the set of equations of motion is 

derived for spinning particle in an arbitrary external field, which is determined by potential depend-

ing from both position and the state of movement, as well as by two pseudo-vectors one of which is 

easily associated with external magnetic field, and another still remains undetermined. It is shown 

that description of the motion of both massive and massless particles with spin is possible. All solu-

tions of the equations of motion of spinning particle in the absence of external fields were found, 

and besides, we give more precise definition of a free object. It turns out that the massive particles 

always possess a longitudinal polarization. There are possible transversal motions of the following 

types: 1) oscillatory motion with proper frequency, 2) circular motion, and 3) complicated motion 

along rosette trajectories round the center of inertia with the velocity, varying in the limits 

v v v 
min max

. Free massless particles can either fluctuate or move along ellipses around fixed 

centers of balance, with the spin of particles can have any direction. The behavior of spin particles in 

a constant homogeneous magnetic field is also considered and all types of trajectories are found. 

1. Introduction 

It became clear after theoretical discovery of Zitterbewegung by Schrödinger and numerous pa-

pers devoted to it, that spin makes essential impact on a trajectory even for the free particles. However a 

possibility of taking account of spin in terms of classical nonrelativistic theory has not been properly ana-

lyzed. In the papers [1]-[3] an idea is proposed for description of the objects with internal degrees of free-

dom by generalization of the Second Newton’s Law, and classic non-relativistic theory of such objects 

interacting with external fields by means of potential depending on both position and the state of motion 

of the object has been developed.  

In [2]-[3] solutions are found for non-relativistic equation of motion for free mass point in the 

center-of-inertia reference frame (r. f.), which generally does not coincide with the center-of-mass r. f. 

moving through the complicated trajectory around the direction of movement of the center of inertia that 

can be interpreted as Zitterbewegung. In this connection a particle should be considered as non-inertial r. 

f. with some structure, whose spin is classical proper angular momentum. The main conclusion lies in the 

fact that the electric charge should not be seen as a physical quantity characterizing the electromagnetic 

interaction, but as a consequence of the presence of the particles spin. Then electromagnetic interaction 

can be interpreted as interaction of the spin with external field. So the question arises, how the motion of 

spinning particles in an electromagnetic field and their interaction with each other can be associated with 

the behavior of charged particles considered in the framework of the standard (classical or quantum) elec-

trodynamics. In this paper, under the proposed equations of motion the effect of spin on the behavior of 

both free particles and particles in an external magnetic field is studied. 

2. Equations of Motion in Arbitrary External Field 

The equation of motion of a particle with spin in an external field can be written as the Second 

Newton’s Law 
g

P F F F
ext/d dt  ([1]-[3]), or 

 2

0 0

ext ext[ ] [ ] [ ] [ ] V s V s V C V S V
R V

d U d U d
m

dt dt dt
, (2.1) 

where 
2

g 0
[ ]F s V  is a gyroscopic force, arising due to non-inertial object, 

UF R C V
ext ext/ [ ] is external force, 

2

0 0

ext([ ] ) ([ ] ) R V s R V CU U  is 

potential energy of interaction, 0Ω  is Zitterbewegung frequency of free particle, C
ext

 and S
ext

 are some 

pseudo-vectors due to external field. 

Dynamic momentum of the object 
kin

P P A  contains proper kinetic momentum 

kin 0
[ ]P V s Vm , and addition UA V S V

ext/ [ ], arising due to interaction with 

external fields. This addition leads to a renormalization of the force F, so that the change of the proper 
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kinetic momentum 
kin

P  is determined by the right-hand side of the equation of motion (2.1), which can 

be compared with the Lorentz force, if we put 

 
U d U U d

dt dt

A
E S V

R V R

ext[ ] , 
ext

B C , (2.2) 

which shows that addition A has a role of vector potential, introduced by F. E. Neumann. If we assume 

the definition (2.2), the equation of motion (2.1) takes the form 

 
2

0 0
[ ] [ ] [ ] V s V s V E V B

d
m

dt
, (2.3) 

and the equation of motion of spin is given by 

 [ ]s Ω s , (2.4) 

where Ω  is angular velocity of spin precession. 

