Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Институт информационных технологий

МАТЕМАТИЧЕСКИЕ ТЕСТЫ

В 2-х частях Часть 2

Математический анализ. Векторный анализ. Комплексный анализ

Рекомендовано УМО по образованию в области информатики и радиоэлектроники для специальностей, закрепленных за УМО по образованию в области информатики и радиоэлектроники в качестве учебно-методического пособия

УДК 519.6:378.146(076) ББК 22.161я73+74.202я73 М34

Авторы:

Л. И. Майсеня, В. Э. Жавнерчик, А. А. Ермолицкий, М. А. Калугина, Т. Г. Павлова

Репензенты:

кафедра математической кибернетики Белорусского государственного университета (протокол №4 от 20.11.2012);

главный научный сотрудник Института математики НАН Беларуси, доктор физико-математических наук, профессор В. И. Берник

Математические тесты : учеб.-метод. пособие. В 2 ч. Ч. 2 : Мате-М34 матический анализ. Векторный анализ. Комплексный анализ / Л. И. Майсеня [и др.]. — Минск : БГУИР, 2013. — 114 с. ISBN 978-985-488-976-4 (ч. 2)

Содержатся тесты по высшей математике, изучаемой в технических университетах, дано описание методики их использования, приведены краткие теоретические сведения. Все тесты представлены парами как тесты базового и повышенного уровней сложности. Тесты могут быть использованы для диагностирования результатов математического образования и для организации самостоятельной работы студентов.

Пособие предназначено для студентов, которые получают высшее образование в области информатики и радиоэлектроники.

Первая часть издана в БГУИР в 2011 году (авторы: Л. И. Майсеня, В. Э. Жавнерчик, А. А. Ермолицкий, И. Ю. Мацкевич).

УДК 519.6:378.146(076) ББК 22.161я73+74.202я73

ISBN 978-985-488-976-4 (ч. 2) ISBN 978-985-488-827-9 © УО «Белорусский государственный университет информатики и радиоэлектроники», 2013

Содержание

Введение	····· [∠]
Методика использования пособия «Математические тесты»	
в образовательной практике	
Тематические тесты	
Тема 11. Кратные интегралы	
Тема 12. Криволинейные и поверхностные интегралы. Теория поля	
Тема 13. Ряды	
Тема 14. Теория функций комплексной переменной	
Комбинированные тесты	
Решение комбинированного теста № 1.1	
Ответы к заданиям комбинированного теста № 1.2	
Краткие теоретические сведения	

Введение

Успех в изучении каждой дисциплины, в том числе высшей математики (математики) в технических университетах, в значительной степени зависит от того, насколько эффективно функционирует взаимно обратная связь студент — преподаватель. Неотъемлемой частью учебного процесса как средства установления такой связи является контроль полученных студентами знаний. Без объективного учета и анализа полученных знаний невозможна их правильная коррекция и самокоррекция.

В процессе модернизации образовательной системы Республики Беларусь происходит внедрение в педагогическую практику новых эффективных технологий контроля знаний, основанных на использовании тестов. Вместе с традиционными способами изучения качества образования тесты позволяют исследовать ситуацию более полно и всесторонне. Их использование способствует получению объективной оценки знаний, умений и навыков студентов.

К существенным преимуществам тестовых технологий относятся:

- более детальная и всеобъемлющая проверка знаний, полученных из разных разделов математики;
 - возможность одновременной аттестации большого количества студентов;
- эффективность дифференциации результата за счет включения заданий различной степени сложности;
- оптимальная реализация индивидуального подхода в изучении качества математической подготовки студентов;
- открытость процесса проверки и исключение субъективного подхода при выставлении итоговой отметки;
 - динамика в реализации тестов на практике.

Содержание предлагаемого издания разработано как логическое продолжение содержания учебно-методического пособия «Математические тесты: учеб.-метод. пособие. В 2 ч. Ч. 1: Линейная и векторная алгебра. Аналитическая геометрия. Математический анализ / Л. И. Майсеня [и др.]. — Минск: БГУИР, 2011. — 142 с.».

Учебно-методические пособия «Математические тесты» (части 1 и 2) созданы с целью реализации преимуществ тестовых технологий в практике обучения студентов университетов.

Методика использования пособия «Математические тесты» в образовательной практике

В предлагаемое пособие включено 12 тестов по разделам курса высшей математики (математики): «Кратные интегралы», «Криволинейные и поверхностные интегралы. Теория поля», «Ряды», «Теория функций комплексной переменной», которые традиционно изучаются в технических университетах.

Шесть последних тестов являются комбинированными, причем первые два из них содержат задания по темам 11–14, представленным во второй части учебно-методического пособия, а последние четыре — по всем темам курса высшей математики (математики).

Все тесты представлены парами – как тесты базового и повышенного уровней сложности. По сравнению с тестами базового уровня тесты повышенного уровня сложности требуют более высокого уровня математической подготовки студентов. Их выполнение характеризуется большим количеством логических операций, а многие задания имеют творческий характер. Таким образом, задания тестов имеют различный уровень сложности, т. е. характеризуются различным количеством логических операций в их решении. Для их выполнения требуется осуществить соответствующий тип учебной деятельности: репродуктивный, репродуктивно-продуктивный, продуктивный. Это способствует реализации дифференцированного подхода в процессе математического образования студентов.

Каждый тест состоит из 30 заданий. По структуре он содержит:

- 15 практических заданий группы А с предложенными четырьмя вариантами ответов (из которых только один верный);
- 10 практических заданий группы В, которые необходимо решить и получить ответ;
- -5 теоретических заданий группы C (с предложенными четырьмя вариантами ответов и единственным верным).

Выполнив задания группы A и группы C, необходимо выбрать номер ответа среди предложенных вариантов. После решения заданий группы B полученный числовой результат записывается студентом в качестве ответа.

Для оформления ответов необходимо заполнить приведенную ниже таблицу ответов.

Номер задания	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
Номер ответа															
Номер задания	B1	B2	В3	B4	B5	B6	В7	B8	В9	B10					
Ответ															
Номер задания	C1	C2	С3	C4	C5						•				
Номер ответа															

Анализ итогового заполнения этой таблицы позволит объективно оценить уровень знаний каждого студента в отдельности и группы в целом.

Учебно-методическое пособие содержит в качестве образца решение комбинированного теста № 1.1. С целью самопроверки правильности решения студентом комбинированного теста № 1.2 помещена также заполненная таблица ответов к заданиям данного теста.

«Математические тесты» могут быть использованы как для организации индивидуальной работы студентов во время практических занятий в университете, так и в процессе их самообразования.

Использование «Математических тестов» в образовательной практике имеет своей целью не только реализацию контролирующей функции, но и обучающей. Пособие содержит раздел «Краткие теоретические сведения», что позволит студентам (в случае затруднений) обратиться к теории, изучить ее и использовать в процессе решения тестовых заданий.

Тематические тесты

Тема 11. Кратные интегралы

TECT № 11.1.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

CO HEDWALLING DAY WAYN	D. D. L. L. L. CONTROL
СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Измените порядок интегрирования $\int_{0}^{1} dx \int_{-1}^{x^{2}+1} f dy, \text{ если } f = f(x, y).$	1) $\int_{-1}^{1} dy \int_{0}^{1} f dx + \int_{1}^{2} dy \int_{\sqrt{y-1}}^{1} f dx;$ 2) $\int_{-1}^{1} dy \int_{0}^{1} f dx + \int_{1}^{2} dy \int_{1}^{y^{2}+1} f dx;$ 3) $\int_{-1}^{1} dy \int_{0}^{y^{2}+1} f dx + \int_{1}^{2} dy \int_{\sqrt{y-1}}^{1} f dx;$ 4) $\int_{-1}^{1} dy \int_{\sqrt{y-1}}^{1} f dx + \int_{1}^{2} dy \int_{1}^{y^{2}+1} f dx.$
	-1 $\sqrt{y-1}$ 1 1
	1) $\int_{0}^{2} dx \int_{0}^{x} f dy + \int_{2}^{8} dx \int_{0}^{\sqrt{8-x^{2}}} f dy;$
А2. Измените порядок интегрирования $\sqrt{8-y^2}$	2) $\int_{0}^{2} dx \int_{0}^{x} f dy + \int_{2}^{2\sqrt{2}} dx \int_{x}^{\sqrt{8-x^2}} f dy;$
$\int_{0}^{\infty} dy \int_{y}^{\infty} f dx, \text{где } f = f(x, y).$	3) $\int_{0}^{2} dx \int_{0}^{x} f dy + \int_{2}^{2\sqrt{2}} dx \int_{0}^{\sqrt{8-x^{2}}} f dy;$
	4) $\int_{0}^{2} dx \int_{0}^{\sqrt{8-x^{2}}} f dy + \int_{2}^{8} dx \int_{0}^{x} f dy.$
A3 Remoder $\int_{0}^{2} dv \int_{0}^{1} (v^{2} + 2v) dv$	1) $\frac{14}{3}$; 2) $\frac{10}{3}$; 3) $\frac{16}{3}$; 4) $\frac{8}{3}$.
А3. Вычислите $\int_{0}^{2} dy \int_{0}^{1} (x^2 + 2y) dx$.	$3) \frac{16}{3};$ 4) $\frac{8}{3}$.

