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Generalized Dynamics of the Mass Point with Internal Degrees of

Freedom

A.N.Tarakanov∗

Minsk State High Radiotechnical College

An equation of motion of the mass point with internal degrees of freedom in scalar

potential U depending on relative coordinates and time, velocity and accelerations

is obtained both for non-relativistic and relativistic case. In non-relativistic case a

generalization of the energy conservation law follows, if ∂U/∂t = 0 fulfilled. A concept

of work is generalized to relativistic case, leading to corresponding integral of motion,

if ∂U/∂τ = 0 fulfilled, where τ is proper time of the point. In neglecting an internal

degrees of freedom and absence of interaction this integral of motion gives standard

Special Relativity.
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I. EQUATION OF MOTION AND THE ENERGY CONSERVATION

A long period of supremacy of quantum theories did not crush an interest in classical
description of quantum systems. In this connect some conclusions, following from the basic
equation of dynamics, the Second Newton’s Law, should be noted. As it is well known from the
Helmholtz epoch ( [1]), the Second Newton’s Law for conservative systems

dP

dt
= F (I.1)

gives a force acting at the mass point in the form F = −∇U = −∂U/∂R, where U = U(R)
is potential function of coordinate of the mass point. As a result Eq.(I.1) and a definition of
elementary work

dA = (F · dR) = (
dP

dt
· dR) = (V · dP) , (I.2)

where R and V = dR/dt are respectively radius vector and velocity of the mass point relative to
origin of coordinate system, coupled with absolute rest reference frame (r.f.), give a conservation
of total mechanical energy

E =
mV

2

2
+ U(R) . (I.3)

As soon as absolute r.f. be coupled with any physical object, one can say that the motion
of mass point takes place in the field, created by this object and characterized by potential
function U(R).

It is clear from the common considerations that a motion of mass point in the field of some
object should determined by potential function depending not only on relative coordinates
R, but also at least on relative velocity V and accelerations, as well as on time, so that
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U = U(t,R,V,W,Ẇ, ...,W(N)), where W
(k) = dkW/dtk, a time dependence being specified

by internal dynamics of the mentioned object. Remember W.Weber ( [2]- [3]), who tried to
explain electrical phenomena as a result of electric interaction of elementary particles, so called
electric atoms, depending both on their relative disposition R and on their relative velocity V

and acceleration W = dV/dt.
In this case corollaries F = −∇U and (I.3) from equation of motion (I.1) should be changed

forasmuch as total differential of the function U is

dU =
∂U

∂t
dt+ (

∂U

∂R
· dR) + (

∂U

∂V
· dV) +

N
∑

k=0

(
∂U

∂W(k)
· dW(k)) . (I.4)

Indeed, definition of elementary work of the force (I.2) gives more general expression for
force, namely

F = −
∂U

∂R
+ [C×V] , (I.5)

where C is some pseudo-vector, inherent in mass point, and additional term [C × V] having
a sense of gyroscopic force. As far back as Helmholtz in his work "On the conservation of
force"( [1]; Addition 3) pointed out at formula (I.6).

Furthermore, when interaction takes place the momentum vector P has a meaning of
dynamical momentum. It can be written as a sum of kinematical momentum mV and some
addition A (a vector potential), connected both with internal structure of mass point, and with
interaction

P = mV +A . (I.6)

Then Eqs.(I.2) and (I.6) give

dA = (F · dR) = (V · d(mV +A)) = d

(

mV
2

2
+ (A ·V)

)

− (A · dV) , (I.7)

or

d

(

mV
2

2
+ (A ·V)

)

+ (
∂U

∂R
· dR)− (A · dV) =

= d

(

mV
2

2
+ (A ·V) + U(t,R,V,W,Ẇ, ...,W(N))

)

−

−
∂U

∂t
dt− (

∂U

∂V
· dV)− (A · dV)−

N
∑

k=0

(
∂U

∂W(k)
· dW(k)) = 0 . (I.8)

Now, if one suppose

A = −
∂U

∂V
+ [S×W] , (I.9)

where S is some pseudo-vector, coupled with the mass point considered, W is an acceleration
of this point, then dynamical momentum (I.6) will get an expression

P = mV −
∂U

∂V
+ [S×W] , (I.10)

whereas it follows from Eq.(I.8)
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dE

dt
=

∂U

∂t
+

N
∑

k=0

(
∂U

∂W(k)
·W(k+1)) , (I.11)

where quantity

E =
mV

2

2
+ (V · [S×W])− (V ·

∂U

∂V
) + U(t,R,V,W,Ẇ, ...,W(N)) (I.12)

is a generalization of Eq.(I.3) for total mechanical energy. So, apart from standard kinetic and
potential energies an additional energy arises due to both internal degrees of freedom and a
dependence of potential energy on relative velocity.