Equation (2.1) leads to the balance of total energy  

 

2

0

2


V
V s V V S V V

V

ext( [ ]) ( [ ]) ( )
m U

U . (2.5) 

Let r. f. K , whose origin in K is specified by radius vector (K )R , be the r. f. moving relative to 

absolute one with the velocity (K )V . We write down the equation (2.1), written in absolute r. f. K, in 

moving r. f. K . Then (K ) R R r , (K ) V V v , …, where r and v are radius vector and velocity of 

the object relative to the origin of K . It can be shown that 

U U

R r
, 

U U

V v
, … .                                                 (2.6) 

Substitution of (2.6) into (2.1) leads it to the form 

 

  2 2

0 0 0 (K ) (K ) 0 (K )

ext ext

(K ) (K )

[ ] [ ] ( [ ]) [ ]

[ ] [ ] [ ] [ ] .

d d
m m

dt dt

U d U d d

dt dt dt

     

 

           

 
          

 

v s v s v V s V s V

v B S v V B S V
r v

 (2.7) 

There is no necessity to use vector potential to describe the motion in a constant electromagnetic 

field. In this case electric field is defined as 

 E
R r

U U
, (2.8) 

whence it follows 

 
( ) ( )( ) ( , , ,..., ) ( ) ( , , ,..., )E R V V V V E r v v v v
N NU d u d u . (2.9) 

On the other hand, in the case of varying field its dependence on time may be considered in po-

tential function together with conservation of the definition (2.8) instead of generally accepted definition 

/E AU c t  in Maxwell electrodynamics. Then the equation (2.1) will become 

 
2

0 0

ext[ ] [ ] [ ( )] V s V S V E V B s
V

d u
m

dt
. (2.10) 

In the moving r. f. K  relations 
(K )

V 0 , 
(K )

V 0  should be fulfilled. Therefore in view of 

(2.6), (2.8) equation (2.7) splits into two equations 

 
ext 2

0 0[ ] [ ] [ ] [ ]
d u

m
dt

 
 

           
 

v s v S v s v E v B
v

, (2.11) 

  ext 2

0 (K ) (K ) (K ) 0 (K ) (K )[ ] [ ] [ ] [ ]
d

m
dt

             V s V S V s V V B . (2.12) 

We shall introduce in K  orthonormal basis Frenet-Serret 
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τ n b
  

v
e e e[ ]

v
, 

n b τ

 
  

 

v v v
e e e

v v v

[ [ ]]
[ ]

| [ [ ]] |
, b τ n

[ ]
[ ]

| [ ] |


  



v v
e e e

v v
. (2.13) 

with equations of motion 

τ D τ n
  e Ω e e[ ] vK , 

n D n τ b
    e Ω e e e[ ] vK vT , 

b D b n
   e Ω e e[ ] vT ,   (2.14) 

where 
D τ b
 Ω e e( )v T K  is the Darboux vector defining an angular velocity of moving frame, 

3 v v| [ ] | /K v  is curvature, 
2   v v v v v( [ ]) / [ ]T  is torsion of trajectory. If we decompose 

spin pseudo-vector in the basis (2.13) we find from (2.4) that 
D

Ω Ω , and spin components 
τ

s , 
n

s  and 

b
s  are constant. 

We choose r. f. K  so that its velocity has to be orthogonal to the plane of vectors v and v , 

(K ) (K ) b 
V eV . When it is inertial frame, then 

(K )
V 0 , the torsion T vanishes, and the binormal direc-

tion is kept constant, which greatly simplifies the equation of motion. 

