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1. Introduction

Solution of the two-body problem has exclusive meaning for decoding the structure of

interactions between both macroscopic bodies and elementary particles. The unique

way to determine it by experiment is a study the scattering of particles on each other

at various energies, theoretical description of which is a problem of two particles.

A motion of cosmic objects (such as satellites, planets, stars, etc.) or a motion of

two charged particles also reduces to the two-body problem (classical Kepler-Coulomb

problem), which a lot of works is dedicated to beginning from Newton’s formulation

of the World Gravity Law, Hooke’s formulation of elastic deformations and Coulomb’s

law of electrostatic interaction of charges. Laws of Newton, Hooke and Coulomb made

possible to solve a bulk of physical problems and give rise to a great many discoveries.

The up-to-date enunciating of a mathematical problem of two bodies interacting via

central potential one can find in the book [1].

The two-object problem, i.e. determination of their trajectories, can be solved in

principle, if interaction between them is known. On the other hand, Bertrand sets

up an inverse problem of determining interaction with respect to known trajectories

of motion of bodies ([2]). As it is known, according to the Bertrand’s theorem only

two types of central potentials, of Coulomb and harmonic type, give closed circular or

elliptic orbits (see, e.g.,[3]). However Bertrand’s problem is solved in the assumption

that interaction between objects depends only on relative distance between them and

is central, meanwhile as early as in 19 century it was considered that interaction

should depend also from relative velocity and acceleration. On this way Weber has

developed well-working electrodynamics which after creation by Maxwell of the theory

of electromagnetic field undeservedly has been removed aside. Weber has obtained

expression for the force of interaction between charged particles depending on the

relative velocity and acceleration [4]-[7]. Special and general relativity have given a

new push to a consideration of the two-body problem. In particular, Sommerfeld has

considered the relativistic problem in approximation when one of masses is infinitely

great [8]. Darwin has obtained expression for interaction force between charged particles

using retarded potential in non-relativistic approximation of relativistic Lagrangian [9].

Later on Darwin’s Lagrangian was used in quantum mechanical calculations.

Besides dependence on the relative velocities and accelerations, interaction between

physical objects depends also on mutual orientation of their spins originally interpreted

classically as angular velocity of rotation ( [10], p. 123), and now as proper moments of

momenta. In the bound state the spins of interacting objects are arranged up in definite

way. For example, it is established that in a deuteron the spins of proton and neutron are

oriented in one direction. Spins of electrons in Cooper pairs have opposite orientation

whereas electrons and positrons in positronium can have both the same orientations of

spins (orthopositronium), and opposite orientations (parapositronium).

By far not simple question about interaction between objects can be clarified by

means of studying of the equations of motion taking into account all parameters of
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objects. To clarify all aspects of a problem we will start from the classical equations of

motion of a material point with internal degrees of freedom, obtained in [11]-[13]. The

aim of this paper is to obtain a system of equations of motion, describing non-relativistic

motion of two interacting spinning objects. Having non-relativistic classical theory it is

easy later on to pass on to relativistic and quantum variants, using a correspondence

principle. Equations, which describe any system of N interacting objects with internal

degrees of freedom, are considered in section 2. These equations are applied to system of

two objects in section 3. Unlike Newton’s mechanics here it is supposed that additivity

of a momentum does not take place, i.e. momentum of the system differs from the sum

of momenta of subsystems by ”the momentum excess” which disappears if interaction

does not depend on relative speed. Center-of-mass variables and relative variables are

introduced in section 4, as well as relations are established between quantities describing

a motion of the system as a whole and relative motion of subsystems. The equations

of motion of the center of mass of the system and of relative motion of subsystems

are obtained, which contain undefined scalar and pseudo-vector functions describing

interaction. For a concrete definition of these functions and establishing of the spin

equations of motion in section 5 the moments of momentum of the system and its

subsystems are considered. Relations between total moments of momentum and angular

momenta and spins of the system and its subsystems are obtained. Equations of motion

of spins are considered in section 6. Finally, section 7 has to do with a question of

correlation of the energy of system with energies of its subsystems.

2. System of N objects with internal degrees of freedom

It is shown in Refs. [11]- [13] that the equation of motion of a mass-point with internal

degrees of freedom whose position is defined by a radius-vector RK and which interacts

with external fields, can be presented in the form

dPK

dt
= FK , (1)

where K = 1, 2, ..., N is subscript labeling a mass-point,

PK = mKVK = m0KVK −
∂UK

∂VK

+ [SK ×WK ] , (2)

is dynamical momentum of K-th point, m0K is a naked mass of the point without of

taking into account an interaction and interior structure, mK is an effective mass of the

point,

FK = − ∂UK

∂RK

+ [CK ×VK ] , (3)

is a force acting onto K-th point,

UK = UK(t,RK ,VK ,WK ,ẆK, ...,W
(N)
K ) = U0K − ([RK ×VK ] ·CK) , (4)
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is a potential function of K-th point, which generally may be function of coordinates

RK , velocities VK = ṘK and accelerations W(m) = dmWK/dtm, m = 0, 1, 2, ..., n, of

both points.

A mass-point with internal degrees of freedom should be considered as non-inertial

extended object with internal structure, defined by pseudo-vectors SK and CK , which

also depend on the interaction of the object with external fields. For the system of N

objects, interacting both with external fields and with each other, functions UK and

pseudo-vectors SK , CK may be represented as sums

UK = U ext
K +

N∑
J=1

U int
JK , (5)

SK = S0K + Sext
K = S0K + Sext

0K +
N∑

J=1

Sint
JK , (6)

CK = C0K + Cext
K = C0K + Cext

0K +
N∑

J=1

Cint
JK . (7)

Here functions U ext
K , Sext

0K , Cext
0K are specified by interaction of objects with external fields,

whereas U int
JK , Sint

JK , Cint
JK are specified by interaction of objects J and K with each other.