А4. Вычислите $\iint_D xydxdy$, если D – прямо-	1) 1; 2) 2;
угольник $0 \le x \le 1$, $0 \le y \le 2$.	3) 3; 4) 4.
А5. Вычислите $\iint_D y dx dy$, если D – область,	1) $\frac{3}{16}$; 2) $\frac{4}{15}$;
ограниченная линиями $y = \frac{1}{2}x^2$, $y = x$.	3) $\frac{8}{15}$; 4) $\frac{9}{16}$.
А6. Вычислите $\iint_D x^2 dx dy$, если D – область,	1) $\frac{3}{4}$; 2) $\frac{5}{4}$;
ограниченная линиями $xy = 1$, $y = x$, $x = 2$.	3) $\frac{7}{4}$; 4) $\frac{9}{4}$.
А7. Вычислите $\iint_D (x^2 + y^2) dx dy$, если D – чет-	1) 2π; 2) 4π;
верть круга $x^2 + y^2 \le 4$, $x \ge 0$, $y \ge 0$.	$(3) 8\pi; (4) 16\pi.$
А8. Вычислите площадь фигуры, ограниченной линиями $y = x^2 + 5x$, $y = x + 5$.	1) 24; 2) 30; 3) 36; 4) 42.
А9. Вычислите площадь фигуры, ограниченной линией $\rho = 1 + \cos \phi$.	1) $\frac{\pi}{2}$; 2) $\frac{3\pi}{2}$; 3) $\frac{5\pi}{2}$; 4) $\frac{7\pi}{2}$.
A10. Вычислите массу пластины, ограниченной линиями $x+y=6$, $y=2x$, $y=x$, если плотность $\mu(x,y)=1$.	1) 1; 2) 2; 3) 3; 4) 4.
A11. Вычислите $\iiint_T y dx dy dz$, если T – область,	1) $\frac{7}{3}$; 2) $\frac{10}{3}$;
ограниченная плоскостями $2x + y + z = 4$, $x = 0$, $y = 0$, $z = 0$.	3) $\frac{16}{3}$; 4) $\frac{20}{3}$.
A12. Вычислите $\iiint_T (x^2 + y^2) dx dy dz$, если T –	1) $\frac{20\pi}{3}$; 2) $\frac{16\pi}{3}$;
область, ограниченная поверхностями $x^2 + y^2 = 2z$, $z = 2$.	3) $\frac{8\pi}{3}$; 4) $\frac{4\pi}{3}$.
А13. Вычислите объем тела, ограниченного поверхностями $z = x^2$, $x + y = 2$, $y = 0$, $z = 0$.	1) $\frac{4}{3}$; 2) $\frac{5}{3}$; 3) $\frac{7}{3}$; 4) $\frac{10}{3}$.

А14. Вычислите объем тела, ограниченного поверхностями $x^2 + y^2 = 9$, $z = y^2$, $z = 0$ ($y \ge 0$).	1) $\frac{25\pi}{8}$; 3) $\frac{63\pi}{8}$;	2) $\frac{50\pi}{8}$; 4) $\frac{81\pi}{8}$.
А15. Вычислите массу куба $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$, если плотность $\mu(x, y, z) = x + y + z$.	1) 4; 3) 16;	2) 8; 4) 24.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\iint_D x dx dy$, если D область, ограниченная линиями $y = x^3$, x + y = 2, x = 0.
- **В2.** Вычислите $\iint_D (x+y) dx dy$, если D область, ограниченная линиями y=x, x+y=2, y=0.
- **В3.** Вычислите $\int_{0}^{2} dy \int_{0}^{\sqrt{4-y^2}} \sqrt{4-x^2-y^2} dx.$
- **В4.** Вычислите $\iint_D \sqrt{x^2 + y^2 9} dx dy$, если D кольцо, ограниченное окружностями $x^2 + y^2 = 9$, $x^2 + y^2 = 25$.
- **В5.** Найдите площадь фигуры, ограниченной линией $\rho = 4\sin 2\phi$.
- **В6.** Вычислите $\iint_T x^2 dx dy dz$, если T область, ограниченная плоскостями z = x + y, x + y = 1, x = 0, y = 0, z = 0.
- **В7.** Вычислите $\iint_T \frac{xyzdxdydz}{\sqrt{x^2+y^2+z^2}}$, если T область, ограниченная поверхностями $x^2+y^2+z^2=4$, x=0, y=0, z=0 ($x\geq 0$, $y\geq 0$, $z\geq 0$).
- **B8.** Вычислите объем тела, ограниченного поверхностями x + y + z = 2, $y = \sqrt{x}$, y = x, z = 0.
- **В9.** Вычислите объем тела, ограниченного поверхностями $x^2 + y^2 = z^2$, $x^2 + y^2 6x = 0$, z = 0.

В10. Найдите сумму координат центра тяжести однородного тела, ограниченного поверхностями $x^2 + y^2 = \frac{z^2}{4}$, z = 4.

Часть С

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

C1. Укажите формулу вычисления двойного интеграла $I = \iint_D f(x, y) dx dy$ в де-

картовой системе координат:

1)
$$I = \int_{y_1(x)}^{y_2(x)} f(x, y) dy \int_a^b dx;$$

2)
$$I = \int_{a}^{b} f(x, y) dx \int_{y_{1}(x)}^{y_{2}(x)} dy;$$

1)
$$I = \int_{y_1(x)}^{y_2(x)} f(x, y) dy \int_a^b dx;$$
 2) $I = \int_a^b f(x, y) dx \int_{y_1(x)}^{y_2(x)} dy;$
3) $I = \int_{x_1(y)}^{x_2(y)} dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy;$ 4) $I = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy.$

4)
$$I = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy.$$

C2. Укажите формулу элемента площади ds = dxdy в полярных координатах:

1)
$$ds = d\varphi d\varphi$$
;

2)
$$ds = \rho d\varphi d\rho$$
;

3)
$$ds = \varphi d\varphi d\varphi$$
;

4)
$$ds = \rho \varphi d\varphi d\rho$$
.

 ${f C3.}$ Укажите формулу вычисления момента инерции I_0 относительно начала координат пластины D плотностью $\mu = \mu(x, y)$:

1)
$$I_0 = \iint_D (x^2 + y^2) \mu(x, y) dx dy;$$
 2) $I_0 = \iint_D x^2 \mu(x, y) dx dy;$
3) $I_0 = \iint_D x^2 y^2 \mu(x, y) dx dy;$ 4) $I_0 = \iint_D y^2 \mu(x, y) dx dy.$

$$2) I_0 = \iint_{\Omega} x^2 \mu(x, y) dx dy;$$

3)
$$I_0 = \iint x^2 y^2 \mu(x, y) dx dy;$$

4)
$$I_0 = \iint_D y^2 \mu(x, y) dx dy$$

C4. Укажите формулу элемента объема dv = dxdydz в сферических координа-

- 1) $dv = dr d\theta d\varphi$;
- 2) $dv = rdrd\theta d\varphi$;
- 3) $dv = r \sin \varphi dr d\theta d\varphi$; 4) $dv = r^2 \sin \varphi dr d\theta d\varphi$.

 $\overline{{\bf C5.}}$ Укажите формулу вычисления ординаты y_C центра тяжести тела T массой M и плотностью $\mu = \mu(x, y, z)$:

1)
$$y_C = \frac{1}{M} \iiint_{\mathbf{x}} xz\mu(x, y, z) dxdydz$$

2)
$$y_C = \frac{1}{M} \iiint_{R} (x^2 z^2) \mu(x, y, z) dx dy dz;$$

3)
$$y_C = \frac{1}{M} \iiint_{\infty} y\mu(x, y, z) dx dy dz$$

1)
$$y_C = \frac{1}{M} \iiint_T xz\mu(x, y, z) dx dy dz;$$
 2) $y_C = \frac{1}{M} \iiint_T (x^2 z^2)\mu(x, y, z) dx dy dz;$ 3) $y_C = \frac{1}{M} \iiint_T y\mu(x, y, z) dx dy dz;$ 4) $y_C = \frac{1}{M} \iiint_T (x^2 + z^2)\mu(x, y, z) dx dy dz.$