For the sake of simplicity we assume that the source of the field U is at rest and function u does 

not depend on accelerations 
( ), ,...,v v v
N

 of the particle. Then 

 ( )
d u d du du d du du d du

dt dt vdv vdv dt vdv vdv vdv vdv

     
          

      
v v v v v v v

v
. (2.15) 

Further, we seek a solution of equation (2.11) in the form 

 ( ) ( )(cos ( ) sin ( ) )
X Y

t v t t t   v e e , (2.16) 

where 
X

e , 
Y

e  are unit vectors of coordinate system in the plane which is orthogonal to the Z axis in ab-

solute r. f., 
bZ

e e . Then the spin of the particle is equal to 

 
τ n τ n b

        s e e e( cos sin ) ( sin cos )
X Y Z

s s s s s . (2.17) 

In view of (2.15)-(2.17) equations of motion (2.11), (2.12) and spin precession (2.4) are 

 

ext ext 2

0 b b b 0

ext ext 2

0 b b b 0

ext ext ext ext

( ) cos ( ) sin sin

( ) sin ( ) cos cos

( )sin ( )

Z Z X X

Z Z Y Y

X Y X Y

d du
m s S s S s

d d

d du
m s S s S s

d d

d
S S S S

d

  

  

  
            

  

  
             

  

    

e e

e e

v v v v
t v

v v v v
t v

v v v v
t

2

τ n 0cos ( ) ( )

( sin ) ( cos ) ( cos sin ) ,

Z Z

X Z X Y Z Y Z Y X Z

s s

E B E B E B B

             

         

e e

e e e

v v v v

v v v v

(2.18) 

 

 

 

ext 2

(K ) τ n τ n 0 (K )

ext 2

(K ) τ n n τ 0 (K )

0 (K ) Z (K ) (K )

( sin cos ) sin cos

( cos sin ) sin cos

,

Y X X

X Y Y

Y X X Y

d
V S s s s s V

dt

d
V S s s s s V

dt

m V V B V B

   

   

 

 

  

           

            

   

e e

e e

e e e

 (2.19) 

 
D τ n τ nX Y

s s s s    s Ω s e e[ ] ( sin cos ) ( cos sin ) , (2.20) 

where 
D b b Z

 Ω e e . 

It follows from (2.19), that (K ) 0V    at 0 0m  , so that (2.19) is equivalent to equations  

 
2

n 0
sin cos

X Y
s B B      , 

2

τ 0
cos sin

X Y
s B B       , (2.21) 

whence it follows 
2 2 2 4 2 2

τ n 0
( )

X Y
s s B B     , as well as 

 

2

0 n τ

2 2

( )
sin X Y

X Y

s B s B

B B

 
 


, 

2

0 τ n

2 2

( )
cos X Y

X Y

s B s B

B B

 
  


. (2.22) 
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In the case 0 0m   the moving r. f. K  may be non-inertial one. Then (2.19) reduces to the set of 

two equations 

 

ext 2

(K ) τ (K ) 0 (K ) n (K )

2

n (K ) 0 (K ) τ (K ) (K )

( ) sin

( ) cos 0 ,

Y

Y

d
V S s V V s V

dt

s V V s V B V

 

 

   

   

           

        

 (2.23) 

 

ext 2

(K ) τ (K ) 0 (K ) n (K )

2

n (K ) 0 (K ) τ (K ) (K )

( ) cos

( ) sin 0 .

X

X

d
V S s V V s V

dt

s V V s V B V

 

 

   

   

           

        

 (2.24) 

In the r. f. K  the energy (2.5) is conserved and is the self-energy of particle  

 

2

0

0

2

20

b

2

2





v
v v s S v

v

ext

ext

( ) ( [( ) ])

( ) .
Z

m U
U

m v du
v u v s S
dv

 (2.25) 

which gives the relation 

 
b 0

2ext ext( )( )
Z Z

d du
s S v v vS m v

dt dv
    . (2.26) 

In view of (2.21), (2.26) and (K ) 0V    for massive particles (2.18) reduces to the set of equations 

 cos sin 0X YE E   , (2.27) 

 
ext 2 ext 2

0 b b 0( )( ) ( ) sin cosZ Z Z X Y

du
m s S S s B E E

d
 

 
               

 
v v v v v
v

, (2.28) 

 
ext ext ext ext

τ n ( )sin ( )cosX Y X Y Z

d
s s S S S S E

d
          v v v v v v
t

. (2.29) 

For massless particles one should set 0 0m   in (2.28) and instead of (2.21) one should use (2.23), 

(2.24). We emphasize that obtained system of equations holds for an arbitrary external field. 