Provided the condition

∂U

∂t
+

N
∑

k=0

(
∂U

∂W(k)
·W(k+1)) = 0 (I.13)

is fulfilled, the energy (I.12) will be an integral of motion. Condition dE/dt > 0 corresponds to
absorption of energy by a mass point, and dE/dt < 0 corresponds to radiation of energy.

In view of stated above, the equation of motion (I.1) should be written down in the form

d

dt
(mV + [S×W])− [C×V] =

d

dt

∂U

∂V
−

∂U

∂R
. (I.14)

Let’s note here that derivatives of potential function with respect to accelerations W
(k) do

not enter into an equation of motion. Therefore one can be restricted to dependence of potential
function only on acceleration W: U = U(t,R,V,W).

Equation (I.14) gives a number of special cases.
1. First Newton’s law (U(t,R,V,W) = 0, V = const) takes place, if the relation

d

dt
[S×W] = [C×V] , (I.15)

including also trivial absence of internal structure, C = 0 , S = 0 , is fulfilled.
2. If the force (I.5), acting at a mass point, becomes zero, i.e. the relation

∂U

∂R
= [C×V] (I.16)

is fulfilled, then dynamical momentum (I.10) will be a conserved vector.
If besides the relation

∂U

∂V
= [S×W] , (I.17)

is fulfilled, then dynamical momentum coincides with kinematical momentum and there take
place uniform and rectilinear motion.

For free mass point, when interaction is neglected, U(t,R,V,W) = 0, conservation law of
dynamical momentum takes place only if [C ×V] = 0, and uniform and rectilinear motion is
a result of additional condition [S×W] = 0.

3. If ∂U/∂R = 0 and the relation

[C×

(

[S×W]−
∂U

∂V

)

] = 0 (I.18)

takes place, equation of motion (I.14) takes the form
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d

dt

(

mV + [S×W]−
∂U

∂V

)

−
1

m
[C×

(

mV + [S×W]−
∂U

∂V

)

] = 0 , (I.19)

from which it follows, that dynamical momentum (I.10) is precessing round a direction of
pseudovector C with angular velocity ω = C/m.

In general case the relation (I.15) or relations (I.16) and (I.17) necessary for performance of
the first Newton’s law, may not be satisfied. Therefore for mass points with internal degrees of
freedom the inertia law in the form in which it has been formulated by Galiley and Newton, has
no place and cannot be accepted as the first principle underlying mechanics. One can generalize
it in the following way: Mass point (body) with internal degrees of freedom, given to itself, moves
according to equation (I.15) in which U(t,R,V,W) = 0.

II. THE EQUATION OF MOMENTS FOR A MASS POINT WITH INTERNAL

DEGREES OF FREEDOM

The equation (I.14) is insufficient for description of dynamics of physical system. There is
necessary in addition an equation of moments, which for structureless mass point looks like
dL/dt = M, where L = [R × P] = m[R × V] is angular momentum, M = [R × F] is total
moment of external forces, acting at the system. For individual mass point equation of moments
follows from the Eq.(I.1).

For a mass point with internal degrees of freedom, describing by Eq.(I.1), in which force and
momentum are specified by equations (I.5) and (I.10), respectively, we have the relation

[R×
dP

dt
] =

d

dt
[R×P]− [V × (−

∂U

∂V
+ [S×W])] = −[R×

∂U

∂R
] + [R× [C×V]] , (II.1)

implying the following equation of moments

dL

dt
= M+T, (II.2)

where

L
.
= [R×P] = m[R ×V]− [R×

∂U

∂V
] + [R× [S×W]] (II.3)

is a dynamical angular momentum,

M
.
= [R× F] = −[R×

∂U

∂R
] + [R× [C×V]] (II.4)

is a moment of force, acting at the mass point,

T
.
= [V ×P] = −[V ×

∂U

∂V
] + [V × [S×W]] (II.5)

is an additional twisting moment, or torque. In standard mechanics the concept "torque" is
applied to the moment of force (II.4). Here we distinguish the moment of force (II.4) and torque
(II.5).