TECT № 11.1.2

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Измените порядок интегрирования $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f dy, \text{ если } f = f(x, y).$	1) $\int_{1}^{2} dy \int_{2-y}^{\sqrt{2y-y^{2}}} f dx;$ 2) $\int_{0}^{1} dy \int_{2-y}^{\sqrt{2y-y^{2}}} f dx;$ 3) $\int_{0}^{1} dy \int_{2-y}^{\sqrt{1-y^{2}}} f dx;$ 4) $\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^{2}}} f dx.$
А2. Измените порядок интегрирования $\int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y^2} f dx, \text{ если } f = f(x,y).$	1) $\int_{-1}^{0} dx \int_{-\sqrt{l-x^{2}}}^{1-x^{2}} f dy + \int_{0}^{1} dx \int_{-\sqrt{l-x}}^{\sqrt{l-x}} f dy;$ 2) $\int_{-1}^{0} dx \int_{-\sqrt{l-x^{2}}}^{\sqrt{l-x^{2}}} f dy + \int_{0}^{1} dx \int_{-\sqrt{l-x}}^{\sqrt{l-x}} f dy;$ 3) $\int_{-1}^{0} dx \int_{-\sqrt{l-x}}^{\sqrt{l-x}} f dy + \int_{0}^{1} dx \int_{-\sqrt{l-x^{2}}}^{\sqrt{l-x^{2}}} f dy;$ 4) $\int_{-1}^{0} dx \int_{-\sqrt{l-x}}^{\sqrt{l-x}} f dy + \int_{0}^{1} dx \int_{-\sqrt{l-x^{2}}}^{\sqrt{l-x^{2}}} f dy.$
А3. Вычислите $\int_{-3}^{3} dx \int_{x^2-4}^{5} (2x+y)dy.$	1) 25,3; 2) 30,5; 3) 45,2; 4) 50,4.
А4. Вычислите $\iint_{D} \frac{y}{x} dx dy$, если если D – область, ограниченная линиями $y = \sqrt{x}$, $y = \frac{1}{3}x$, $x = 1$ $(x \ge 1)$.	1) $\frac{49}{36}$; 2) $\frac{36}{25}$; 3) $\frac{25}{16}$; 4) $\frac{16}{9}$.

А5. Вычислите $\iint_D (x^3 + y^3) dx dy$, если $D - \text{об-}$	1) $\frac{451}{5}$; 2) $\frac{542}{5}$;
ласть, ограниченная линиями $x-2y=0$, $x-y=0$, $x=4$.	3) $\frac{752}{5}$; 4) $\frac{471}{5}$.
Аб. Вычислите $\iint_D (x^2 + y^2) dx dy$, если $D - \text{об-}$	1) 16π; 2) 24π; 3) 32π; 4) 48π.
ласть, ограниченная окружностью $x^2 + y^2 = 4x$.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
А7. Вычислите площадь фигуры, ограниченной линиями $x^2 + y^2 = 2y$, $y = x$, $x = 0$.	1) $\frac{\pi}{4}$; 2) $\frac{\pi}{4} - \frac{1}{2}$; 3) $\frac{\pi}{4} + \frac{1}{2}$; 4) $\frac{\pi}{4} + 1$.
А8. Найдите сумму координат центра тяжести пластины, ограниченной линиями $x = y^2$, $y = x^2$, если плотность $\mu(x, y) = xy$.	1) $\frac{9}{7}$; 2) $\frac{9}{14}$; 3) $\frac{9}{8}$; 4) $\frac{9}{16}$.
А9. Вычислите момент инерции относительно начала координат однородной пластины, ограниченной линиями $x + y = 2$, $y = 2$, $x = 2$, если плотность $\mu(x, y) = 1$.	1) 2; 2) 4; 3) 6; 4) 8.
A10. Вычислите объем тела, ограниченного поверхностями $z = x^2$, $y = x$, $y = 2$, $z = 0$.	1) $\frac{10}{3}$; 2) $\frac{8}{3}$; 3) $\frac{4}{3}$; 4) $\frac{2}{3}$.
A11. Вычислите объем тела, ограниченного поверхностями $y = 2\sqrt{x}$, $y = \sqrt{x}$, $x + z = 6$, $z = 0$.	1) $\frac{48}{5}\sqrt{6}$; 2) $\frac{24}{5}\sqrt{6}$; 3) $\frac{12}{5}\sqrt{6}$; 4) $\frac{6}{5}\sqrt{6}$.
A12. Вычислите объем тела, ограниченного поверхностями $z = x^2 + y^2$, $x^2 + y^2 = 4$, $z = 0$.	1) 2π; 2) 4π; 3) 6π; 4) 8π.
A13. Вычислите массу тела, ограниченного поверхностями $z = x^2 + y^2$, $z = 1$, если плотность	1) $\frac{\pi}{6}$; 2) $\frac{\pi}{4}$; 3) $\frac{\pi}{3}$; 4) $\frac{\pi}{2}$.
$\mu(x, y, z) = z.$	$3) \frac{\pi}{3};$ 4) $\frac{\pi}{2}$.
A14. Вычислите массу сферического слоя между поверхностями $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 4$, если плотность	1) 18π; 2) 12π;
$\mu(x, y, z) = \frac{3}{\sqrt{x^2 + y^2 + z^2}}.$	1) 18π; 2) 12π; 3) 9π; 4) 6π.

A15. Найдите сумму координат центра тяжести части однородного шара радиусом 2 с центром в начале координат, расположенной выше плоскости xOy.

1)
$$\frac{3}{2}$$
; 2) $\frac{3}{8}$;
3) $\frac{3}{4}$; 4) $\frac{3}{16}$.

3)
$$\frac{3}{4}$$
; 4) $\frac{3}{16}$

Часть В

Выполните задание. В таблице ответов под номером задания (В1-В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\iint e^{\frac{\pi}{y}} dx dy$, если D область, ограниченная линиями $y^2 = x$, y = 1, x=0.
- **B2.** Вычислите $\iint \arctan \frac{y}{x} dx dy$, если D четверть круга $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$.
- ВЗ. Вычислите площадь фигуры, ограниченной линией $\frac{(x+y-1)^2}{4} + \frac{(x-y+3)^2}{9} = 1$, используя подходящую замену переменных.
- **В4.** Вычислите площадь фигуры, ограниченной линиями $\rho = 2(1-\sin\phi), \ \rho = 2$ (вне кардиоиды).
- В5. Найдите сумму координат центра тяжести однородной пластины, ограниченной кардиоидой $\rho = 6(1 - \cos \phi)$.
- $dy \int_{-x^2-y^2} (x^2+y^2)dz.$ **В6.** Вычислите dx
- **В7.** Вычислите объем тела, ограниченного поверхностями $z = 2(x^2 + y^2)$, $z = x^2 + y^2$, $y = x^2$, y = x.
- **В8.** Вычислите массу тела, ограниченного поверхностью $x^2 + y^2 + 4z^2 = 1$, если плотность $\mu(x, y, z) = 3$.
- В9. Найдите сумму координат центра тяжести однородного тела, ограниченного поверхностями $4x = y^2 + z^2$, x = 2.
- **B10.** Вычислите момент инерции относительно оси O_V тела, ограниченного поверхностями $y^2 = x^2 + z^2$, y = 4, если плотность $\mu(x, y, z) = 1$.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

C1. Укажите формулу вычисления двойного интеграла $I = \iint f(x, y) dx dy$ в по-

лярной системе координат:

1)
$$I = \iint_{\mathbb{R}^n} f(\rho \cos \varphi, \rho \sin \varphi) d\varphi d\varphi$$

2)
$$I = \iint_{\mathbb{R}} f(\cos\varphi, \sin\varphi) d\varphi d\varphi;$$

1)
$$I = \iint_{D^*} f(\rho \cos \varphi, \rho \sin \varphi) d\varphi d\rho;$$
 2) $I = \iint_{D^*} f(\cos \varphi, \sin \varphi) d\varphi d\rho;$
3) $I = \iint_{D^*} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\varphi d\rho;$ 4) $I = \iint_{D^*} f(\cos \varphi, \sin \varphi) \rho d\varphi d\rho.$

4)
$$I = \iint_{D^*} f(\cos \varphi, \sin \varphi) \rho d\varphi d\rho$$
.

 $\overline{\mathbf{C2.}}$ Укажите формулу вычисления абсциссы x_C центра тяжести пластины Dмассой M и плотностью $\mu = \mu(x, y)$:

1)
$$x_C = \frac{1}{M} \iint y\mu(x, y) dx dy;$$

1)
$$x_C = \frac{1}{M} \iint_D y\mu(x, y) dxdy;$$
 2) $x_C = \frac{1}{M} \iint_D x\mu(x, y) dxdy;$

3)
$$x_C = \frac{1}{M} \iint_{\Omega} \frac{x}{y} \mu(x, y) dx dy;$$
 4) $x_C = \frac{1}{M} \iint_{\Omega} \frac{y}{x} \mu(x, y) dx dy.$

4)
$$x_C = \frac{1}{M} \iint_D \frac{y}{x} \mu(x, y) dx dy$$
.

C3. Укажите формулу элемента объема dv = dxdydz в цилиндрических координатах:

1)
$$dv = dx d\varphi d\rho$$
;

2)
$$dv = \rho^2 dy d\varphi d\rho$$
; 3) $dv = d\varphi d\rho dz$; 4) $dv = \rho d\varphi d\rho dz$.