3. The motion of free particle 

In [2]-[3] there considered equations of motion (2.1) and (2.4) for the case 
0

0U , 
ext

S 0 , 

ext
C 0 , and all solutions of them are found. By definition an object should be free if the latter two 

conditions are fulfilled and the force F vanishes at all time. Then 
0

0U  is special case of the condition 

0 /U  R 0 , whence it follows that 
0
U  may be function of the velocity and accelerations. On the other 

hand, if free object will be defined by the condition /U  R 0 , whence 
( )( , , , ,..., )V V V V
NU u t , 

then in the l. h. s. of (2.1) a term remains that make sense of gyroscopic force. If U does not depend ex-

plicitly on time, and velocity, and accelerations, then it is constant, and it may be set zero. It is easy to 

show in this case that joint solution of (2.1) and (2.4) leads to the fact that spin of the object is always col-

linear to the velocity V which remains constant, V 0 . Hence, the force F vanishes, 
0

U U , so that 

the object in question moves inertially in total concordance with standard Newton’s mechanics.  

If 0 U u , then one should be based on (2.27)-(2.29) and (2.21) for massive particles or (2.23), 

(2.24) for massless particles at E 0 , B 0  and 
ext

S 0 . It follows from (2.21) that 
τ n

0 s s  

and (2.23)-(2.24) reduce to the set 

 
2

τ (K ) 0 (K ) n (K )( )s V V s V     , 
2

n (K ) 0 (K ) τ (K )( )s V V s V      , (3.1) 

which are also valid when τ 0s  , n 0s  . Equations (2.27)-(2.29) reduce to 

 
2 2

0 b 0[ ( ) ]
du

m s
d


 

       
 
v v v
v

, (3.2) 
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n 
   ( )s v s v v , 

τ n
   consts v s v , (3.3) 

where (3.3) takes place for massless particle and becomes identity for massive one. 

Substitution of (2.26) at 0ext

Z
S  into (3.2) leads to 

 

2

0 0





v vd
v

dt
, (3.4) 

whence it follows the first integral 

 

2 2

2 2 2 20

02

( )
const

v v
v v D

 
    


, (3.5) 

and 

 

2

0

2 2 2 2

0

v v

D v v

 
 

  
. (3.6) 

Now substituting (3.6) into (3.2), we obtain the equation 

 

2
0

2 2 0

0 b 0 2 2 2 22 2 2 2

00

1
   

       
       

du
m v v v vdv v v s v v

D v vD v v

( )
( ) ( ) , (3.7) 

which is valid in two cases: I. 
2

0
0v v   , 0  , and II. 

2

0
0  v v , 0  . Let us consider them 

in details. 

I.1. 
2

0
0v v   , 0  , 

τ
0s  , 

n
0s  , 0 0m  . In this case we have 

0 0 0
  cos( )v v t , 

whence the equation of the trajectory in the absolute r. f. is given by 

 0

0 0 0 (K )

0

0  


        


R R e e e( ) ( ) [sin( ) sin ](cos sin )
X Y Z

v
t t V t , (3.8) 

i. e. the particle has a longitudinal polarization and oscillates in the plane (X,Y) around the center of iner-

tia moving along the Z axis with velocity 
C (K )
V V . At 

0
0   oscillations are absent, and particle 

moves along the Z axis in accordance with the law of inertia of Galileo-Newton. 

 I.2. 
2

0
0v v   , 0  , 0 0m  . Equations (3.1) and (3.3) give n 0s  , τ 0s  , 

2

(K ) 0 (K ) 0V V   , (K ) (K )0 0 1cos( )V V t     . Thus, we obtain a trajectory 

 (K )00

0 0 0 1

0 0

0  


         
 

R R e e e( ) ( ) sin( )(cos sin ) sin( )
X Y Z

Vv
t t t , (3.9) 

which in general is an ellipse, transforming into either circle at 1 0 (2 1) / 2m         or line 

segment at m   , where m is integer. 