Pseudo-vectors

Sext
K = Sext

0K +
N∑

J=1

Sint
JK , (8)

Cext
K = Cext

0K +
N∑

J=1

Cint
JK , (9)

may depend on the same variables as potential function (4). Internal parameters S0K

and C0K are specified exclusively by internal structure of objects and do not depend on

external variables. In Ref. [13] it is shown that for free objects (mass-points with internal

degrees of freedom) they are expressed in terms of spin, being integral characteristic of

this structure, as follows

S0K = ςKsK , (10)

C0K = −Ω2
0KS0K = −ςKΩ2

0KsK , (11)

where ςK is a constant with dimensionality of inverse square of velocity, Ω0K is a

cyclic frequency of Zitterbewegung of K-th object. If ςK = −c−2
K , where cK is some

velocity, the equation of motion for free K-th object is reduced to non-relativistic limit

of Frenkel-Mathisson-Weyssenhoff equation ( [14]- [16]). If one adopts ςK = +c−2
K ,

the corresponding equation will describe a particle with opposite direction of spin, i.e.

antiparticle. One may assume further that all constants cK are equal among themselves

and represent the velocity of light. However it should be noticed that constant with

dimensionality of velocity is proportional to product r0KΩ0K , where r0K is a radius of

Zitterbewegung of K-th object. If cK = r0KΩ0K , the center of mass of free K-th object

in its center-of-inertia reference frame moves along circle round the direction of motion
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of its center of inertia with velocity cK . It is reasonable to expect the relations (10)-(11),

including the cases S0K = 0 (cK = ∞) and C0K = 0 (Ω0K = 0), will be valid also for

interacting objects.

Along with (1) it is necessary to write down the equations of motion for spins

dsK

dt
= [ΩNK(t)× sK ] + mK(t) = σNK(t)[NK × sK ] + mK(t) , (12)

where ΩNK(t) are angular velocities of precession of spins sK round directions of vectors

NK(t), which can be the same vector for the system of objects, for example, the vector

of velocity of the center of inertia of the system. mK(t) has meaning of the moment of

force acting onto extended object relative to its center of mass. One can try to define

the structure of mK(t) from analysis of interaction of internal substance of the extended

object with external fields, which induces possible movement of this substance inside

the object.

A geometrical structure of the object, on the one hand, is specified by distribution of

its internal substance in some spatial volume V which can change due to the interaction,

and on the other hand, itself determines an interaction of the object with external fields.

There are only two variants of consideration of extended object: either as a set (discrete

or continuous) of structureless mass-points, in the same way as it is usually made in

the mechanics of absolutely rigid or deformable body, or as a set of mass-points with

internal degrees of freedom, i.e. similar objects. Then by definition expression for spin

of K-th object looks like

sK = j0Kω0K =
NK∑
i=1

[r
(K)
i × π

(K)
i ] , (13)

for discrete set of points, or

sK = j0Kω0K =
∫

VK(t)
[ρK × πK(ρK)]dVK , (14)

for continuous set of points. Here r
(K)
i and ρK are radius-vectors of internal points

relative to the center of mass of K-th object,

π
(K)
i = m

(K)
i v

(K)
i = m

(K)
i

dr
(K)
i

dt
, (15)

is momentum of i-th point with effective mass m
(K)
i and velocity v

(K)
i in the case of

discrete set of structureless points,

πK(ρK) =
dµK

dV
υK(ρK) =

dµK

dV

dρK

dt
, (16)

is momentum density of elementary mass dµK , moving with velocity υK(ρK) inside of

K-th object, representable as continuous distribution of structureless points. In the case

when the object with internal degrees of freedom is a set of the points also endowed
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with internal degrees of freedom, expressions for π
(K)
i and πK(ρK) should have the same

structure as in (2). This variant unjustifiably complicates the description of extended

objects, but it may be relevant for the description of larger composite objects.

Differentiation of (13) and (14) with respect to time and comparison of result with

(12) will give the possibility to determine the structure of mK(t). However at first it is

necessary to contemplate the two-object problem, and then the problem of many objects

with internal degrees of freedom.

3. System of two objects with internal degrees of freedom

In the system of two interacting mass-points, each of which possesses internal degrees

of freedom, pseudo-vectors SK and CK , K = 1, 2, due to (6), (7), (10) and (11) are

represented like

S1 = ς1s1 + Sext
01 + Sint

21 , S2 = ς2s2 + Sext
02 + Sint

12 , (17)

C1 = −ς1Ω
2
01s1 + Cext

01 + Cint
21 , C2 = −ς2Ω

2
02s2 + Cext

02 + Cint
12 . (18)

Momenta of these points with respect to (2), (5), (17) look like

P1 = m01V1 −
∂(U ext

1 + U int
21 )

∂V1

+ [(ς1s1 + Sext
01 + Sint

21 )×W1] = m1V1 , (19)

P2 = m02V2 −
∂(U ext

2 + U int
12 )

∂V2

+ [(ς2s2 + Sext
02 + Sint

12 )×W2] = m2V2 , (20)

where m01, m1 and m02, m2 are the naked and effective masses of constituents,

respectively. Forces, acting upon the points, with respect to (3), (5), (18) are

F1 = −∂(U ext
1 + U int

21 )

∂R1

+ [(−ς1Ω
2
01s1 + Cext

01 + Cint
21 )×V1] , (21)

F2 = −∂(U ext
2 + U int

12 )

∂R2

+ [(−ς2Ω
2
02s2 + Cext

02 + Cint
12 )×V2] . (22)

System as a whole, as well as its constituents, is non-inertial object with internal degrees

of freedom, whose dynamical momentum should have the structure similar to (2), i.e.

