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1. Introduction

Knowing the trajectories of charged particles with spin in an external field is applied in
many areas of physics, geo- and astrophysics. This makes possible to calculate the various pa-
rameters of particles which account is required in problems of accelerator technology, on the re-
tention of particles in magnetic traps arising in controlled thermonuclear fusion research, in
plasma physics, magneto-optical studies, etc.

In the first part of this research [1] the equations of motion of spinning particles in any
external field are obtained, and solutions for free particles are found under the assumption that
potential function depends only on the velocity of particle relative to its center of inertia. The
next challenge is to find solutions for particles that move in electric and magnetic fields. This
paper is the second part dealing with motion of particles in a stationary homogeneous magnetic
field. In Sec. 2 the equations of motion in-an external field, which are somewhat different for
massive and massless particles, are written in the Frenet-Serret basis, that allows to consider the
motion of spinning particles both in stationary and non-stationary fields. Sec. 3 concerns the be-
havior of massive spinning particles in stationary homogeneous magnetic field, and Sec. 4 stud-
ies the same behavior of massless particles. We find all types of trajectories in both cases. It is
shown that spin of particles in a magnetic field is always arranged parallel or antiparallel to the
field, and the oscillation frequency of massless particle in a magnetic field increases.

2. Equations of motion of spinning particle in external field in moving reference frame

The form of equation of motion of spinning particle in an external field according to [1]
depends on the relationship between the electric field strength and potential, which can be de-
fined in two ways. If we assume the definition

ou d|ou .
E=———+4+—|——[S™ x V]|, ([1], Eq. (2.9)), 2.1
8R+dt8V[ ><]]([]q()) (2.1)
then the equation of motion takes the form
% m0V+g[s><\7] = E+[V><(B+gQ§s)], ([1], Eq. (2.12)), (2.2)
and if
ou
E=—-——— (1], Eq. (2.22)), 2.3
R ([1], Ea. (2.21)) (2.3)
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then
d
dt
It is easy to see that (2.2) is the special case of (2.4) when 0U / 9V =0, S™ = 0. Solu-

tion of the equation (2.4) is defined both by the dependence of the fields E, B and S™ and the
form of potential function U, which remains for free particle, when these fields vanish. In the
moving r. f. K’ equation (2.4) splits into two equations

[mOV — g—tj + ¢ls x V] +[S™ x \'/]] =E +[V x (B +¢%s)]. (2.4)

d ou . oxt e | « 2
%(mOV_EJFg[SXV]JF[S xv]j_E+[v (B+50:9)], (2.5)
%(mov(m +g[sx V(K}] +[S™ x V(K’)]) =[Viy x(B+ s%s)], (2.6)

where R=R, +r, V=V, +V.

In the paper [1], where solutions for free particles are obtained, we assume that the poten-
tial function depends only on the velocity of particle relative to the center of inertia, U =u(v).

Here we shall assume that this condition is satisfied for stationary homogeneous fields. Then,
decomposing all vectors and pseudo-vectors in (2.5) and (2.6) in Frenet-Serret basis ([1], Ap-
pendix) and choosing the binormal direction as the direction of the velocity of the r. f. K,

Viy = Vikr8y» We obtain a set of two vector equations

i(mov—d—u—(gsb +S§Xt)szJ—(gsb + S voK e, +
dt dv

—{(mov —j—uij + 082 £(gs, +S§Xt)(i5—v3K2)}en -
v

[ (g5, +SZ)PK —(cs, +S7)0 |vTe, + 2.7)
+[1)2K5'f“ +(¢s, + 8™ (2uiK + v’ K) — 8™ — (¢s, +S5™)ii + (¢s, + Slf“)m}T]eb =
=Ee +(E, =vB, —¢s,Qv)e, + (B, +vB, +¢s,Qv)e, ,