II. The second case of equation (3.7) for function u v( ) is specified by conditions 
2

0
0  v v ,

0  . We have  

 

2

2 2 2 2b 0

0 b 02 2 2 2

0




  
      
    

( )s v vdu
m v s D v v

dv D v v
. (3.10) 

whence it follows 

 

2

2 2 2 20

b 0 02
 ( )

m v
u v s v D v v . (3.11) 

Equation of motion has the infinite set of solutions, one of which corresponds to 
D

   t , 

where 
2

D D
   Ω const . In this case equation (3.6) admits first integral of motion 

2 2 2 2

0 D
      D v v v F const , which reduces to equation for velocity 
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2 2 2 2 2

D D 0
2        v D F F v v( ) . (3.12) 

Substitution of (3.12) into (3.6) leads to equation 

 
2 2

0 D D
     ( )v v F , (3.13) 

which has general solution  

 D

0 02
 




  ( ) cos( )
F

v t v t , 
2 2

D 0
     . (3.14) 

It follows from (3.12) and (3.14), that velocity may vary in the limits  
min max
v v v , where 

 D

02
0




  

min

F
v v , D

02


 

max

F
v v , 

2 2 2 2

0

0 2





 

D F

v . (3.15) 

For ( )u v  we obtain the expression 

 

2

0

b D 02
 ( ) | |

m v
u v s v F v . (3.16) 

The law of motion for both massive and massless particles with longitudinal spin polarization is 

D D (K )2

0

D D 0 D D 02

0

0

D D 0 D D 02

0

0

2

2



     

     


      

              


             


R R e e e

e

e

( ) ( ) (sin cos )

( )sin[( ) ] ( )sin[( ) ]

( )cos[( ) ] ( )cos[( ) ] .

X Y Z

X

Y

F
t t t V t

v
t t

v
t t

  (3.17) 

Note that there is another possibility that the equation of motion (3.3)-(3.4) are satisfied. 

III. 0v , 
0

 v v const . Then it follows from (2.25), (2.26) 

 
b

0 
d du

s v
dt dv

, 
b

 
du

s v C
dv

, 

2

0

0 2
( )

m v
u v Cv . (3.18) 

Equation (3.2) reduces to 

 

2

0
0 b b

du
m s s C

d
 


    



v
v v

v
, (3.19) 

whence 
2 1

D b 0 0 0 0( ) consts m      v C v . As a result we obtain following solutions. 

III.1. 
0

v v , 
D

   t , 
τ

0s  , 
n

0s  , 0 0m  . Trajectory looks like helix along the Z axis 

 0

D D (K )

D

0 1


      


R R e e e( ) ( ) [sin ( cos ) ]
X Y Z

v
t t t V t . (3.20) 

De facto this solution coincides with solutions I.1, I.2 from [2], [3]. 

III.2. 
0

v v , 
D

   t , 0 0m  , 
τ n

0 s s . From (3.1) we find 
2

(K ) 0 (K ) 0V V   , 

(K ) (K )0 0 1cos( )V V t     . Trajectory is represented by radius vector 

 (K )00

D D 0 1 1

D 0

0 1  


         
 

R R e e e
X Y Z

Vv
t t t t( ) ( ) [sin ( cos ) ] [sin( ) sin ] , (3.21) 

i. e. the particle performs complex movement around the stationary center of balance. At 
D 0

    the 

trajectory, which looks like three-dimensional Lissajous figure, becomes an ellipse (
(K )0 0

V v ) or circle 

(at 
(K )0 0

V v  or 
(K )0

0

V ). 

We summarize the results of this section. We suppose that in a homogeneous isotropic space be-

havior of a free particle with spin is described by equations (2.3) (with E 0 , B 0 ) or (2.10) (with 

E 0 , B 0 , 
ext

S 0 ) and (2.4), which lead to the following types of motion. 
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1. Oscillatory motion of the particle with longitudinal polarization in the plane, which is orthogo-

nal to direction of movement of the center of inertia, described by radius vector (3.8). At 
0

0   oscilla-

tions are absent and particle moves uniformly in a straight line. The self-energy 
0

 of the particle may 

have any constant value, 
2

0 0( ) / 2  u v m v Cv . 