P = m0V − ∂U

∂V
+ [(ςs + Sext)×W] = mV , (23)

where m0 and m are the naked and effective mass of the system, respectively, and

potential function U and pseudo-vector Sext have to be determined exclusively by

interaction of the system as a whole with external fields.

In Newton’s classical mechanics, where potential function does not depend on

velocities, momentum is additive quantity (see, e.g., [17]). It means that the momentum

of the system is determined as sum of momenta of its subsystems P = P1+P2. However

experimental data of nuclear and elementary particle physics testify to an absence of
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the momentum additivity. For example, momentum of nucleus considered as a system

of interacting nucleons does not equal to sum of momenta of nucleons. Due to strong

interaction arises a mass excess. Therefore the composition law for momenta should be

written down in the form

P = P1 + P2 + ∆P , (24)

where ∆P can be named similar to the mass excess as ”momentum excess”. In general

case we shall consider momentum excess to be caused not only by the interaction of

constituents of system with each other, but also their interaction with external fields.

Therefore we suppose

∆P = ∆Pext + ∆Pint . (25)

Momentum (24) should satisfy to the Second Newton’s Law

dP

dt
= F = F1 + F2 , (26)

the right hand side of which includes the resultant of all forces, acting onto points of

the system. This resultant force should be of the same structure as expression (3), i.e.

F = −∂U

∂R
+ [(−ςΩ2

0s + Cext)×V] . (27)

All quantities entering into expressions (23), (27), characterize system as a whole

and can be expressed through corresponding partial quantities. Spin of the system s

should also satisfy to equation of type (12), or

ds

dt
=

σP(t)

m
[P× s] + m(t) . (28)

Thus, on the one hand, the system of two objects with internal degrees of freedom is

described by system of six equations (1) and six equations (12), which, on the other hand,

should be equivalent to three equations (26) and three equations (28). The remaining

six equations should describe internal movements in the system. These equations we

shall consider in the separate section.

4. Relations between quantities, describing the system and its subsystems

Quantities m0, m, U , ς, Ω0, s, Sext, Cext, entering into (23), (27), may be determined, if

partial quantities m0K , mK , UK , ςK , Ω0K , sK , Sext
0K , Cext

0K , entering into (1), are known.

To find a connection between all these quantities we transform system of equations (1)

and (12) in standard way by introducing the relative variables

r = R2 −R1 , v = V2 −V1 , w(m) = W
(m)
2 −W

(m)
1 = dmw/dtm , (29)

and the center-of-mass variables

R =
m01R1 + m02R2

m0

, V =
m01V1 + m02V2

m0

,W(m) =
m01W

(m)
1 + m02W

(m)
2

m0

, (30)
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where

m0 = m01 + m02 . (31)

We define also the internal variables, namely, radius-vectors, velocities and accelerations

of points relative to the center of mass

rK = RK −R , vK = VK −V , w
(m)
K = W

(m)
K −W(m) . (32)

From (29)-(32) we obtain

r1 = R1 −R = −m02

m0

r , r2 = R2 −R =
m01

m0

r , (33)

m01r1 + m02r2 = m01R1 + m02R2 −m0R = 0 , (34)

as well as corresponding relations for velocities and accelerations. If radius-vector R(t)

of the center of mass and relative radius-vector r(t) are known, then radius-vectors

RK(t) of points in absolute reference frame can be easily determined from (33).

For arbitrary functions f(R1, ...;R2, ...), depending on R1, R2 and their derivatives

with respect to time we have

∂f

∂R1

=
m01

m0

∂f

∂R
− ∂f

∂r
,

∂f

∂R2

=
m02

m0

∂f

∂R
+

∂f

∂r
, (35)

and corresponding derivatives with respect to V1, V2, ... .

Substitution of quantities RK(t), VK(t), WK(t), obtained from (33) into (24)-(26)

and comparison of the result with (23), (27), give rise to equations, connecting quantities

relating to the whole system with partial ones

∂U

∂R
=

1

m0

∂[m01(U
ext
1 + U int

21 ) + m02(U
ext
2 + U int

12 )]

∂R
+

+
∂(U ext

2 + U int
12 − U ext

1 − U int
21 )

∂r
+

+[(ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s + Cext −Cext
01 −Cint

21 −Cext
02 −Cint

12 )×V]−

− 1

m0

[(m02ς1Ω
2
01s1−m01ς2Ω

2
02s2−m02C

ext
01 −m02C

int
21 + m01C

ext
02 + m01C

int
12 )× v] , (36)

∂U

∂V
=

1

m0

∂[m01(U
ext
1 + U int

21 ) + m02(U
ext
2 + U int

12 )]

∂V
+

+
∂(U ext

2 + U int
12 − U ext

1 − U int
21 )

∂v
−∆Pext −∆Pint+

+[(ςs− ς1s1 − ς2s2 + Sext − Sext
01 − Sint

21 − Sext
02 − Sint

12 )×W]+

+
1

m0

[(m02ς1s1 −m01ς2s2 + m02S
ext
01 + m02S

int
21 −m01S

ext
02 −m01S

int
12 )×w] . (37)