It should be noticed, that in the same way both equation dL/dt = M follows from Eq.(I.1)
for usual mass point and equation (II.2) follows from Eq.(I.14) (i.e. Eq.(I.1), in which F and P

are specified by equations (I.5) and (I.10)) for a mass point with internal degrees of freedom.
Solution of equation (I.14) may be obtained in principle, if potential function U =

U(t,R,V,W) and time dependence of pseudo-vectors S и C, coupled with internal structure
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of mass point, are known. As it is known, one of internal property of particles is spin, associated
classically with proper angular momentum of particle. Therefore a temptation arises to connect
pseudo-vectors S and C with spin. However, having only definition (II.3) for angular momentum
it is impossible to define a concept of proper angular momentum. Therefore pseudo-vectors S, C
and their equations of motion should either postulated here artificially or determined starting
from additional arguments. In particular, one may go by the same way as a solid body in
mechanics considered as a system of mass point. Then it is possible to define a concept of
particle with internal degrees of freedom as a system of the same mass points, whose proper
angular momentum is determined relative to center of inertia of particle. Such procedure will be
made elsewhere. Here it is reasonably to generalize equations and concepts above to relativistic
case.

III. RELATIVISTIC EQUATION OF MOTION

Relativistic generalization of the second Newton’s law for mass point is

dP

dλ
=

1

c
F (III.1)

where P = {P µ} = (P 0,P), F = {F µ} = (F 0,F), µ = 0, 1, 2, 3, are relativistic generalizations
of momentum and force, λ is invariant parameter determined by the interval

dS2 = ηµνdR
µdRν = (dR0)2 − dR2 = σdλ2 , σ = ±1 , (III.2)

where ηµν = diag(1,−1,−1,−1). Thus, for σ = +1 parameter λ/c = τ is a proper time of
"concomitant observer" K′ moving together with event defined by four-dimensional radius-
vector R = {Rµ} = (R0,R). For σ = −1 parameter λ = S coincides with length of arc of world
line of the event R.

Let’s note an important fact, that standard Special Relativity with interval (III.2) is valid
exceptionally for inertial r.f. Usually interval (III.2) is considered as a definition of distance
between two points in the Minkowski space E

R
1,3. Then coordinates of a point in E

R
1,3, defined

by radius-vector R, are quantities relative to origin, coinciding with origin of the rest inertial
r.f., and have absolute character in the meaning of absolute time and absolute space of Newton’s
mechanics. Relative character in the meaning of Special Relativity they acquire when interval
(III.2) is coupled with r.f. K′, moving relative to the rest r.f. K with velocity V = cdR/dR0. In
this case radius-vector R is said to be an event R, whose world line is a trajectory of the origin
of inertial r.f. K′, moving with velocity V in E

R
1,3, i.e. in the space of the rest r.f. K.

For inertially moving r.f. K′ r.h.s. of Eq.(III.1) vanishes, and we obtain conservation of
4-momentum, whence it follows conservation of

P2 = ηµνP
µP ν = (P 0)2 −P

2 = σm2
0c

2 , (III.3)

if 4-momentum is defined as

P µ = m0cU
µ = m0cdR

µ/dλ = m0dR
µ/dτ . (III.4)

Relations (III.3)-(III.4) are standard relations of Special Relativity for kinematical
momentum, which are extended on any asymptotically free physical systems without any
reason. Between other things one may consider an expression (III.2) for relativistic interval
as a corollary from relations (III.3), postulating connection between energy and momentum.

If some force be acting on moving r.f. K′, the latter is no longer inertial one. Then 4-
momentum in Eq.(III.1) becomes dynamical momentum, whose definition ought to be analogous
to Eq.(I.6)
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P µ = m0c
dRµ

dλ
+Kµ , (III.5)

where Kµ is some addition to kinematical 4-momentum (III.4) due to interaction between
moving r.f. K′ and rest r.f. K.

In Newton’s mechanics an interaction force (I.5) between K′ and K is determined by means
of elementary work (I.2) which may be written as dA = −ηijF

idRj. This work is a scalar
under Galilei transformations, i.e. it is the same in all non-relativistic inertial r.f., but it is not
covariant under Lorentz transformations.