2. Oscillatory or cyclic motion of massless particles around fixed center of balance, described by 

the law (3.9). Spin 
τ b

    s e e e(cos sin )
X Y Z

s s  has a constant direction. The self-energy 
0

 of 

the particle may have any constant value, 0( )  u v Cv . 

3. A motion of particle with longitudinal spin polarization along complicated trajectory (3.17) 

clockwise (
D

0  ) or counter-clockwise (
D

0  ). The velocity of particle relative to the center of 

inertia varies in the limits  
min max
v v v . 

4. A motion of massive or massless particle with longitudinal spin polarization along helix (3.20) 

clockwise (
D

0  , b 0s  ) or counter-clockwise (
D

0  , b 0s  ) with constant velocity 
0
v  relative 

to the center of inertia, which moves in absolute r. f. with constant velocity 
C (K )
V e

Z
V . 

5. A motion of massless particle along complicated trajectory (3.21) around fixed center of bal-

ance. Spin 
b

s e
Z

s  is precessing around Z axis with angular velocity 
D

 . 

4. Motion in a constant homogeneous magnetic field 

Now we consider the behavior of a spinning particle in a constant homogeneous magnetic field. 

The corresponding equations of motion are given by (2.27)-(2.29) and (2.21), (K ) 0V    for massive parti-

cles or (2.23)-(2.24), (K ) 0V    for massless particles at E 0 , 
ext

S 0 . From the set of equations 

above we have several cases determined by the relation between the mass, spin and magnetic field. 

I. 0 0m  . Equation (2.28) is 

 
2 2

0 b 0 b[ ( / ) ] 0Z

du
m s B s

d
 

 
       

 
v v v
v

. (4.1) 

From (2.21) for constant field B we have two possibilities: I. 0  , and II. 0  , 

0
X Y
B B  , which lead to the following solutions. 

I.1. 0 0m  , 0  , 
n

0s , 
τ

0s  , 0v , 
2 2

0 b/ 0ZB s    . Spin of a particle accord-

ing to (2.17) and (2.22) is given by 

 b2

0

1


   


s e e e( )

X X Y Y Z
B B s . (4.2) 

Then (4.1) has a solution 
0 0

  v t v t( ) cos( ) , and trajectory is represented by 

 0

0 0 (K )2

τ 0

0  



      

 
R R e e e

X X Y Y Z

v
t t B B V t

s
( ) ( ) [sin( ) sin ]( ) , (4.3) 

i. e. particle with spin (4.2) oscillates in the plane (XY), and its center of inertia moves uniformly along Z 

axis. 

I.2. 0 0m  , 0  , 
n

0s , 
τ

0s  , 0v , 
2 2

0 b/ 0ZB s     . Spin of the particle is 

defined by (4.2). Equation (4.1) has a solution 
0 0

  ( ) cosh( )v t v t , whence 

 0

0 0 (K )2

τ 0

0  



      

 
R R e e e( ) ( ) [sinh( ) sinh ]( )

X X Y Y Z

v
t t B B V t

s
. (4.4) 

The path (4.4) is almost a straight line and deviates from it near 0t  . 

I.3. 0 0m  , 0  , 
n

0s , 
τ
s  may have any value. (4.1) and (3.3) lead to 0v , 
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0
( )v t v wt  ,  constw , 

2

0 b/ZB s   . Spin of the particle is defined by (4.2). The trajectory is 

parabolic, 

 
2

0

τ n n τ (K )2 2

b

2
0




     


R R e e e

( / )
( ) ( ) [( ) ( ) ]

( )
Z

X Y X X Y Y Z

X Y

B v t wt
t s B s B s B s B V t

s B B
, (4.5) 

or straight line at 0w . 