For free system which is not undergo to action of external fields it is necessary to put

U = U ext
1 = U ext

2 = 0, ∆Pext = 0, Sext = Sext
01 = Sext

02 = 0, Cext = Cext
01 = Cext

02 = 0. It
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is reasonably to admit also that U int
12 and U int

21 depend only on relative variables whereas

U ext
1 and U ext

2 do not depend on them. Since they are scalar functions depending on

relative variables we have

U int
12 = U int

12 ≡ U int . (38)

Then (36), (37) reduce to equations

[(ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s−Cint
21 −Cint

12 )×V]−

− 1

m0

[(m02ς1Ω
2
01s1 −m01ς2Ω

2
02s2 −m02C

int
21 + m01C

int
12 )× v] = 0 , (39)

∆Pint = [(ςs− ς1s1 − ς2s2 − Sint
21 − Sint

12 )×W]+

+
1

m0

[(m02ς1s1 −m01ς2s2 + m02S
int
21 −m01S

int
12 )×w] , (40)

where one may get rid of dependence on the center-of-mass variables when assuming

ςs = ς1s1 + ς2s2 + Sint
21 + Sint

12 , (41)

Cint
21 + Cint

12 = ς1Ω
2
01s1 + ς2Ω

2
02s2 − ςΩ2

0s =

= ς1(Ω
2
01 − Ω2

0)s1 + ς2(Ω
2
02 − Ω2

0)s2 − Ω2
0(S

int
21 + Sint

12 ) . (42)

These relations follow from the Galileo’s relativity principle, according to which

equations (39), (40) should be covariant relative to Galileo’s transformations, so that in

the center-of-mass reference frame (V = 0, W = 0) they take the form

[(m02ς1Ω
2
01s1 −m01ς2Ω

2
02s2 −m02C

int
21 + m01C

int
12 )× v] = 0 , (43)

∆Pint =
1

m0

[(m02ς1s1 −m01ς2s2 + m02S
int
21 −m01S

int
12 )×w] . (44)

It is naturally to accept equation (43) to be valid in the case of interaction of

the system with external fields. Then substitution of (41)-(44) in (36), (37) leads to

equations

∂U

∂R
=

1

m0

∂(m01U
ext
1 + m02U

ext
2 )

∂R
+ [(Cext −Cext

01 −Cext
02 )×V]+

+
1

m0

[(m02C
ext
01 −m01C

ext
02 )× v] , (45)

∂U

∂V
=

1

m0

∂(m01U
ext
1 + m02U

ext
2 )

∂V
+ [(Sext − Sext

01 − Sext
02 )×W]+

+
1

m0

[(m02S
ext
01 −m01S

ext
02 )×w]−∆Pext . (46)

To get rid of relative variables it is sufficient to put

Sext
0K =

m0K

m0

(Sext + ΣWK) , Cext
0K =

m0K

m0

(Cext + ΓVK) , (47)
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where functions or constants Sext, Cext, Σ and Γ are specified by external fields. It

follows from (47)

Sext = Sext
01 + Sext

02 , Cext = Cext
01 + Cext

02 . (48)

Now equations (45), (46) take simple form

∂U

∂R
=

∂

∂R

m01U
ext
1 + m02U

ext
2

m0

, (49)

∆Pext =
∂

∂V

(
m01U

ext
1 + m02U

ext
2

m0

− U

)
. (50)

It follows from (49)

U(t;R,V, ...) =
m01

m0

U ext
1 +

m02

m0

U ext
2 + u(t;V,W, ...) , (51)

where functions U ext
K are equal to U(t;R,V, ...) up to arbitrary function u(t;V,W, ...),

determined from initial and boundary conditions

U ext
K (t;R,V, ...) = U(t;R,V, ...) + u(t;V,W, ...) . (52)

In accordance to (50) it is connected with external momentum excess

∆Pext(t;V,W, ...) =
∂u(t;V,W, ...)

∂V
, (53)

which hence is determined by dependence of initial and boundary conditions from the

velocity of the center of mass of the system. If such dependence is absent, then we have

∆Pext(t;W, ...) = 0.

Thus, equation of motion (26) of the system as a whole takes the following form

d

dt

[
m0V − ∂U

∂V
+ [(ς1s1 + ς2s2 + Sint

21 + Sint
12 + Sext)×W]

]
=

= −∂U

∂R
− Ω2

0[(ς1s1 + ς2s2 + Sint
21 + Sint

12 )×V] + [Cext ×V] , (54)

where functions U = U(t;R,V, ...), Sext = Sext(t;R,V, ...), Cext = Cext(t;R,V, ...),

as well as Sint
12 (r,v, ...) and Sint

21 (r,v, ...), specified by both structure of constituents and

their spins s1 and s2, should be determined in advance.

Let us define now the relative momentum which in view of relations (47), (52) is

p = P2 −P1 =
m02 −m01

m0

[
m0V − ∂(U + u)

∂V
+ [Sext ×W]

]
+

[(ς2s2 − ς1s1 + Sint
12 − Sint

21 )×W]− 2
∂U int

∂v
+

2m01m02

m2
0

(
m0v + [Sext ×w]

)
+ (55)

+ς[s×w]− 1

m0

[(m01ς1s1 + m02ς2s2 + m01S
int
21 + m02S

int
12 )×w],
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and due to (1) and (19)-(22) satisfies to equation

dp

dt
= F2 − F1 . (56)

Thus, system of six equations (54) and (56) describes six translational degrees of freedom

of the system.