(650 + ST Wier, +[ (65, + STVWK + 57 + (g8, + ST WT [Viye, +

+[S§“vT +(gs, + ST + vT)]V(meT — (g5, + ST W, +
+[(gsn +S§X‘)UK—Sth]V(K,)en +[(gsb +S2 YK + (gs, +Sth)vT—m0JvTV(men + (2.8)
+[mO = 2(gs, +Sth)vTJV(K,)eb —[S’:XtﬂT +(cs, + ST T + UT)]V(K,)eb =
= _(Bn + ganS )‘/Y(K’)et + (B’( + gsrgé)‘/ﬂ(')en !
where K and T are curvature and torsion of trajectory, respectively.
The unit vectors of moving basis e_, e, and e, move in space and precess with an angu-
lar velocity represented by the Darboux vector Q° =v(Te_+ Ke, ). They are related with the

unit vectors e,, e, and e, through rotation matrix, which may be parameterized in various
ways. In many cases this relationship can be represented as

e = cosO(t)cos D(t)e, + cosO(t)sin D(t)e, +sinO(t)e, . (2.9)
_@sin@cos(l) +(i)cos®sinCDe B O sin O sin O —@cos@cos(l)e N

. \/@2 + ®?cos’ © * \/@2 + ®?cos’ O i (2.10)
®cos®

\/®2 + ®%cos? O z

e =

n

b



Osin ® — @ sin O cos O cos O cos @ + @ sin O cos O sin O
& = 2 2 2 ©x ~2 + 2 2 &+
.\/(9 + @° cos” ® \/@ + @° cos” O (2.11)
® cos’ O o
\/®2 + d%cos’ O 7
This choice corresponds to representation of the relative velocity as
Vv = u(t)[cos O(t) cos D(t)e, + cosO(t)sin D(t)e, +sinO(t)e,]. (2.12)
If we choose the direction of binormal fixed, such as in the case of free particles or parti-
cles in a homogeneous external field, then it follows from equation &, = —v7Te =0 that
(V- [VxV]) (DO - DO)cos® + (207 + D’ cos’ O)Dsin® 0 (2.13)
[vx V] v(©? + d? cos’ O) ’ '
which shows that the torsion T vanishes, if ® =0 or & =0, and corresponds to the representa-
tion of the relative velocity and the velocity of r. f. K" in the form
v(t) = v(t)e, = v(t)[cos D(t)e, +sinD(t)e, |, Vi (t) =V, (t)e, =V, (e, .  (2.14)
Then curvature is

+

_\[Vx\'/]\_\/@er(i)zcosZ@ _Q

K=" (2.15)
v v v
Equation of motion of spin

$=(s cos®~—s sin®)e, +(s sin®+s cosDe, +s¢e, (2.16)

becomes
§=[Q xs]= ) [—(Sr sin® +s cos®d)e, + (s cos® —s sinD)e, ] : (2.17)

where

Q = de,. (2.18)

Equation of motion (2.4) at U =u(v) for any external fields E, B and S leads to con-

servation of total energy. In general, such a dependence may be insufficient, and its definition is
a matter of a separate study. Equations of motion (2.7), (2.8) should be then modified in accord-
ance with the form of potential function.

3. Massive spinning particle in stationary homogeneous magnetic field

Taking into account the above assumptions about potential function and the moving r. f.

K', equations of motion of spinning particle in magnetic field (at E =0, S™ = 0) reduce to
the set of equations

(mov—%j(b+gsb[i}+(ﬂg ~®*)v]=-B,v, (3.1)
(%
s (v®+ D) —gs, (i +Qv) = B.v, (3.2)
and Vi, =0,
B, =-B, sin®+ B, cos® =—¢s, Q2 (3.3)
B. =B, cos®+ B, sin®=—¢s O}, (3.4)
for massive particles or V'(K) =0,
68y (Viey + Vi) + 65, Ve, =—B, Vi, = (B sin®— B, cos D)V, , (3.5)
65, (Viey + Vi) —65,® Vi) = =BV =—(B, 0s®+ B, sin @)V, (3.6)

for massless particles.
Furthermore, it follows from the expression of the self-energy ([1], Eq. (2.49)) that



csd=—"2———-21, (3.7)

N : d du
s (v + 20D :—[mv——]. 3.8
65, ( ) 7l s (3.8)
Substituting (3.1) into (3.8) leads to the equation
i+ (Q+B :
AGRIC R VN Y a9
dt d
which implies the first integral
i+ (Q*+B s WP
CRaSy cbe /5,0 + 0" +(Qf + B, / gs,)v° = D?, (3.10)
where constant D? is always positive, if B, /¢s, >0, and may be non-positive, if
B, /g¢s, <0.
Substituting (3.3) into (3.2), we obtain
5.0 =5 (v + D). (3.11)