In cases I.1-I.3 we find from (2.25) 
2

0

1 02
( )

m v
u v C v .                                       (4.6) 

II. 0 0m  , 0  . In this case the solution of (4.1) is consistent with (2.21), only when 

τ n
0 s s , 0

X Y
B B  , i. e. magnetic field B and spin s are collinear with the Z axis. Then (2.25) 

gives 

0 0

b 22
 

m d u
s

dv v v
.                                               (4.7) 

Equations (4.1) and (4.7) are two equations for three unknown functions ( ) t , ( )v t  and poten-

tial function ( )u v . Here we consider a particular solution corresponding to constant cyclotron frequency 

    const
B

. Then from (4.7) we find the potential function 

 

2

0 b

1 0

2

2

 ( )
( ) B

m s v
u v C v , (4.8) 

and (4.1) reduces to 

 
2 2

0 b 1
      

B Z B
v B s v C( / ) , (4.9) 

which gives three types of solutions. 

II.1. 0 0m  ,   
B

, 
τ n

0 s s , 0
X Y
B B  , 

2 2 2

0 b
0      

B Z
B s/ . Equa-

tion (4.9) has the following solution 
1 0 0

   ( ) sin( )v t v v t . The relevant trajectory is described by 

radius vector 

 
0 0

0 (K )

0

0

    

   


          

         

R R e

e e

( ) ( ) ( )sin cos( )cos cos

( )cos cos( )sin ( ) ,
B B B B X

B B B Y Z

t t t t t

t t t t V t
 (4.10) 

where 1    
B B

, 
2

1 1 B
v C  / , 

2 2

0 b
    ( / )/
B Z B

B s , 

 
0b 0

2

b 0

1 





 

 

B
B

B BZ

vs v

s B
, 1

0

01

 
 



 
    

  
( ) sin( )B B

B

v
t t

v
. (4.11) 

II.2. If the magnetic field is such that the relation 
2

0 b
   /

Z
B s  is valid, i. e. 0 

B
, then 

B  , 
1 1 B
v C / . Trajectory is presented by radius vector

 
0 0 0 0

0 0 0 0 (K )

0 2 2

1 2 2

B B B X

B B B Y Z

t k t t t

k t t t V t

   

   


           

           

R R e

e e

( ) ( ) sin sin cos cos( )

( cos ) cos sin sin( ) ,
    (4.12) 

where 
0 0

4  /
B

v , 
1 0

4 /k v v , and it is complicated curve in the center-of-inertia r. f., which 

moves with velocity 
C 0 0 0 (K )

2  


  V e e e( / )(sin cos )
X Y Z

v V . 

II.3. 0 0m  ,   
B

, 
τ n

0 s s , 0
X Y
B B  , 

2 2 2

0 b
0

B Z
B s      / , i. e. 

1  
B

. It follows from (4.9) that 
1 0 0

   ( ) sinh( )v t v v t , 

Би
бл
ио
те
ка

 БГ
УИ
Р



 9 

 
0 0

0 (K )

0

0

    

   


          

         

R R e

e e

( ) ( ) ( )sin cosh( )cos cosh

( )cos cosh( )sinh ( ) ,
B B B B X

B B B Y Z

t t t t t

t t t t V t
 (4.13) 

where 1
B B

     , 

0b 0

2

b 0

1 




 
 

 

B

B
B BZ

vs v

s B
, 1

0

01

B B

B

v
t t

v

 
 



 
    

   
( ) sh( ) .         (4.14) 

Trajectory (4.13) in the center-of-inertia r. f. is twisting ( 0t  ), and then untwisting ( 0t  ) helix. 

II.4. 0 0m  ,   
B

, 
τ n

0 s s , 0
X Y
B B  , 

2 2

0 b
0    /

B Z
B s , i. e. cyclotron 

frequency is equal to 2

0 b
    /

B Z
B s . Here (4.9) gives 

2

0 1
2

B
v t v wt C t   ( ) / , 

12
0

1 (K )2

1
0

1
1

B B B X
tB

B B B Y Z

B

dv t dv t
t v t C t t

dt dt

dv t
v t C t t V t

dt





 
         

  

 
        

 

R R e

e e

( ) ( )
( ) ( ) ( ( ) )sin cos

( )
( ( ) )( cos ) sin .