3)
$$dv = d\varphi d\rho dz$$
;

4)
$$dv = \rho d\varphi d\rho dz$$

C4. Укажите формулу вычисления момента инерции I_z относительно оси Oz тела T плотностью $\mu = \mu(x, y, z)$:

1)
$$I_z = \iiint x^2 \mu(x, y, z) dx dy dz$$
;

2)
$$I_z = \iiint y^2 \mu(x, y, z) dx dy dz$$
;

3)
$$I_z = \iiint (x^2 + y^2)\mu(x, y, z) dx dy dz;$$

ла
$$I$$
 плотностью $\mu = \mu(x, y, z)$:

1) $I_z = \iiint_T x^2 \mu(x, y, z) dx dy dz$;

2) $I_z = \iiint_T y^2 \mu(x, y, z) dx dy dz$;

3) $I_z = \iiint_T (x^2 + y^2) \mu(x, y, z) dx dy dz$;

4) $I_z = \iiint_T (x^2 + y^2 + z^2) \mu(x, y, z) dx dy dz$.

C5. Укажите формулу вычисления тройного интеграла $I = \iiint f(x, y, z) dx dy dz$

в сферической системе координат:

1)
$$I = \iiint f(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)r^2\sin\theta dr d\theta d\varphi;$$

2)
$$I = \iiint_{r} f(r\cos\theta\cos\varphi, r\cos\theta\sin\varphi, r\sin\theta)r^2\sin\theta dr d\theta d\varphi;$$

3)
$$I = \iiint_{T_*} f(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta)r\sin\theta dr d\theta d\varphi;$$

4)
$$I = \iiint_{T_*} f(r\cos\theta\cos\varphi, r\cos\theta\sin\varphi, r\sin\theta)r\sin\theta dr d\theta d\varphi$$
.

Тема 12. Криволинейные и поверхностные интегралы. Теория поля

TECT № 12.1.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1–A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Вычислите $\int_{L} \frac{dl}{x-y}$, если L – отрезок прямой	1) $\sqrt{5} \ln 3$; 2) $\sqrt{5} \ln 2$; 3) $5 \ln 3$; 4) $5 \ln 2$.
от точки $A(0;-2)$ до точки $B(4;0)$.	3) 3III3, 4) 3III2.
А2. Вычислите $\int_{L} \sqrt{2y} dl$, если L – первая арка	1) 4π ; 2) 8π ; 3) $4\sqrt{2}\pi$; 4) $8\sqrt{2}\pi$.
циклоиды $\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t). \end{cases}$	M)
А3. Вычислите $\int_{L} (y+x^2)dx + (2x-y)dy$, если $L-$ дуга параболы $y=2x-x^2$ от точки $A(-1;-3)$ до	1) $\frac{3}{4}$; 2) $\frac{3}{5}$;
дуга параболы $y = 2x - x^2$ от точки $A(-1; -3)$ до точки $B(1; 1)$.	3) $\frac{4}{3}$; 4) $\frac{5}{3}$.
А4. Вычислите $\int_{(0;0)}^{(10;10)} (x+y)dx + (x-y)dy.$	1) 100; 2) 50; 3) 25; 4) 10.
А5. Найдите значение $z(1,1)$, если известно, что график функции $z = z(x, y)$ проходит через точ-	1) $\frac{1}{3}$; 2) $\frac{2}{3}$; 3) 1; 4) $\frac{4}{3}$.
ку $O(0;0;0)$ и $dz = x^2 dx + y^2 dy$ — полный дифференциал этой функции.	3) 1; 4) $\frac{4}{3}$.
А6. Вычислите длину цепной линии $e^{x} + e^{-x}$	1) $\frac{e^2-1}{2}$; 2) $\frac{e^2-1}{e}$;
$y = \frac{e^x + e^{-x}}{2}, x \in [0, 1].$	3) $\frac{e^2-1}{2e}$; 4) e^2-1 .
А7. Найдите сумму координат центра тяжести дуги однородной окружности $x^2 + y^2 = 4$, рас-	1) $\frac{1}{\pi}$; 2) $\frac{2}{\pi}$; 3) $\frac{3}{\pi}$; 4) $\frac{4}{\pi}$.
положенной выше оси Ox .	$3) \frac{3}{\pi};$ 4) $\frac{4}{\pi}$.

А8. Вычислите площадь эллипса $\frac{x^2}{16} + \frac{y^2}{25} = 1$.	1) 20π; 2) 25π; 3) 16π; 4) 10π.
А9. Вычислите $\iint_{\sigma} \left(z+2x+\frac{4}{3}y\right) d\sigma$, если σ –	1) $4\sqrt{33}$; 2) $4\sqrt{47}$;
часть плоскости $6x+4y+3z=12$, расположен-	3) $4\sqrt{57}$; 4) $4\sqrt{61}$.
ная в первом октанте.	
А10. Вычислите $\iint \sqrt{x^2 + y^2} d\sigma$, если σ – боковая	1) $\frac{2\pi}{3}$; 2) $\frac{2\pi\sqrt{2}}{3}$;
поверхность конуса $x^2 + y^2 = z^2$ (0 ≤ z ≤ 1).	3) $\frac{2\pi\sqrt{3}}{3}$; 4) $\frac{4\pi}{3}$.
А11. Вычислите $\iint_{\sigma} (x-y+z)dydz$, если σ –	1) $\frac{16}{3}$; 2) $\frac{8}{3}$;
внешняя сторона поверхности пирамиды, обра-	1
зованной плоскостью $x-2y-z+4=0$ и коор-	$3)\frac{4}{3};$ 4) 1.
динатными плоскостями.	
A12. Вычислите $\iint_{\sigma} x dx dz + z^3 dx dy$, если σ –	1) $\frac{4\pi}{5}$; 2) $\frac{8\pi}{5}$;
внешняя сторона поверхности сферы $x^2 + y^2 + z^2 = 1$.	3) $\frac{16\pi}{5}$; 4) $\frac{32\pi}{5}$.
А13. Вычислите дивергенцию векторного поля	1) 2; 2) 7;
$\bar{F} = (xy^2; -yz; z^2)$ в точке $M_0(0; 2; 1)$.	3) 5; 4) 3.
А14. Найдите длину ротора векторного поля	1) 4; 2) 3;
$\bar{F} = (x - z^2; yz; x^2 + y^2)$ в точке $M_0(1; 2; -1)$.	3) 2; 4) 1.
А15. Найдите угол между роторами векторных полей $\bar{F}_1 = (x^2y; y^2z; z^2x)$ и $\bar{F}_2 = (z; x; y)$ в точке	1) $\frac{\pi}{4}$; 2) π ;
$M_0(1;1;1)$.	3) $\frac{\pi}{2}$; 4) $\frac{\pi}{6}$.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\int_{L} \frac{z^2 dl}{x^2 + y^2}$, если L первый виток винтовой линии $\begin{cases} x = 2\cos t, \\ y = 2\sin t, \\ z = 2t. \end{cases}$
- **B2.** Вычислите $\int_L x dy y dx$, если L контур треугольника с вершинами A(-1;0), B(1;0), C(0;1) при положительном направлении обхода.
- **В3.** Найдите значение z(1,1), если известно, что график функции z = z(x, y) проходит через точку O(0;0;0) и dz = (3x+4y)dx + (4x-y)dy полный дифференциал этой функции.
- **В4.** Вычислите массу дуги линии $\rho = 3\sin \phi, \ \phi \in \left[0, \frac{\pi}{4}\right], \ если плотность в каждой точке дуги пропорциональна расстоянию до полюса и при <math>\phi = \frac{\pi}{4}$ равна 3.
- **B5.** Вычислите работу силы $\bar{F} = -4y\bar{i} + (4y 3x)\bar{j}$ при перемещении материальной точки вдоль прямоугольника с вершинами A(2; -6), B(2; 6), C(-2; 6), D(-2; -6).
- **В6.** Вычислите $\iint_{\sigma} (x^2 + y^2) dx dy$, если σ внутренняя сторона части поверхности $z = 8 x^2 y^2$, ограниченной плоскостью z = 0.
- **В7.** Вычислите $\iint_{\sigma} x^2 dy dz + y^2 dx dz + z^2 dx dy$, если σ внешняя сторона поверхности куба $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
- **В8.** Вычислите площадь части поверхности конуса $x^2 + y^2 = z^2$, расположенной в первом октанте и ограниченной плоскостью x + y = 4.
- **В9.** Вычислите массу полусферы $z = \sqrt{4 x^2 y^2}$, если плотность $\mu(x, y) = x^2 + y^2$.
- **B10.** Вычислите поток векторного поля $\bar{F} = (xz^2; yx^2; zy^2)$ через поверхность сферы $x^2 + y^2 + z^2 = 1$ в направлении внешней нормали.