Indeed, let Lµ
. ν be matrix elements of the Lorentz transformation dR′µ = Lµ

. νdR
ν , satisfying

to condition ηλκL
λ
. µL

κ
. ν = ηµν , so that ( [4])

L0
. 0 = γσ = (1−B

2σ
0 )−1/2 , L0

. i = ΓσV0i/V0 , L
i
. 0 = −ΓσV

i
0 /V0 , L

i
. j = δi. j −

γσ − 1

V2
0

V i
0V0j ,

(III.6)
where

B0 = V0/c , V0 = |V0| =
√

V2
0 , B0 = |B0| =

√

B2
0 = cV0 ; (III.7)

Γσ = Bσ
0γσ , Γ+ = B0γ+ = B0(1−B

2
0)

−1/2 , Γ− = γ−/B0 = (B2
0 − 1)−1/2 , (III.8)

V0 is velocity of r.f. K′ relative to r.f. K.
Then the Lorentz transformation takes form

dR′0 = γσ

[

dR0 −
Bσ

0 (V0 · dR)

V0

]

, (III.9)

dR′ = dR+

[

(γσ − 1)
(V0 · dR)

cBσ
0B0

− γσdR
0

]

Bσ
0

cB0

V0 . (III.10)

Transformation law of relativistic force looks as

F ′µ = Lµ
. νF

ν = Lµ
. 0F

0 + Lµ
. iF

i , (III.11)

F ′0 = γσ

[

F 0 −
Bσ

0 (F ·V0)

V0

]

, (III.12)

F
′ = F+

[

(γσ − 1)(F ·V0)

V2
0

−
γσB

σ
0F

0

V0

]

V0 . (III.13)

Hence Eqs.(III.10) and (III.13) give transformation law for elementary work

dA′ = (F′ · dR′) = −ηijF
′idR′j = −ηijL

i
. µL

j
. νF

µdRν =

= dA+ Γ2
σ

[

1−
(V ·V0)

c2B0B
σ
0

]

cF 0dt−
Γ2
σ

B0B
σ
0

(F ·V0)dt+
γ2
σ − 1

V2
0

(F ·V0)(V ·V0)dt , (III.14)

whence it follows relativistic transformation of power N = cdA/dR0 = (F ·V)

N ′ = c
dA′

dR′0
= (F′ ·V′) =

=
N + L0

. 0L
0
. iF

0V i + cL0
. iL

0
. 0F

i + L0
. iL

0
. jF

iV j + c[(L0
. 0)

2 − 1]F 0

L0
. 0 + L0

. iV
i/c

=
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=
N + cΓ2

σ

[

1− (V·V0)
c2B0Bσ

0

]

F 0 − Γ2
σ

B0Bσ

0

(F ·V0) +
γ2
σ
−1

V2

0

(F ·V0)(V ·V0)

γσ

[

1−
Bσ

0
(V·V0)

V0

] . (III.15)

Noncovariance of expression (I.2) and force transformation law (III.13) are inconsistent with
principle of relativity, whose successive application means that equations and quantities, such
as scalars, 4-vectors, tensors etc., should be covariant under Lorentz transformations in any
theory. An expression, being a scalar in some inertial r.f., ought to be scalar in another inertial
r.f. Therefore definition (I.2) should be generalized in the form

dW = −ηµνF
µdRν = −F 0dR0 + dA = (−cF 0 +N)dt . (III.16)

In standard Special Relativity, dealing with interval (III.2), F 0 is defined from Eq.(III.1),
where P 0 = m0cdR

0/dτ = m0c
2γ = m0c

2(1 − V
2/c2)−1/2, V is absolute velocity of the mass

point acquiring acceleration W = dV/dt under action of the force F. Then taking into account
the relation

dγ

dt
=

γ3

c2
(V ·W) , (III.17)

we obtain

F =
dP

dτ
= γ

d(m0γV)

dt
= m0γ

2

[

W +
γ2

c2
(V ·W)V

]

, (III.18)

(F ·V) = m0γ
4(V ·W) , (III.19)

F 0 =
dP 0

dτ
= m0c

dγ

dτ
= m0cγ

dγ

dt
=

m0γ
4

c
(V ·W) =

1

c
(F ·V) =

N

c
. (III.20)