For homogeneous magnetic field its direction may be chosen as the direction of the velocity of
moving r. f. Then B=Be,=B,e,, B, >0, and (3.3)-(3.4) lead to s =s =0, i. e. magnetic
field B and spin s are collinear to the Z-axis, and equation (3.11) becomes identity. We put
s, =es, where e is helicity, e=+1 for s, >0 and e=-1 for s, <0; e=—1 corresponds to anti-

parallel direction of the field and spin (electron state), and ¢ =+1 corresponds to parallel direc-
tion of the field and spin (positron state). Thus, helicity e plays a role of electric charge.
Equations (3.7) and (3.9) are two equations for three unknown functions ®(¢), v(t) and

potential function u(v), which should satisfy a separate equation. Since such equation is absent
at present, we consider here a particular solution, corresponding to constant cyclotron frequency
® =Q, = const. From (3.7) we find potential function

(m0 —265Q, )vz

u(v) = > +Cv+E&, (3.12)
and the first integral of the equation (3.9) takes the form
T+ +B, /g5, w=CQ,, (3.13)

which yields several types of solutions defined by relationship between mass, and spin, and
magnetic field.

M1 ®=Q t+d, , QO =0Q7+B,/ss,>0. Equation (3.13) has the following solution
(t) = v, +,sin(Qt + ), (3.14)
whence
V(t) = [v, + v, sin(Qt + @,)][cos(Qt + D Je, +sin(Q, t+D,)e ]. (3.15)
The relevant trajectory is described by radius vector
R(t) = R(0) +[pB cos @, cos D —p(O)sinCDB]eX +
+[pB cos @, sin® , + ,O(O)COS(DB:'eY +
+[p(t) sin(Q,t + @) — p, cos(Qt + ¢, ) cos(Q,t + @B)]ex -
—[p(t) cos(Qt + D) + p, cos(Qt + ¢, )sin(Q,t + @B)}ey +V .te

K)'©z

(3.16)



C D +B, /cs

/1}:—1,77 =M, (3.17)
! Q, [1+n,) B Q;

p, = gstQvo _ VoyL + 11, , p(t) = Py |:% —sin(Qt + (00)}. (3.18)
5,82 + B, Q. \/l +17, L %

Types of trajectories in a plane orthogonal to the direction of motion of the center of inertia are

presented in Fig. 1-3 (at | 7, [<<1), Fig. 4-6 (at 0 <1+7, <1) and Fig. 7-9 (at », >>1) for

values v, /v, =0, O0<uv, /vy, <1 and v, /v, >>1. At ® = Q, =0 the particle oscillates in the

plane (XY), and its center of inertia moves uniformly along the Z-axis.
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Figure 1. Type of trajectories (3.16) of massive particle in magnetic field
at |n, |<<1 (v, /v,=0, Q,=2,3, n, =-0,05)
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Figure 2. Type of trajectories (3.16) of massive particle in magnetic field
at |7, <<1 (v, /v,=0,6, Q, =2,3, n, =—0,05)

0<t<?20 0<t<200

Figure 3. Type of trajectories (3.16) of massive particle in magnetic field
at |7, [<<1 (v, /v,=10,0, Q; =2,3, 7, =-0,05)
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Figure 4. Type of trajectories (3.16) of massive particle in magnetic field
at 0<l+m, <1 (v,/v,=0, Q,=23,1n,=-0,9)

0<t<200

0<r<10 0<r<40 0<t<200

Figure 5. Type of trajectories (3.16) of massive particle in magnetic field
at 0<l+n, <1 (v/y,=0,6,Q,=273,n,=-09)

0<rt<10 0<t<40

Figure 6. Type of trajectories (3.16) of massive particle in magnetic field
at 0<1l+n, <1 (v,/v,=10,0, Q, =2,3, 17, =-0,9)