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

C1. Укажите формулу вычисления криволинейного интеграла $I = \int f(x, y) dl$ по

кривой L, заданной уравнением x = x(y), $y \in [c; d]$:

1)
$$I = \int_{0}^{a} f(x(y), y) \sqrt{1 + x^{2}(y)} dy$$

1)
$$I = \int_{c}^{d} f(x(y), y) \sqrt{1 + x^{2}(y)} dy;$$
 2) $I = \int_{c}^{d} f(x(y), y) \sqrt{x^{2}(y) + (x'(y))^{2}} dy;$
3) $I = \int_{c}^{d} f(x(y), y) \sqrt{1 + (x'(y))^{2}} dy;$ 4) $I = \int_{c}^{d} f(x(y), y) dy.$

3)
$$I = \int_{0}^{a} f(x(y), y) \sqrt{1 + (x'(y))^2} dy$$

4)
$$I = \int_{a}^{a} f(x(y), y) dy$$
.

С2. Укажите формулу вычисления криволинейного интеграла

 $I = \int P(x, y)dx + Q(x, y)dy$ по кривой *L*, заданной параметрически $\begin{cases} x = x(t), \\ v = v(t) \end{cases}$

 $t \in [\alpha; \beta]$:

1)
$$I = \int_{\alpha}^{\beta} \left(P(x(t), y(t)) + Q(x(t), y(t)) \right) dt;$$

2)
$$I = \int_{\alpha}^{\alpha} \left(P(x(t), y(t)) + Q(x(t), y(t)) \right) x'(t) y'(t) dt;$$

3)
$$I = \int_{-\beta}^{\beta} \left(P(x(t), y(t)) y'(t) + Q(x(t), y(t)) x'(t) \right) dt;$$

4)
$$I = \int_{\alpha}^{\beta} \left(P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right) dt.$$

С3. Укажите формулу Грина:

1)
$$\int_{D} P(x, y)dx + Q(x, y)dy = \iint_{D} \left(\frac{\partial P(x, y)}{\partial x} - \frac{\partial Q(x, y)}{\partial y} \right) dxdy;$$

2)
$$\int_{L} P(x, y) dx + Q(x, y) dy = \iint_{D} \left(\frac{\partial P(x, y)}{\partial y} - \frac{\partial Q(x, y)}{\partial x} \right) dx dy;$$

3)
$$\int_{L} P(x, y)dx + Q(x, y)dy = \iint_{D} \left(\frac{\partial Q(x, y)}{\partial x} - \frac{\partial P(x, y)}{\partial y} \right) dxdy;$$

4)
$$\int_{L} P(x, y) dx + Q(x, y) dy = \iint_{D} \left(\frac{\partial Q(x, y)}{\partial y} - \frac{\partial P(x, y)}{\partial x} \right) dx dy.$$

С4. Укажите формулу вычисления дивергенции $\operatorname{div} \bar{F}$ векторного поля $\overline{F} = (P; Q; R)$:

1)
$$\operatorname{div} \bar{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z};$$
 2) $\operatorname{div} \bar{F} = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial z} + \frac{\partial R}{\partial x};$

2) div
$$\bar{F} = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial z} + \frac{\partial R}{\partial x}$$
;

3) div
$$\bar{F} = \frac{\partial P}{\partial z} + \frac{\partial Q}{\partial x} + \frac{\partial R}{\partial y}$$

3)
$$\operatorname{div} \bar{F} = \frac{\partial P}{\partial z} + \frac{\partial Q}{\partial x} + \frac{\partial R}{\partial y};$$
 4) $\operatorname{div} \bar{F} = \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 R}{\partial z^2}.$

C5. Укажите формулу вычисления ротора $\operatorname{rot} \bar{F}$ векторного поля $\bar{F} = (P; Q; R)$:

1) rot
$$\bar{F} = \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}; \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}; \frac{\partial Q}{\partial y} - \frac{\partial R}{\partial z}\right);$$

2) rot
$$\bar{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}; \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}; \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right);$$

3) rot
$$\bar{F} = \left(\frac{\partial Q}{\partial y} - \frac{\partial R}{\partial z}; \frac{\partial P}{\partial y} - \frac{\partial R}{\partial x}; \frac{\partial P}{\partial z} - \frac{\partial Q}{\partial x}\right);$$

4) rot
$$\bar{F} = \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial z}; \frac{\partial Q}{\partial y} - \frac{\partial R}{\partial x}; \frac{\partial R}{\partial z} - \frac{\partial P}{\partial x}\right).$$

TECT № 12.1.2

Часть А

К каждому заданию теста А даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (А1–А15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Вычислите $\int_{L} y dl$, если L – дуга астроиды $\begin{cases} x = \cos^{3} t, \\ y = \sin^{3} t \end{cases}$ от точки $A(1;0)$ до точки $B(0;1)$.	1) 0,4; 2) 0,6; 3) 0,8; 4) 1.
А2. Вычислите $\int_L \frac{y}{\sqrt{x^2 + y^2}} dl$, если L – дуга кардиоиды $\rho = 2(1 + \cos \phi), \ \phi \in [0, \pi].$	1) $\frac{2}{3}$; 2) $\frac{4}{3}$; 3) $\frac{8}{3}$; 4) $\frac{16}{3}$.
А3. Вычислите $\int_{L} (x-y)dx + dy$, если L – дуга верхней половины окружности $x^2 + y^2 = 16$ при положительном направлении обхода.	1) 2π; 2) 4π; 3) 8π; 4) 16π.

А4. Вычислите $\int_{L} 2(x^2 + y^2) dx + (x + y)^2 dy$, если L – контур треугольника с вершинами $A(1;1)$, $B(2;2)$, $C(1;3)$ при положительном направлении обхода.	1) $\frac{2}{3}$; 2) $-\frac{2}{3}$; 3) $\frac{4}{3}$; 4) $-\frac{4}{3}$.
А5. Найдите значение $z(1,0)$, если известно, что график функции $z = z(x, y)$ проходит через точку $O(0;0;0)$ и $dz = (y^2 e^{xy} - 3) dx + e^{xy} (1 + xy) dy - полный дифференциал этой функции.$	1) 3; 2) -3; 3) 2; 4) -2.
Аб. Вычислите длину дуги линии $\begin{cases} x = 2 - \frac{t^4}{4}, \\ y = \frac{t^6}{6}, \end{cases}$ ограниченной точками пересечения ее с осями координат.	11) 5; 2) $\frac{14}{3}$; 3) $\frac{13}{3}$; 4) 4.
А7. Вычислите массу дуги четверти эллипса $x^2 + 4y^2 = 4$, расположенной в первом квадранте, если плотность $\mu(x, y) = xy$.	1) $\frac{9}{7}$; 2) $\frac{9}{14}$; 3) $\frac{7}{9}$; 4) $\frac{14}{9}$.
А8. Вычислите работу силы $\bar{F} = xy\bar{i} + (x+y)\bar{j}$ при перемещении материальной точки вдоль параболы $y = x^2$ из начала координат в точку $A(1;1)$.	1) $\frac{7}{12}$; 2) $\frac{13}{12}$; 3) $\frac{17}{12}$; 4) $\frac{19}{12}$.
А9. Вычислите $\iint_{\sigma} xzdydz + x^2ydxdz + y^2zdxdy$, если σ – внешняя сторона замкнутой поверхности, расположенной в первом октанте и ограниченной поверхностями $z = x^2 + y^2$, $x^2 + y^2 = 1$, $x = 0$, $y = 0$, $z = 0$.	1) $\frac{\pi}{8}$; 2) $\frac{\pi}{4}$; 3) $\frac{\pi}{2}$; 4) π .
A10. Вычислите площадь части поверхности параболоида $6z = x^2 + y^2$, расположенного внутри цилиндра $x^2 + y^2 = 27$.	1) 20π; 2) 32π; 3) 42π; 4) 72π.
А11. Вычислите момент инерции относительно оси <i>Oz</i> части боковой поверхности конуса $z = \sqrt{x^2 + y^2}$ ($0 \le z \le 2$), если плотность $\mu(x, y, z) = 1$.	1) $\sqrt{2}\pi$; 2) $3\sqrt{2}\pi$; 3) $6\sqrt{2}\pi$; 4) $8\sqrt{2}\pi$;

A12. Вычислите поток векторного поля $\bar{F} = (3x; -y; -z)$ через замкнутую поверхность, образованную параболоидом $z = 9 - x^2 - y^2$ и координатными плоскостями, в направлении внешней нормали.	1) $\frac{3\pi}{2}$; 2) $\frac{9\pi}{4}$; 3) $\frac{27\pi}{8}$; 4) $\frac{81\pi}{8}$.
А13. Вычислите дивергенцию векторного поля $\bar{F} = (xy + z^2; yz + x^2; zx + y^2)$ в точке $M_0(1; 3; -5)$.	1) -1; 2) 1; 3) 0; 4) 2.
А14. Найдите квадрат длины ротора векторного поля $\bar{F} = (xyz; x+y+z; x^2+y^2+z^2)$ в точке $M_0(1;-1;2)$.	1) 19; 2) 16; 3) 8; 4) 15.
A15. Вычислите циркуляцию векторного поля $\bar{F} = (y; x^2; -z)$ вдоль окружности $\begin{cases} x^2 + y^2 = 4, \\ z = 3 \end{cases}$ при положительном направлении обхода относительно орта \bar{k} .	1) -2π ; 2) 2π ; 3) -4π ; 4) 4π .