                   (4.15) 

The trajectories of this type at 0w , 1 0C   correspond to the trajectories of classical electro-

dynamics, where, as it is known, a charged particle, that is flying in uniform magnetic field, moves in a 

spiral or circle, when its velocity is perpendicular to field, and spin of the particle is not taken into ac-

count in no way. As it follows from the solutions obtained above, the spin of a particle that has fallen into 

magnetic field, has always arranged parallel or antiparallel to the field. This was conclusively proven by 

experiment of Stern and Gerlach. It is obvious that condition 2

b 0
  

Z
B s  should be satisfied. Assum-

ing for the electron 
2c   , 

b
2  /s s , 

2 20

0 / 7,77 10 Hzem c     ([2], Eq. (4.50), or [3], 

Eq. (89)), we find limit value of magnetic field 2 2 112 5 6 10 kg/s  
max

/ ,
e

B m c , that corresponds 

to 
2 2 83 5 10 T  

max
/ ,

e
B m c e  in SI. Large values of magnetic field are occured in magnetars, that 

are neutron stars with strong magnetic field (up to 
1110 T ), wherein condition 2

b 0
  

Z
B s  is not val-

id. For such fields, apparently can be realized cases II.1, II.2. 

Finally, we get the usual solution, assuming b 0s  . Then (4.1) looks like 

 0 Z

du
m B

d

 
    

 
v v

v
, (4.16) 

whence (at   
B

) 

 0( / )Z B

du
m B

d
   v
v

, 
2

0

1
( ) ( / )

2
Z Bu m B  v v . (4.17) 

( ) 0u v  corresponds to standard dependence of potential function from relative distance. As it follows 

from (4.17) this is possible, when 
0

   /
B Z

B m , which coincides with standard definition of cyclo-

tron frequency. For constant field (4.16), (4.17) give 0 const v v . Then trajectory is described by 

(4.15), i. e. 

0 0

(K )
0 1


      

 
R R e e e( ) ( ) sin ( cos )

B X B Y Z

B B

v v
t t t V t .                   (4.18) 

III. Detailed description of solutions for 0 0m   will be made in a separate article. Here we only 

note that the equation (4.1) gives the first integral 

 

2 2

2 2 2 20 b

0 b2









[ ( / ) ]
( / ) constZ

Z

v B s v
v B s v D . (4.19) 

Comparison of (4.19) with (3.5) shows that the set of solutions for massless particles in a constant uni-
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form magnetic field at 
D

    may be easily obtained from solutions I-III for free particles, if 
2

0  re-

placed by 
2 2

0 b/B ZB s    together with taking into account of equations (2.23)-(2.24) instead of 

(2.21). 

Analyzing the solutions (4.10) and (4.13), one can see that they are close to the classical solution 

(4.18). Therefore a question arises to what extent the classical solution corresponds to real situation. It 

should be noted also that the obtained solutions are found in the simplified assumption about dependence 

of potential function on the velocity. In addition, the motion takes place from the infinite past to the infi-

nite future. Most of the real problems is that a free particle flies into a certain domain of space, where the 

field is present, and then flies out from it, becoming free again. Therefore, we can assume that solution of 

such problems can be obtained by combining the results obtained. 

References 

[1] Tarakanov A. N. Generalized Dynamics of the Mass Point with Internal Degrees of Freedom. // 

http://www.arXiv.org/hep-th/1010.4645v1. – 9 pp. 

[2] Tarakanov A. N. Zitterbewegung as purely classical phenomenon. // 

http://www.arXiv.org/physics.class-ph/1201.4965v5. – 24 pp. 

[3] Tarakanov A. N. Nonrelativistic Dynamics of the Point with Internal Degrees of Freedom and 

Spinning Electron. // J. Theor. Phys., 2012, 1, № 2, 76-98. 

Би
бл
ио
те
ка

 БГ
УИ
Р

http://www.arxiv.org/hep-th/1010.4645v1
http://www.arxiv.org/physics.class-ph/1201.4965v5