O<t<5 0<r<?20 0<r<40

Figure 7. Type of trajectories (3.16) of massive particle in magnetic field
at n,>>1 (v, /v,=0, Q,=2,3,1,=50)
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Figure 8. Type of trajectories (3.16) of massive particle in magnetic field
atn, >>1 (v, /v,=0,6, Q, =2,3, 7,=5,0)

O0<t<5 0<r<?20

Figure 9. Type of trajectories (3.16) of massive particle in magnetic field
at 7, >>1 (v, /v, =10,0, €, =23, 1, =5,0)

M.2. If the magnetic field is such that the relation
B
Qll=-—% (3.19)
55,
isvalid, i.e. 7, =0, then Q=Q,, v, =C, / Q. Trajectory is presented by radius vector
R(t) = R(0) + p, [cos(Zd)B +@,) — ksind)B]eX +p, [sin(ZCDB +¢,) + kcosCDB}eY -
—P, [cos(ZQBt +20, +¢,) — ksin(Qt + @, ) - 2Q tsin goo}eX - (3.20)

—p, [sin(ZQBt +20, + ) +kcos(Q,t+D,)—2Q tcos (pojey +Viote,

where p, = v, /4Q,, k =4y /v, and represents complicated curve in center-of-inertia r. f.,

which moves with velocity V. = (v, / 2)(singge, +cosgge,)+V,,e,. Examples of such paths

are given in Fig. 10. At ® = Q, =0 the law of motion (3.20) corresponds to uniform rectilinear

Y Y Y
. @, =0 @, =0
q
] p,=m/3 q Po=713
. q oy =72
LT x JNTTE & ) x
C k-0 k=0,8 k=5,0

Figure 10. Type of trajectories (3.20) of massive particle in magnetic field
at 7, =0 (Q;=2,3,p,=1, 0<t<10)



movement along the Z-azis, R(¢t) = R(0)+V .te

KY™Z"
— ~N2 2 2 .
M3 ®P=Qt+D, , Q =-Q -Q -B /¢s >0,1.e 1, <-1.Inthis case equa-
tion (3.13) gives

V(t) = [v, + v, sh(Qt + @))][cos(Q,t + D, )e, +sin(Qt+ D e, ], (3.21)
R(t) = R(0) + [ﬁB chg,cos®, —[)(O)sin(DB]eX + [,53 chg sin®, + /B(O)COSCDB]EY +
+| p(t)sin(Qt + D) - p, ch(Qt + @,) cos(Qt + dDB)] — (3.22)

[ )Jcos(Q,t + D )+/53ch(Qt+¢0)sin(QBt+®3)}e +V . te

K)*©z
where Q = QB,I—l— M,
cs,Quy Umf—l—ﬂB 51 = % {01773

- plt) = -2
¢s, Q0 + B, Q.n, \/_1 —7,
n, and v, are given in (3.17).

Trajectory (3.22) in the center-of-inertia r. f. is twisting (t <0), and then untwisting (t>0)
helix (Fig. 11), and transforms into straight line at ® = Q, =0.

A\ =S

v /vy, =0 v 1v,=10

= —sh(f)t+(p0)] (3.23)

Y

Figure 11. Type of trajectories (3.22) of massive particle in magnetic field
at my<-1(n,=-11, Q;=2,3, -5<t<3)

M.4. Q2+ Q2 + B, /¢s, =0, i. e. cyclotron frequency is equal to
Q, =-0-B,/¢s, . (3.24)
In this case (3.13) gives v(t) = v, + wt + CQ,t* / 2,

R(#) =R(0) _Q—lz[(UOQB —-(C)sin®, + wcos(DB]e +

X
B

+Q—12[(1)OQB ~C)cos D, —wsinCI)B]ey +

lB olt (3.25)
+Q—2[(v(t)QB —C))sin(Qt + D) + %cos(QBt + @B)}ex +

B

1

du(t) .
+Q_2{_(”(t)93 —C))cos(Q t +D )+ %sm(QBt + CDB)}e +Viote,
B
The trajectories of this type at w=0, C, =0 correspond to the trajectories of classical

Lorentz electrodynamics, where, as it is known, a charged particle, that is flying in uniform
magnetic field, moves in a spiral or circle, when its velocity is perpendicular to field, and spin of
the particle is not taken into account in no way. As it follows from the solutions obtained above,
the spin of a particle that has fallen into magnetic field, has always arranged parallel or antiparal-