Comparison of Eq.(III.16) with Eq.(III.20) shows that scalar dW is identically zero in all
inertial r.f. However, should moving r.f. K′ be coupled with considered mass point, the latter
ceases to be inertial one. Then in such r.f. an expression (III.2) for length of arc of the world
line of the mass point and relations (III.18)-(III.20) become invalid. It means that scalar dW =
= −ηµνF

µdRν = −ηµνF
′µdR′ν does not equal to zero, conserving its covariant expression in

all inertial r.f. Relativistic force, acting at rest mass point in r.f. K′, may be expressed in
terms of potential function U = U(λ,Rµ, Uµ,W µ, Ẇ µ, ..., (W (N))µ) by analogy with (I.5) in
non-relativistic mechanics, where Rµ, Uµ, W µ = dUµ/dλ, (W (k))µ = dkW µ/dλk are relative
radius-vector, 4-velocity and 4-accelerations of r.f. K′ relative to r.f. K. Forasmuch as relation
ηµνU

µUν = σ following from (III.2) becomes invalid, arguments of potential function should
considered as independent variables, so that total differential of U equals

dU =
∂U

∂λ
dλ+

∂U

∂Rµ
dRµ +

∂U

∂Uµ
dUµ +

N
∑

k=0

∂U

∂(W (k))µ
d(W (k))µ . (III.21)

Formulae (I.10) and (I.5) should considered as non-relativistic limits of 4-momentum and
4-force

P µ = m0cU
µ − ηµν

∂U

c∂Uν
+

1

2
ηµνενλκρS

λκW ρ , (III.22)

F µ = −ηµν
∂U

∂Rν
+

1

2
ηµνενλκρC

λκUρ, (III.23)

respectively, where Sλκ and Cλκ are some antisymmetric tensors, characterizing internal
structure of the mass point.
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Substitution of Eqs.(III.22)-(III.23) into equation (III.1) gives next equation of motion

d

dλ

[

m0cU
µ +

1

2
ηµνενλκρS

λκW ρ

]

−
1

2c
ηµνενλκρC

λκUρ =
1

c
ηµν

[

d

dλ

∂U

∂Uν
−

∂U

∂Rν

]

. (III.24)

Substitution of Eqs.(III.22)-(III.23) into equation (III.1) gives

cηµν
dP µ

dλ
dRν = cηµνU

µdP ν = ηµνF
µdRν = ηµνU

µF νdλ , (III.25)

or

ηµνU
µ d

dλ

[

m0c
2Uν +

c

2
ηµνενλκρS

λκW ρ
]

= Uµ d

dλ

∂U

∂Uµ
− Uµ ∂U

∂Rµ
. (III.26)

Hence we obtain equation

dE

dλ
=

∂U

∂λ
+

N
∑

k=0

∂U

∂(W (k))µ
(W (k+1))µ , (III.27)

where quantity

E =
m0c

2

2
ηµνU

µUν +
c

2
εµνλκU

µW νSλκ + U − Uµ ∂U

∂Uµ
=

m0c
2

2
σ = const , (III.28)

is an integral of motion provided a condition

∂U

∂λ
+

N
∑

k=0

∂U

∂(W (k))µ
(W (k+1))µ = 0 (III.29)

is satisfied.
Neglecting internal structure of mass point and its interaction, U = 0, from (III.28) we obtain

ηµνU
µUν = σ, and expression (III.2) for interval of standard Special Relativity. In general case

integral of motion σ does not equal to +1 or −1. Specifically, an account of internal structure
of free mass point gives

ηµνdR
µdRν +

1

m0

εµνλκS
λκdRµdUν =

[

1 +
1

m0c

ελκτωS
λκU τW ω

ηρσUρUσ

]

ηµνdR
µdRν = σdλ2 , (III.30)

i.e. the Minkowski space-time ER
1,3 effectively extends to 8-dimensional phase space with interval

(III.30) and degenerate metric, which is equivalent to 4-dimensional conformally flat space with
metric

gµν =

[

1 +
1

m0c

ελκτωS
λκU τW ω

ηρσUρUσ

]

ηµν , (III.31)

coordinate dependence of which may be determined, as soon as solution of equation of motion
(III.24) for U = 0 is found.
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