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\int_{L} \sqrt{2y^2 + z^2} dl$, если L окружность $\begin{cases} x^2 + y^2 + z^2 = 9, \\ x = y. \end{cases}$
- **B2.** Вычислите $\int_{(1;0;-3)}^{(6;4;8)} xdx + ydy zdz.$
- **В3.** Вычислите $\int_L (xy+x+y)dx + (xy+x-y)dy$, если L окружность $x^2+y^2=2x$ при положительном направлении обхода.
- **B4.** Найдите значение u(1,1,1) функции u=u(x,y,z), если известно, что u(0,0,0)=0 и du=(2x+y+z)dx+(x+2y+z)dy+(x+y+2z)dz полный дифференциал этой функции.
- **B5.** Вычислите длину дуги конической винтовой линии $x = 3e^t \cos t$, $y = 3e^t \sin t$, $z = 3e^t$ от точки O(0;0;0) до точки A(3;0;3).

- **В6.** Вычислите площадь части поверхности конуса $z = \sqrt{x^2 + y^2}$, расположенной внутри цилиндра $z^2 = 2v$.
- **В7.** Вычислите площадь части параболоида $y = x^2 + z^2$, расположенной в первом октанте и ограниченной плоскостью y = 2.
- **В8.** Вычислите поток векторного поля $\bar{F} = (x-1; y+3; z)$ через боковую поверхность конуса $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$) в направлении внешней нормали.
- **В9.** Вычислите поток градиента скалярного поля u = xyz + 1 через часть сферы $x^2 + y^2 + z^2 = 4$, расположенной в первом октанте, в направлении внешней нормали.
- **B10.** Вычислите поток ротора векторного поля $\bar{F} = (y; z; x)$ через поверхность параболоида $z = 4 - x^2 - y^2$, расположенную выше плоскости z = 0, в направлении внешней нормали.

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

C1. Укажите формулу вычисления криволинейного интеграла $I = \int f(x, y) dl$ по

кривой L, заданной параметрически $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ $t \in [\alpha; \beta]$:

1)
$$I = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{x^{2}(t) + y^{2}(t)} dt;$$
 2) $I = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{1 + (y'(t))^{2}} dt;$ 3) $I = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt;$ 4) $I = \int_{\alpha}^{\beta} f(x(t), y(t)) dt.$

3)
$$I = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} dt;$$
 4) $I = \int_{\alpha}^{\beta} f(x(t), y(t)) dt.$

С2. Укажите формулу вычисления площади S плоской фигуры с границей L:

1)
$$S = \frac{1}{2} \int x dx + y dy;$$
 2) $S = \frac{1}{2} \int x dx - y dy$

1)
$$S = \frac{1}{2} \int_{L} x dx + y dy;$$
 2) $S = \frac{1}{2} \int_{L} x dx - y dy;$
3) $S = \frac{1}{2} \int_{L} y dx - x dy;$ 4) $S = \frac{1}{2} \int_{L} x dy - y dx.$

C3. Укажите формулу вычисления поверхностного интеграла $I = \iint f(x, y, z) d\sigma$,

если поверхность σ в области D плоскости xOy задана уравнением z = z(x, y):

1)
$$I = \iint_D f(x, y, z(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy;$$

2)
$$I = \iint_{\Omega} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy;$$

3)
$$I = \iint_D f(x, y, z(x, y)) \left(\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right) dxdy;$$

4)
$$I = \iint_D f(x, y, z(x, y)) \left(1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right) dx dy.$$

С4. Укажите формулу Остроградского – Гаусса:

1)
$$\iint_{\sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds = \iiint_{T} \left(\frac{\partial P}{\partial z} + \frac{\partial Q}{\partial x} + \frac{\partial R}{\partial y}\right) dxdydz;$$

2)
$$\iint_{\sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dxdydz;$$

3)
$$\iint_{\sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds = \iiint_{T} \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial R}{\partial z}\right) dxdydz;$$

4)
$$\iint_{\mathcal{S}} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds = \iiint_{T} \left(\frac{\partial R}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial z} \right) dxdydz.$$

С5. Укажите формулу Стокса:

1)
$$\int_{I} Pdx + Qdy + Rdz = \iint_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy;$$

2)
$$\int Pdx + Qdy + Rdz = \iint \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) dxdy + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial y} - \frac{\partial R}{\partial z} \right) dydz;$$

3)
$$\int_{C} Pdx + Qdy + Rdz = \iint_{C} \left(\frac{\partial Q}{\partial y} - \frac{\partial R}{\partial z} \right) dydz + \left(\frac{\partial P}{\partial y} - \frac{\partial R}{\partial x} \right) dxdy + \left(\frac{\partial P}{\partial z} - \frac{\partial Q}{\partial x} \right) dzdx;$$

4)
$$\int_{L} Pdx + Qdy + Rdz = \iint_{\sigma} \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy + \left(\frac{\partial P}{\partial z} - \frac{\partial Q}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y} \right) dydz.$$

Тема 13. Ряды

TECT № 13.1.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Найдите первые четыре члена ряда $\stackrel{\infty}{\longrightarrow}$ 4 г. $\stackrel{3}{\longrightarrow}$	1) $1 + \frac{5}{8} + \frac{9}{27} + \frac{13}{64} + \dots;$ 2) $1 + \frac{4}{16} + \frac{7}{81} + \frac{10}{256} + \dots;$ 3) $1 + \frac{3}{8} + \frac{5}{27} + \frac{7}{64} + \dots;$ 4) $1 + \frac{5}{16} + \frac{9}{81} + \frac{13}{256} + \dots$
А2. Найдите формулу n -го члена ряда $1-1+\frac{7}{9}-\frac{9}{17}+\dots$	1) $(-1)^{n-1} \frac{2n+1}{n^2+1}$; 2) $(-1)^n \frac{n^2+1}{2^n+1}$; 3) $(-1)^{n-1} \frac{2n+1}{2^n+1}$; 4) $(-1)^n \frac{2^n-1}{n^2+1}$.
А3. Найдите n -ю частичную сумму ряда $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right).$	1) $1 + \frac{1}{n}$; 2) $1 - \frac{1}{n+1}$; 3) $1 - \frac{1}{n}$; 4) $1 + \frac{1}{n+1}$.
рядов является знакоположительным:	1) $\sum_{n=1}^{\infty} \sin n^{2};$ 2) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^{3}};$ 3) $\sum_{n=1}^{\infty} (1-n)^{n};$ 4) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdot (2n-1)}{n!}.$

А5. Определите, какой из указанных числовых рядов является знакопеременным:	1) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$; 2) $\sum_{n=1}^{\infty} (1 - (-1)^n)$; 3) $\sum_{n=1}^{\infty} \cos n$; 4) $\sum_{n=2}^{\infty} \ln \frac{n+1}{n-1}$.
Аб. Определите, какой из указанных числовых рядов является знакочередующимся:	1) $\sum_{n=1}^{\infty} \frac{(-1)^{n(n-1)}}{\sqrt[3]{n}};$ 2) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-1)!};$ 3) $\sum_{n=1}^{\infty} (-1)^{\frac{n(n+1)}{2}};$ 4) $\sum_{n=1}^{\infty} (-1)^{2n-1} \frac{n^2}{n+1}.$
А7. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)^{n^2}$.	 расходится; сходится; сходится условно; сходится абсолютно.
= 1 + $4/n$ + $1/n$	1) $\sum_{n=1}^{\infty} \frac{1}{n}$; 2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$; 3) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$; 4) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$.
А9. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{4^n}{2^n + 3^n}$ по признаку сравнения.	 1) сходится абсолютно; 2) сходится; 3) расходится; 4) сходится условно.
А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}$ по признаку Д'Аламбера.	 1) сходится; 2) расходится; 3) не сходится; 4) сходится условно.

А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{2n^2 + 3}{3n^2 + 2} \right)^n$ по признаку Коши.	 не сходится; сходится условно; сходится; расходится.
А12. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{(2n+1)\sqrt{\ln(2n+1)}}$ по интегральному критерию.	 1) сходится; 2) расходится; 3) сходится абсолютно; 4) сходится условно.
А13. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n-2}{4n-1}.$	 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) сходится.
А14. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n-1}{n(n+1)}.$	 расходится; не сходится; сходится абсолютно; сходится условно.
А15. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(n+1)^3}{3^n}.$	 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ
В1. Найдите 4-й член ряда $\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+4} \right)^n$.
В2. Найдите 3-й член ряда $\sum_{n=1}^{\infty} \frac{2^n n^2}{(2n-1)!}$.
В3. Вычислите частичную сумму S_4 ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2+1}$.
В4. Вычислите частичную сумму S_3 ряда $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.