8



lel to the field. This was conclusively proven by experiment of Stern and Gerlach. It follows
from (3.24), that condition

B, < —cs, (3.26)
should be satisfied. Assuming for the electron Q, =m.c*/A~7,77-10° Hz ([2], Eq. (4.50), or
[3], Eq. (89)), ¢ =—c7, s, =es =—n/ 2, we find limit value of magnetic field

B =m?? /2h ~56-10™ kg/s, (3.27)
that corresponds to B =m’c® / 2eh ~ 3,5-10° T in SI. Large values of magnetic field are

occurred in magnetars, that are neutron stars with strong magnetic field (up to 10" T), wherein
condition (3.26) is not valid. For such fields apparently can be realized cases M.1-M.3. For posi-
tron states (e =+1) condition (3.26) will be fulfilled, only if ¢ =+c™. Therefore in general one
can put ¢ =ec™.

Finally, we get the standard solution assuming s, = 0. Then (3.1) looks like

(mov—d—u)d) =B, , (3.28)
dv

whence (at @ =Q,)
du 1 )
d—=(mO+BZ/QB)v, u(v)=§(m0+BZ/QB)v : (3.29)
v

u(v) =0 corresponds to standard dependence of potential function from relative distance. As it
follows from (3.29) this is possible, when

Q,=-B,/m,, (3.30)
which coincides with standard definition-of cyclotron frequency. Then the condition (3.26) is
equivalentto Q> Q /2. For constant field (3.28), (3.29) give v =, =const. Then trajectory

is described by (3.25), or

R(t) = R(0) + ;;—O[sin(QBt +® )~ sinq)B}e -

X

5 (3.31)
v
—Q—O[COS(QBt+<I)B)—COS<DB]eY+V te

K)*“z
B

Analyzing the solutions (3.16) (Fig. 1, 2, 4-6, 9) and (3.22) (Fig. 11), one can see that
they are close to the classical solution (3.31).

M.5. @ # const . Taking account of spin at w(v) =0 reduces equations (3.7) and (3.9) to

.omy &
gs,d = - (3.32)
d |[i+(Q* +B o i
d [T+ (9 — [ 65,0l +— [mov +&|=0. (3.33)
dt myv G Sv 2
2 %
From (3.33) we have
i+ f(v) =0, (3.34)
where
CE & C,m
f(0) = Q=22 — = = =2, G, = const, (3:35)
v G s v



2

B m
O =Q +—+—. (3.36)

¢s, 4c ss
Obviously, classical solution (3.31) corresponds to & =0, C,=0, m,=2¢5Q,, i. e.
2
Q =mgc /h=Q,.
Equation (3.34) admits the first integral
i* +2 [ fv)dv = C, = comst, (3.37)
whence
f vdv = +¢. (3.38)
\/—szu4 +Cm° +Cp? +2C,Ev— & | ¢’st

The result of integration is determined by the signs of constants Q7 C,, Oy, & and the rela-
tionship between them, as well as the roots of the equation
—Q%' +Cm® + Cp* + 20,60 — & [ g%s) =
= Qv — v)(v—v,)(v—2,)(v—1v,)=0.

The enumeration of all possible solutions of equation (3.34) is not possible here because of their
great number and bulkiness.

(3.39)

4. Massless spinning particle in stationary homogeneous magnetic field

For massless particles we have a set of equations (3.1), (3.11) and (3.5)-(3.6), which in a
stationary homogeneous magnetic field B = B,e, =B,e, reduce to

50 (Viey + % VK3)+scDV(K) 0, (4.1)
s (V;K) +QXV Viky) =3, OV ) =0. 4.2)
Equation (3.1) admits the first integral (3.10), whence
+ Q +B,
Al fes )l :-11\/02—02—(Q§+Bz/gsb)v2. (4.3)

\/DZ—@ (Q+B, [gs,)®  Vadt
Substituting (4.3) into (3.1) at m, =0 we get an equation
i+(Q2+B,/gs,)v du _
JDZ —0* —(Q2+ B, [ gs,)v* v B
[i+(Q+ B,/ gs,)v]v
D? —* —(Q + B, | g5, )v°
which is valid either at 1) ¥+ (Qf) +B, /¢s )Jv=0 leading to ®=0, or at 2)