For free system (U ext
1 = U ext

2 = 0, Cext = 0, Sext = 0) the relative momentum

equals

p = (m02 −m01)V + [(ς2s2 − ς1s1 + Sint
12 − Sint

21 )×W] +
2m01m02

m0

v−

−2
∂U int

∂v
+

1

m0

[(m02ς1s1 + m01ς2s2 + m02S
int
21 + m01S

int
12 )×w] , (57)

whence it is obvious that it depends not only on the state of movement of system

constituents, but also on the state of motion of the center of mass of the system.

Equations of motion (54) and (56) in this case look like

d

dt
(m0V + ς[s×W]) + ςΩ2

0[s×V] = 0 , (58)

d

dt

[
(m02 −m01)V + [(ς2s2 − ς1s1 − Sint

21 + Sint
12 )×W] +

2m01m02

m0

v
]
−

− d

dt

[
2
∂U int

∂v
− ς[s×w] +

1

m0

[(m01(ς1s1 + Sint
21 ) + m02(ς2s2 + Sint

12 ))×w]

]
=

= −2
∂U int

∂r
+ [(ς1Ω

2
01s1 − ς2Ω

2
02s2 −Cint

21 + Cint
12 )×V]− ςΩ2

0[s× v]+

+
1

m0

[(m01(ς1Ω
2
01s1 −Cint

21 ) + m02(ς2Ω
2
02s2 −Cint

12 ))× v] . (59)

In (55)-(59) scalar function U int(r,v, ...) and pseudo-vector functions Sint
12 (r,v, ...),

Sint
21 (r,v, ...), Cint

12 (r,v, ...) and Cint
21 (r,v, ...), satisfying to relations (41), (42), remain

indeterminate. They may be obtained from additional equations, following from spin

equations of motion, which will be considered below.

5. Moment of momentum of the system

As it was told above, each of two constituents of the system may be considered either as

a system of structureless mass-points or as a system of mass-points with internal degrees

of freedom. In this paragraph we deal with first variant, when for every i-th point in (1)

it is necessary to put Si = 0, Ci = 0 (i = 1, 2, ..., N1, N1 +1, N , N = N1 +N2 is amount

of points in the whole system, NK is amount of points in K-th subsystem). Then, if

potential function Ui depends on the velocity of the point, the momentum (2) and force

(3) take standard form Pi = miVi, Fi = −∂Ui/∂Ri, where mi ≡ m
(K)
i , Ri ≡ R

(K)
i and
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Vi ≡ V
(K)
i = dR

(K)
i /dt are effective mass, radius-vector and velocity of i-th mass-point

of K-th subsystem relative to the origin of coordinates, respectively.

Both system and its subsystems are characterized by the moments of momentum

relative to origin J, J1, J2. Then, assuming the moment of momentum to be additive

quantity, we have

J =
N∑

i=1

[Ri ×Pi] =
N∑

i=1

mi[Ri ×Vi] = J1 + J2 , (60)

where

JK =
NK∑
i=1

m
(K)
i [R

(K)
i ×V

(K)
i ] . (61)

In each of two subsystems one may determine the center of mass defined by radius-vector

RK =
1

mK

NK∑
i=1

m
(K)
i R

(K)
i , mK =

NK∑
i=1

m
(K)
i , (62)

whereas radius-vector of the center of inertia of the whole system is

R =
1

m

N∑
i=1

miRi =
1

m

N1∑
i=1

m
(1)
i R

(1)
i +

N2∑
i=1

m
(2)
i R

(2)
i

 =
m1R1 + m2R2

m
, (63)

where m = m1 + m2. Differentiation of (62), (63) with respect to time gives

corresponding relations for velocities and accelerations.

Let’s note here that if potential function U = U(t;R,V, ...) explicitly depends on

time, then effective masses can also depend on time. Hence it follows from (62), (63)

VK =
1

mK

NK∑
i=1

m
(K)
i V

(K)
i +

1

mK

NK∑
i=1

ṁ
(K)
i R

(K)
i − ṁK

mK

RK , (64)

V =
m1V1 + m2V2

m
+

ṁ1R1 + ṁ2R2

m
− ṁ

m
R . (65)

If we introduce the relative coordinates of the center of inertia of second subsystem

relative to the center of inertia of first subsystem

r21 = R2 −R1 , (66)

then (63) gives

R1 = R− m2

m
r21 , R2 = R +

m1

m
r21 . (67)

Substituting (67) in (65) we obtain

V =
m1V1 + m2V2

m
+

m1ṁ2 − ṁ1m2

m2
r21 . (68)

Let r
(K)
i be a radius-vector of i-th point of K-th subsystem relative to its center of

mass MK , ri be a radius-vector of the same point relative to the center of mass M of
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the whole system, rK be a radius-vector of the center of mass MK of K-th subsystem

relative to the center of mass M of the whole system, which is determined similar to

(62)

rK =
1

mK

NK∑
i=1

m
(K)
i ri , (69)

Then we have following geometric relations

R
(K)
i = R + ri = RK + r

(K)
i , (70)

ri = rK + r
(K)
i , (71)

RK = R + rK . (72)

Differentiation of (69)-(72) with respect to time gives corresponding relations for

velocities and accelerations. Substituting (70) into (63) we obtain

N∑
i=1

miri =
N1∑
i=1

m
(1)
i ri +

N2∑
i=1

m
(2)
i ri = m1r1 + m2r2 = 0 , (73)

whence it follows

m1v1 + m2v2 +
m1ṁ2 − ṁ1m2

m2
r21 = 0 . (74)