- **В5.** Вычислите частичную сумму S_4 ряда $\sum_{n=0}^{\infty} (-1)^n \frac{n^3}{3^n}$.
- **В6.** Вычислите сумму ряда $\sum_{n=0}^{\infty} \frac{2^n + 3^n}{6^n}$.
- **В7.** Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$.
- **В8.** Определите, сколько членов ряда $\sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{n^4}$ следует взять, чтобы с точностью до 0,0001 вычислить его сумму.
- **В9.** Вычислите приближенное значение суммы ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3+1}$ с точностью до 0.01.
- **B10.** Вычислите приближенное значение суммы ряда $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n^2-1)^2}$ с точностью до 0,001.

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Закончите верно утверждение:

$$P$$
яд $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, где $a_n > 0$, является...

- 1) знакоотрицательным;
- 2) сходящимся;
- 3) знакочередующимся;
- 4) знакоположительным.

С2. Укажите гармонический ряд:

1)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

2)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
; 3) $\sum_{n=1}^{\infty} \frac{1}{n}$; 4) $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

3)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

4)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

С3. Закончите верно утверждение:

Признак сравнения используется для исследования на сходимость...

- 1) знакопостоянных рядов;
- 2) знакоположительных рядов;
- 3) знакопеременных рядов;
- 4) знакочередующихся рядов.

С4. Закончите определение:

Знакопеременный ряд $\sum a_n$ называется абсолютно сходящимся, если схо-

дится ряд...

1)
$$\frac{1}{\sum_{n=1}^{\infty} |a_n|};$$
 2) $\left| \sum_{n=1}^{\infty} a_n \right|;$ 3) $\sum_{n=1}^{\infty} \frac{1}{|a_n|};$ 4) $\sum_{n=1}^{\infty} |a_n|.$

$$2) \left| \sum_{n=1}^{\infty} a_n \right|$$

$$3) \sum_{n=1}^{\infty} \frac{1}{|a_n|}$$

$$4) \sum_{n=1}^{\infty} |a_n|$$

С5. Укажите необходимое условие сходимости числового ряда:

- 1) если ряд $\sum_{i=1}^{\infty} a_i$ сходится, то $\lim_{n\to\infty} a_n = 0$;
- 2) если $\lim_{n\to\infty} a_n = 0$, то ряд $\sum_{n=0}^{\infty} a_n$ сходится;
- 3) если ряд $\sum_{n=0}^{\infty} a_n$ расходится, то $\lim_{n\to\infty} a_n = 0$;
- 4) если $\lim_{n\to\infty} a_n < 1$, то ряд $\sum_{n=0}^{\infty} a_n$ сходится.

TECT № 13.1.2

Часть А

К каждому заданию теста А даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (А1-А15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
	1) $(-1)^{n-1} \left(\frac{n+2}{2n+1}\right)^n$;
	$(-1)^{n-1} \left(\frac{2n-1}{n+2}\right)^n;$
$3 - \frac{16}{9} + 1 - \frac{1296}{2401} + \dots$	$(-1)^{n-1} \left(\frac{2n+1}{n+2}\right)^n;$
	4) $(-1)^{n-1} \left(\frac{n+2}{2n-1}\right)^n$.

	·
A2. Определите, какой из указанных числовых рядов является знакоположительным:	1) $\sum_{n=1}^{\infty} \frac{\sin n}{n!};$ 2) $\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \frac{n}{\sqrt[3]{n+1}};$ 3) $\sum_{n=1}^{\infty} \frac{2^{-n}}{n-\ln n};$ 4) $\sum_{n=1}^{\infty} \left(\frac{n}{1-2n}\right)^{n}.$
А3. Определите, какой из указанных числовых рядов является знакопеременным:	1) $\sum_{n=1}^{\infty} n \sin \frac{\pi}{2^n};$ 2) $\sum_{n=1}^{\infty} \left(\operatorname{arctg} \frac{1}{n+1} \right)^n;$ 3) $\sum_{n=1}^{\infty} \frac{\cos n}{2n-1};$ 4) $\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{n}}.$
А4. Определите, какой из указанных числовых рядов является знакочередующимся:	1) $\sum_{n=1}^{\infty} \left(\sin \frac{\pi n}{2} + (-1)^n \right);$ 2) $\sum_{n=1}^{\infty} \left(-\frac{1}{n} \right)^n;$ 3) $\sum_{n=1}^{\infty} (-1)^n \frac{\operatorname{tg} n}{n^2 + 1};$ 4) $\sum_{n=1}^{\infty} (-1)^{n(n+1)} \frac{n}{\ln(n+1)}.$
А5. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} n \ln \left(1 + \frac{2}{n}\right)$.	 1) сходится абсолютно; 2) сходится условно; 3) сходится; 4) расходится.
А6. Определите, какой из указанных рядов следует взять для исследования сходимости ряда $\sum_{n=1}^{\infty} n \sin^2 \left(\frac{\pi}{\sqrt{n^3} + \sqrt[3]{n^4}} \right)$ по признаку сравнения в предельной форме:	1) $\sum_{n=1}^{\infty} \frac{1}{n^2}$; 2) $\sum_{n=1}^{\infty} \frac{1}{n}$; 3) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$; 4) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$.

А7. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{\sqrt{n} - \sqrt{n-1}}{n+1}$. А8. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.	 1) сходится условно; 2) сходится; 3) расходится; 4) не сходится. 1) расходится; 2) сходится; 3) сходится абсолютно; 4) сходится условно.
А9. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n} \right)^{n^2}.$	 1) не сходится; 2) сходится условно; 3) сходится; 4) расходится.
А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)\ln(\ln(n+1))}.$	 1) сходится условно; 2) сходится абсолютно; 3) сходится; 4) расходится.
А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^n \sin^n \frac{\pi}{2n}.$	 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится.
А12. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{n^2}{2^n} \right).$	 1) сходится условно; 2) расходится; 3) сходится; 4) сходится абсолютно.
А13. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{3^n}{1+\sqrt{n}} \left(\frac{1-2x}{1+2x}\right)^n$ в точке $x=1$.	 1) сходится абсолютно; 2) расходится; 3) не сходится; 4) сходится условно.
А14. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{\cos nx}{2^{n}}.$	1) $[-1;1];$ 2) $(-\infty; +\infty);$ 3) $[-\pi;\pi];$ 4) $\{0\}.$
А15. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^{n(n+1)}}{n^n}.$	1) [-1;1]; 2) (-1;1]; 3) [-1;1); 4) (-1;1).

Выполните задание. В таблице ответов под номером задания (B1–B10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{9n^2 3n 2}$.
- **B2.** Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{4}{n(n+1)(n+2)}$.
- **В3.** Определите, сколько членов ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^n}$ следует взять, чтобы с точностью до 0,0001 вычислить его сумму.
- **В4.** Определите, сколько членов ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$ следует взять, чтобы с точностью до 10^{-4} вычислить его сумму.
- **В5.** Вычислите приближенное значение суммы ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n n^3}$ с точностью до 0,001.
- **В6.** Вычислите приближенное значение суммы ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n+2}{4n+1}\right)^n$ с точностью до 0,01.
- **В7.** Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n+3^n}$.
- **В8.** Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} (2x)^n$.
- **B9.** Найдите количество целых чисел, входящих в интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n} (x-3)^n}{3^n \ln(n+1)}.$
- **B10.** Найдите сумму целых чисел, входящих в интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-1)^{3n}}{8^n}.$

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите ряд, который не является рядом Дирихле:

$$1) \sum_{n=1}^{\infty} \frac{1}{2^n};$$

$$2) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

3)
$$\sum_{n=1}^{\infty} \frac{1}{n};$$

1)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
; 2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$; 3) $\sum_{n=1}^{\infty} \frac{1}{n}$; 4) $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

С2. Закончите верно утверждение:

Eсли для знакоположительного ряда $\sum_{n=1}^{\infty} a_n$ существует $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = C$, то ряд

сходится, если...

2)
$$C < 1;$$
 3) $C \ge 1;$ 4) $C > 1.$

С3. Закончите верно утверждение:

Если знакопеременный ряд $\sum_{n=0}^{\infty} a_n$ сходится, то...

1) он сходится условно; 2) он сходится абсолютно; 3) он сходится условно или абсолютно; 4) ряд $\sum_{n=1}^{\infty} |a_n|$ сходится.

4) ряд
$$\sum_{n=1}^{\infty} |a_n|$$
 сходится.

С4. Закончите верно утверждение:

Eсли ряд $\sum_{n=0}^{\infty} |a_n|$ расходится, то знакопеременный ряд $\sum_{n=0}^{\infty} a_n \dots$

1) сходится абсолютно; 2) не сходится абсолютно; 3) сходится условно; 4) расходится.

3) сходится условно;

4) расходится.

С5. Закончите верно утверждение:

Если для знакоположительных рядов $\sum_{n=0}^{\infty} a_n u \sum_{n=0}^{\infty} b_n$ существует $\lim_{n\to\infty} \frac{a_n}{b_n} = C$,

где $0 < C < \infty$, то...