(4.4)

=cs,|1- [i+(Q2+ B, /¢gs,)],

i+(Q2+B,/gs)v=0, ®=0.Asaresult we have following solutions.
Mo.l. my=0, ® =, =const, i+ () + B, /gs,)v =0, which gives
2 2
v,cos(Qt+¢,), Q =Q +B, /¢s >0,
u(t) =1, Q' +B,/¢s, =0, (4.5)
v,ch(Qt+¢,), Q=
Equations (3.11) and (4.1) reduce to identity, if s =0,0r © =0, s # 0, and (3.7)-(3.8)
lead to du/dv=const. (4.1)-(4. 2) give solution
Viy () = Vo COS(Qt + 5 . (4.6)

10



The law of motion is easily obtained by integrating the velocity vector

R() = R(0) + [ [V(t) + V,,, (t)e, Jdt (4.7)

An analysis of possible relations between the quantities in (4.7), as well as determination
the conditions of closed trajectories is not difficult.

Mp.2. m,=0, ®=0, i+ (Qg +B, /¢s Ju#0. Equations (4.1)-(4.2) lead to
sf + sf = 0, that possible only when s_=s =0. Then (4.1)-(4.2) reduce to identities. Equation
(3.1) has an infinite set of solutions, one of which corresponds to @® =€t + ®_, where

Q, == QZD = const . In this case (3.10) admits the  first integral

Qv+ \/DZ —-0* —(Q + B, / gs, v* = F, from which we find the equation for the velocity

b=+ |D? - F? + 2FQu— (O + Q2 + B, / g5, )0 (4.8)

Substituting (4.8) into (4.3) leads to the equation
b+ (Q + QL+ B, /g5 v =FQy, (4.9)

whose solution is a function
FQ . >
ot) = —2° (Xt + @) 2, =B+ +B, /s, , (4.10)
Xy
FQ .
V(t) = | —= + v, cos( gt + @) [COS(QDt +® e, +sin(Q.t + CDD)eYJ : (4.11)
Xy

It follows from (4.8) and (4.10) that the velocity may vary in the limits v . <v <wv
where

max '

FO FQ D*y% — F*Q — F°B, / s
v =2y 20, v, = — +v,v—\/ > Z/gb. (4.12)
Xp Ap Ap
The law of motion is similar to the equation (3.22) from [1]:
R(t) = R(0) + = [§in(Qut + ) —sin®_Je, +—[cos D, — cos(Qyt + @, )le, +
B B
vo(ZB _QD) . .
sin +Q )t +D_ + —sin(®d_ + e. +
Z(QZ h P Lsinl(z, + Qo)+ @, + 9] —sin(@, +.9,) Je,
U £ 0 o) .
S - Q )t->d_ + + sin(d_ — e
2(Q2 +B, /¢s,) [ in( 2 o ]+ sin(®, = ) Je, (4.13)
U (Xp =)
— cos +Q )t +D_ + —cos(D_ + e, +
2+ B, /gsb)[ (2 + Q)+ @y + ] = cos(@y +9,) Je,
v, (x, +Qp)
cos -Q )t-—D_ + —cos(d_ — e +
2055, /gsb)[ (s = Qo)t = @y + ] = cos(@, — @) ],
I o (t)dte,

where Vi, (t) has an arbitrary dependence on time.
Condition of closed trajectory in the r. f. K', v(t+T)=v(t), leads to the relation
QT = 2mm, whence it follows my, =1Q,, or

m* (% + B, [ ¢s,) = (1> —m®)Q% (4.14)
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where 1=1,2,..., m=—1+1-1+2,.,012,..,1-1, and m=0 corresponds to Q_ =0, i. e. to

oscillations along the X-axis with frequency y, = /Qf) + B, / ¢s, . Comparison of solutions

(4.5) and (4.11) with the appropriate solutions for free massless particles (Egs. (3.9) and (3.22)
from [1]) shows that the magnetic field induces an increase of the oscillation frequency.
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