Substitution of (71) into (69) gives respectively

NK∑
i=1

m
(K)
i r

(K)
i = 0 ,

NK∑
i=1

(m
(K)
i v

(K)
i + ṁ

(K)
i r

(K)
i ) = 0 . (75)

Now taking into account relations (70) and (75) expressions (61) for partial moments of

momentum look like

JK = JMK + sK = LK + Jint
K + sK , (76)

where

JMK = LK + Jint
K = mK [RK ×VK ] + [RK ×

NK∑
i=1

m
(K)
i v

(K)
i ] , (77)

is a moment of momentum of the center of mass of K-th subsystem relative to the origin,

sK =
NK∑
i=1

m
(K)
i [r

(K)
i × v

(K)
i ] , (78)

is proper moment of momentum (spin) of K-th subsystem (i.e. total moment of

momentum of all points of K-th subsystem relative to its center of mass, see formula

(13)),

Jint
K = [RK ×

NK∑
i=1

m
(K)
i v

(K)
i ] , (79)

is a moment of internal momentum of K-th subsystem relative to the origin of

coordinates, which according to (75) vanishes, if effective masses of points of subsystem

do not depend on time. Substitution of (72) into (77) gives

JMK = LK + LMK + mK [rK ×V] , (80)
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where

LK = mK [R×VK ] + [R×
NK∑
i=1

m
(K)
i v

(K)
i ] , (81)

is orbital angular momentum of K-th subsystem relative to the origin,

L
(0)
MK = mK [rK × vK ] , (82)

LMK = L
(0)
MK − [rK ×

NK∑
i=1

ṁ
(K)
i r

(K)
i ] , (83)

are orbital angular momenta of K-th subsystem relative to the center of mass M of the

whole system with and without taking into account of dependence of effective masses

on time, respectively. Substitution of (76) and (80) into (60) and using relations (73),

(74), gives rise to

J = JM1 + s1 + JM2 + s2 = L1 + L2 + LM1 + LM2 + s1 + s2 . (84)

Quantity

L = L1 + L2 = m[R×V] + [R×

N1∑
i=1

m
(1)
i v

(1)
i +

N2∑
i=1

m
(2)
i v

(2)
i

] , (85)

represents orbital angular momentum of the system relative to origin of coordinates O,

whereas

s =
N∑

i=1

[ri × vi] = s1 + s2 + LM1 + LM2 = s1 + s2 + m1[r1 × v1] + m2[r2 × v2] , (86)

is spin, or proper moment of momentum of the system, i.e. total moment of momentum

of all points of the system relative to its center of mass M.

Relative coordinates and velocity of the center of mass of J-th subsystem relative

to the center of mass of K-th subsystem are

rJK = rJ − rK = RJ −RK , vJK = vJ − vK = VJ −VK . (87)

Taking into account relations (73), (74), we obtain from (86) finally

s = s1 + s2 +
m1m2

m
[r21 × v21] . (88)

Comparison of this expression with relation (41) is reduced to relations

Sint
21 + Sint

12 = (ς − ς1)s1 + (ς − ς2)s2 + ς
m1m2

m
[r21 × v21] , (89)

Cint
21 + Cint

12 = (ς1Ω
2
01 − ςΩ2

0)s1 + (ς2Ω
2
02 − ςΩ2

0)s2 − ς
m1m2Ω

2
0

m
[r21 × v21] . (90)

Quantity

l =
m1m2

m
[r21 × v21] , (91)
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is an orbital angular momentum characterizing the relative motion of subsystems.

Expressions (89)-(91) concern to both objects and are symmetric relative to their

permutation. Therefore Sint
JK and Cint

JK may be represented as sums of symmetric and

antisymmetric terms

Sint
JK =

1

2
(ςJK − ςJ)sJ +

1

2
(ςJK − ςK)sK + ςJK

mJmK

2mJK

[rJK × vJK ] + Sint
[JK] , (92)

Cint
JK =

1

2
(ςJΩ2

0J − ςJKΩ2
0JK)sJ +

1

2
(ςKΩ2

0K − ςJKΩ2
0JK)sK−

−ςJK
mJmKΩ2

0JK

mJK

[rJK × vJK ] + Cint
[JK] , (93)

where mJK = mJ +mK , ςK and ςJK are constants associated both with K-th subsystem

and system composed from K-th and J-th subsystem, respectively.

Let’s try to determine antisymmetric terms Sint
[JK] and Cint

[JK] basing on following

arguments. In the process of evolution the state of system changes from some initial

state to finite one, in which spins of subsystems sK are oriented relative to each other

by some definite way. For example, s2 = +s1, i.e. ∆s = s2 − s1 = 0, in finite state

of electron-positron system corresponds to orthopositronium, and at s2 = −s1, i.e.

∆s = s2 − s1 = −2s1, the finite state is parapositronium. Thus, variation of difference

∆sJK = −∆sKJ = sJ − sK with time characterizes variation of relative orientation of

spin of constituents. From (69), (78), (83) we obtain

∆sJK = sJ − sK =
NJ∑
i=1

m
(J)
i [r

(J)
i × v

(J)
i ]−

NK∑
i=1

m
(K)
i [r

(K)
i × v

(K)
i ] =

=
NJ∑
i=1

m
(J)
i [ri × vi]−

NK∑
i=1

m
(K)
i [ri × vi]−mJ [rJ × vJ ] + mK [rK × vK ] =

= jMJ − jMK − L
(0)
MJ + L

(0)
MK , (94)

where

jMK =
NK∑
i=1

m
(K)
i [ri × vi] = L

(0)
MK + sK , (95)

is a moment of momentum of K-th subsystem relative to the center of mass M of the

whole system. We find from (88), (91), (94)

s1 =
s− l−∆s

2
, s2 =

s− l + ∆s

2
. (96)

Now, writing down the equation (56) in terms of the relative variables and the center-

of-mass variables and assuming it to be covariant under Galileo transformations, one

may come to conclusion, that following relations

d

dt

[
∂u

∂V
+ ς[s×W]

]
+ ςΩ2

0[s×V] = 0 , (97)
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Sint
[21] =

1

2
(ς2s2 − ς1s1) =

ς1 + ς2
4

∆s +
ς2 − ς1

4
(s− l) , (98)

Cint
[21] =

1

2
(ς1Ω

2
01s1 − ς2Ω

2
02s2) =

= −ς1Ω
2
01 + ς2Ω

2
02

4
∆s +

ς1Ω
2
01 − ς2Ω

2
02

4
(s− l) . (99)

should be fulfilled.

Then the equations of motion (54), (56), describing six translational degrees of

freedom, will take the following form

dP

dt
+

∂U

∂R
+ ςΩ2

0[s×V]− [Cext ×V] =

=
d

dt

[
m0V − ∂(U + u)

∂V
+ [Sext ×W]

]
+

∂U

∂R
− [Cext ×V] = 0 , (100)

d

dt

[
m01m02

m0

v − ∂U int

∂v
+

1

4
ς[s×w] +

m01m02

m2
0

[Sext ×w]

]
+

+
∂U int

∂r
− m01m02

m0

[Cext × v] +
1

4
ςΩ2

0[s× v] = 0 , (101)

where the momentum of the system is given by expression (23). Equation (100) shows,

that the system in question moves in such a way as if it has no internal degrees of

freedom, but interaction with external fields is specified not by potential function U ,

but function U + u. Substitution of relations (88), (92), (98) into (55) gives following

expression for the relative momentum

p =
m02 −m01

m0

[
m0V − ∂(U + u)

∂V
+ [Sext ×W]

]
− 2

∂U int

∂v
+

+
2m01m02

m2
0

(m0v + [Sext ×w]) +
1

2
ς[s×w] = m2V2 −m1V1 . (102)

It follows from here that the relative momentum depends on the state of motion not

only of constituents but also of its center of mass.

For a complete solution of the two-body problem the spin equations of motion

should be added to equations (100), (101) that will be considered in the next section.

6. Spin equations of motion

Equations of motion for spins may be written down in accordance with (12) as

dsK

dt
= [ΩV(t)× sK ] + mK(t) , (103)

ds

dt
= [ΩV(t)× s] + m(t) , (104)

d∆s

dt
= [ΩV(t)×∆s] + ∆m(t) , (105)
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where ∆m(t) = m2−m1 6= 0, as the relative direction of spins of interacting subsystems

can change.

On the other hand, differentiation of spin (88) with respect to time gives

ds

dt
=

ds1

dt
+

ds2

dt
+

d

dt

(
m1m2

m
[r× v]

)
, (106)

or

m = m1 + m2 +
dl

dt
− [ΩV × l] . (107)

This relation suggests that pseudo-vectors m, mK should have identical structure. Thus

we assume that

m = m1 −
1

2
∆m = m2 +

1

2
∆m = −dl

dt
+ [ΩV × l] . (108)

Hence, equations of motion (104) may be finally written down in the form

d

dt
(s + l) = [ΩV × (s + l)] , (109)

whence it follows that pseudo-vector s + l is constant over module. Thus, system of

equations (100)-(101) and (105), (109) is sufficient for description of all movements of

the system of two objects with internal degrees of freedom, where angular velocity of

precession ΩV is constant, if dynamical momentum (23) is conserved.

It is necessary to notice that the equation of motion of spin of the system in the

form (109) can take place only in the case when in the system one may distinguish two

subsystems divided by a relative radius-vector r. If the system is imagined as indivisible

“atomic object, for which introduction of relative variables has no sense, then in the

system of two vector equations, (100)-(101), and two pseudo-vector equations, (105),

(109), two equations, (100) and (109), (with m(t) = 0), are independent, whereas

equations (101) and (105) lose meaning because of ∆s = 0, U int = 0, u(t;V, ...) = 0,

m02 = m01, v = 0, w = 0. In this case spin equation of motion (107) takes the standard

form
ds

dt
= [ΩV(t)× s] . (110)

The similar situation takes place for the object represented as a set of noninteracting

mass-points (with or without of internal degrees of freedom). The equations of motion

of such object are (100) and (110).

7. Energy of system

In modern physics the conservation energy law has fundamental meaning. It is

shown in [11]- [13] that possible explicit dependence of potential function on time and

accelerations of the higher order leads to violation of this law for separately taken non-

inertial object even if its internal degrees of freedom are not considered. Let us consider

a problem of the energy of the system in question in detail.
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If the energy conservation law takes place, but is broken for separately taken object,

it means that the object in question is an open system interacting with its environment.

Increment of energy of the object is compensated by decrease of energy of external

medium so that total energy of object and medium remains constant. These general

intuitive reasoning may be illustrated by example of two interacting objects with internal

degrees of freedom.

For one of two objects, both environment and second object are external. Equations

of motion for objects are given by (1), where expressions for momenta of subsystems

and forces acting on them, are obtained by substitution of expressions (17)-(18), (47),

(52)-(53), (92)-(93), (98)-(99) into (19)-(22). It gives

PK = m0KVK −
∂(U + u + U int)

∂VK

+ [(
1

2
ςs +

m0K

m0

Sext)×WK ] = mKVK , (111)

FK = −∂(U + u + U int)

∂RK

+ [(
m0K

m0

Cext − 1

2
ςΩ2

0s)×VK ] . (112)

The equation of energy balance, which energy conservation as a special case follows

from, is due to equations of motion (1) which for the system of two objects with interior

degrees of freedom are reduced to equations (97), (100) and (101). All these equations

have identical structure and lead to following equations of energy balance. It follows

from (1)

dEK

dt
=

∂(U + u + U int)

∂t
+

N∑
k=0

(
∂(U + u + U int)

∂W
(k)
K

·W(k+1)
K ) , (113)

where

EK =
m0KV2

K

2
+ (VK · [(

1

2
ςs +

m0K

m0

Sext)×WK ]−

−(VK ·
∂(U + u + U int)

∂VK

) + U + u + U int , (114)

is total energy of K-th subsystem in absolute reference frame. On account of relations

(33), (35) the energy (114) may be represented as

EK = EMK + E0K , (115)

where

EMK =
m0KV2

2
+ (V · [(1

2
ςs +

m0K

m0

Sext)×W]− (V · ∂(U + u + U int)

∂VK

)+

+U + u + m0K(V · vK) + (vK · [(
1

2
ςs +

m0K

m0

Sext)×W]+

+(V · [(1
2
ςs +

m0K

m0

Sext)×wK ]− m0K

m0

(vK ·
∂(U + u)

∂V
) , (116)

E0K =
m0Kv2

K

2
+ (vK · [(

1

2
ςs +

m0K

m0

Sext)×wK ]− (−1)K(vK ·
∂U int

∂v
) + U int , (117)
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is energy of K-th subsystem in the reference frame of the center of mass of the whole

system. It is obvious that in the center-of-mass reference frame (V = 0, W = 0, ...)

the energy of K-th subsystem is EK = E0K . On the other hand, equations (97), (100)

and (101) lead to

dEν

dt
= −∂u

∂t
−

N∑
k=0

(
∂u

∂W(k)
·W(k+1)) , (118)

dE

dt
= −dEν

dt
+

∂U

∂t
+

N∑
k=0

(
∂U

∂W(k)
·W(k+1)) , (119)

dEr

dt
=

∂U int

∂t
+

N∑
k=0

(
∂U int

∂w(k)
·w(k+1)) , (120)

where on account of (47)-(48)

E =
m0V

2

2
+ (V · [Sext ×W]− (V · ∂(U + u)

∂V
) + U + u =

=
m0V

2

2
+ (V · [(ςs + Sext)×W])− (V · ∂U

∂V
) + U − Eν , (121)

is total energy of the system,

Er =
m01m02

2m0

v2 +
ς

4
(v · [s×w]) +

m01m02

m2
0

(v · [Sext ×w])− (v · ∂U int

∂v
) + U int , (122)

is total energy of relative movement in the system,

Eν = ς(V · [s×W] + (V · ∂u

∂V
)− u , (123)

is additional energy arising because of internal degrees of freedom.

It is not difficult to show that total energy (121) is expressed in terms of E1, E2,

Eν , and Er in the following way

E = µ1E1 + µ2E2 + u− E , (124)

where

µK =
m0m0K

m2
01 + m2

02

, (125)

E =
2m01m02(U + Er) + m2

0u

m2
01 + m2

02

+ U int − m0(m02 −m01)

m2
01 + m2

02

(V · ∂U int

∂v
)+

+
ςm2

0

2(m2
01 + m2

02)
(V · [s×W])− m01m02(m02 −m01)

m0(m2
01 + m2

02)
(v · ∂(U + u)

∂V
)+ (126)

+
m01m02(m02 −m01)

m0(m2
01 + m2

02)

[
m0(V · v) + (v · [Sext ×W]) + (V · [Sext ×w])

]
.

In the center-of-mass reference frame of the whole system relation (124) reduces to

E0 − u(t;0,0, ...) = µ1E01 + µ2E02 − E0 , (127)
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where

E0 =
m01m02

m2
01 + m2

02

[
2(U + Er)−

(m02 −m01)

m0

(v · ∂(U + u)

∂V
)

]
V=0,W=0,...

+

+
m2

0u

m2
01 + m2

02

+ U int . (128)

For free system (U = 0, Sext = 0) equation (119) in the center-of-mass reference frame

reduces to d(E0 − u)/dt = 0, that gives E0 − u = µ1E01 + µ2E02 − E0 = const. It

does not follow from equations of motion (1) that energies (117) will be conserved,

as the interaction potential U int, generally speaking, can depend on time. Then, for

example, if dE01/dt > 0, i.e. energy E01 increases, function µ2E02−E0 should decrease,

because E01 cannot increase infinitely. Since both subsystems are in equivalent positions,

energy E02 behaves similarly. Thus, energies of interacting objects should oscillate with

time. It means that potential energy U int of interaction also should be oscillatory

function of time. Thereby interaction between objects is reduced to permanent energy

exchange. Moreover, presence of function u(t;V,W, ...), apparently, allows to describe

the high-energy interaction considered usually from the point of view of relativistic

quantum theories. Determination of explicit dependence of interaction energy and an

ascertainment of a role of function u(t;V,W, ...) requires separate careful consideration.
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