1)
$$\sum_{n=1}^{\infty} a_n$$
 cxodumcs; 2) $\sum_{n=1}^{\infty} b_n$ cxodumcs;

3) оба ряда сходятся;

4) оба ряда сходятся или оба расходятся.

TECT № 13.2.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} e^{-n^2x}$ в точке $x=1$.	 1) сходится; 2) расходится; 3) сходится условно; 4) не сходится.
А2. Найдите область сходимости ряда $\sum_{n=1}^{\infty} x^{2n-1}$.	1) [-1;1]; 2) (-1;1]; 3) [-1;1); 4) (-1;1).
А3. Найдите интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n(n+1)}.$	1) (-2;0); 2) (-3;1); 3) (-3;-1); 4) (-4;0).
А4. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{\sqrt[3]{n^2}}.$	1) (-1;1); 2) (-1;1]; 3) [-1;1); 4) [-1;1].
А5. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n!}.$	1) $[0;2];$ 2) $\{1\};$ 3) $(0;2);$ 4) $(-\infty;+\infty).$
А6. Вычислите сумму ряда $\sum_{n=1}^{\infty} nx^{n-1}$, используя сумму членов бесконечно убывающей геометрической прогрессии.	1) $\frac{1}{1-x^2}$; 2) $\frac{1}{1+x^2}$; 3) $\frac{1}{(1-x)^2}$; 4) $\frac{1}{(1+x)^2}$.
А7. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$, используя сумму членов бесконечно убывающей геометрической прогрессии.	1) $\frac{1}{2} \ln \left \frac{x+1}{x-1} \right $; 2) $\ln \left x + \sqrt{1+x^2} \right $; 3) $\arcsin x$; 4) $\arctan x$.
А8. Найдите разложение в ряд Тейлора в окрестности точки $x = -1$ функции $f(x) = x^3 + x^2 - x$.	1) $(x+1)^3 + (x+1)^2 - 2$; 2) $(x+1)^3 + (x+1)^2 - 2(x+1)$; 3) $(x+1)^3 - 2(x+1)^2 + (x+1)$; 4) $(x+1)^3 - 2(x+1)^2 + 1$.

А9. Найдите разложение в ряд Маклорена функции $f(x) = xe^{-2x}$.	1) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n+1};$ 2) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n!} x^{n+1};$ 3) $\sum_{n=0}^{\infty} \frac{1}{2^{n} n!} x^{n+1};$ 4) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!} x^{n+1}.$
$x+2$ функции $f(x) = \frac{1}{x}$.	1) $-\sum_{n=0}^{\infty} \frac{(x+2)^n}{2^n};$ 2) $\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{2^{n+1}};$ 3) $-\sum_{n=0}^{\infty} \frac{(x+2)^n}{2^{n+1}};$ 5) $\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{2^n}.$
А11. Найдите разложение в ряд по степеням x функции $f(x) = 2\cos^2\frac{x}{2}$.	1) $1+x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+;$ 2) $1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+;$ 3) $x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+;$ 4) $2-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+$ 1) $1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^2+;$
A12. Найдите первые три члена разложения функции $f(x) = \sqrt{x}$ в ряд по степеням $x-1$.	2) $1+(x-1)-\frac{1}{8}(x-1)^2+;$ 3) $1+(x-1)+\frac{1}{8}(x-1)^2+;$ 4) $1+\frac{1}{2}(x-1)+\frac{1}{8}(x-1)^2+$

А13. Найдите первые три члена разложения функции
$$f(x) = \ln(1+e^x)$$
 в ряд Маклорена.

1) $\ln 2 + \frac{x}{2} + \frac{x^3}{48} + \dots$; 2) $\frac{x}{2} + \frac{x^2}{48} + \frac{x^3}{48} + \dots$; 3) $\ln 2 + \frac{x^2}{8} + \frac{x^3}{48} + \dots$; 4) $\ln 2 + \frac{x}{2} + \frac{x^2}{8} + \dots$.

1) $\sum_{n=1}^{\infty} \frac{x^n}{n(n-1)!}$; 2) $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!}$; 3) $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)n!}$; 4) $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)n!}$; 4) $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)!}$; A15. Вычислите $f^{(10)}(0)$, если $f(x) = x^4 e^x$, используя разложение $f(x)$ в ряд Маклорена.

1) $\ln 2 + \frac{x}{2} + \frac{x^3}{48} + \dots$; 3) $\ln 2 + \frac{x^2}{8} + \frac{x^3}{48} + \dots$; 4) $\ln 2 + \frac{x^3}{8} + \frac{x^3}{48} + \dots$; 5) $\ln 2 + \frac{x^3}{8} + \frac{x^3}{48} + \dots$; 7) $\ln 2 + \frac{x^3}{8} + \frac{x^3}{48} + \dots$; 2) $\ln 2 + \frac{x^3}{8} + \frac{x^3}{10} + \frac{x^3}{10} + \dots$; 3) $\ln 2 + \frac{x^3}{8} + \frac{x^3}{10} + \dots$; 4) $\ln 2 + \frac{x^3}{10} + \frac{x^3}{10} + \dots$; 5) $\ln 2 + \frac{x^3}{10} + \frac{x^3}{10} + \dots$; 7) $\ln 2 + \frac{x^3}{10} + \dots$; 8) $\ln 2 + \frac{x^3}{10} + \frac{x^3}{10} + \dots$; 9) $\ln 2 + \frac{x^3}{10} + \dots$; 10 $\ln 2 + \frac{x^3}{10} + \dots$; 11 $\ln 2 + \frac{x^3}{10} + \dots$; 11 $\ln 2 + \frac{x^3}{10} + \dots$; 12 $\ln 2 + \frac{x^3}{1$

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ
В1. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n}{3 \cdot 2^{n-1}}$ в точке $x=2$.
В2. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2nx^2}$ в точке $x = 1$.
В3. Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{4^n x^n}{n^2}$.
В4. Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n^2+1}}$.

- **В5.** Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{3}\right)^n$.
- В6. Найдите количество целых чисел, входящих в интервал сходимости ряда
- В7. Найдите сумму целых чисел, входящих в интервал сходимости ряда
- **В8.** Вычислите $e^{-\frac{1}{5}}$ с точностью до 0,001.
- **В9.** Вычислите $\sin \frac{1}{3}$ с точностью до 0,0001.
- **В10.** Вычислите $\int_{0}^{\infty} \cos x^{2} dx$ с точностью до 0,0001.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Закончите определение:

Областью сходимости функционального ряда называется множество всех значений х, для которых ...

- ряд сходится;
- 2) каждый член ряда стремится к нулю;
- 3) определен каждый член ряда;
- 4) сумма ряда является непрерывной функцией.

С2. Закончите верно утверждение:

Если для функционального ряда $\sum_{n=1}^{\infty} u_n(x)$ существует $\lim_{n\to\infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = C(x)$, то

ряд сходится, если...

- 1) $C(x) \le 1$;

- 2) C(x) < 1; 3) $C(x) \ge 1;$ 4) C(x) > 1.

С3. Укажите ряд, который не является степенным рядом:

- 1) $\sum_{n=0}^{\infty} c_n x^{2n}$; 2) $\sum_{n=0}^{\infty} c_n (x+a)^n$; 3) $\sum_{n=0}^{\infty} c_n x^{-n}$; 4) $\sum_{n=0}^{\infty} c_n (x-a)^{2n+1}$.

C4. Укажите ряд Тейлора функции f(x):

1)
$$f(a) + \frac{f'(a)}{1}(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n}(x-a)^n + \dots;$$

2)
$$f(a) + f'(a)(x-a) + f''(a)(x-a)^2 + ... + f^{(n)}(a)(x-a)^n + ...;$$

3)
$$f(x) + \frac{f'(x)}{1!}x + \frac{f''(x)}{2!}x^2 + \dots + \frac{f^{(n)}(x)}{n!}x^n + \dots;$$

4)
$$f(a) + \frac{(x-a)^2}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a) + \dots$$

C5. Укажите ряд Маклорена функции f(x):

1) ряд Тейлора функции f(x) в случае разложения по степеням x;

2) ряд вида
$$f(a) + \frac{f'(a)}{1!}x + \frac{f''(a)}{2!}x^2 + ... + \frac{f^{(n)}(a)}{n!}x^n + ...;$$

3) ряд Тейлора функции f(x) при условии, что в нем x = 0;

4) ряд вида
$$f(0) + \frac{f'(0)}{1!}(x-a) + \frac{f''(0)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(0)}{n!}(x-a)^n + \dots$$

TECT № 13.2.2

Часть А

К каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1–A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	держание задания варианты ответа	
А1. Найдите область сходимости ряда $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n} x^n.$	1) [-1;1]; 2) [-1;1); 3) (-1;1]; 4) (-1;1).	
А2. Найдите область сходимости ряда $\sum_{n=1}^{\infty} (-1)^{n+1} (2n-1)! (x-2)^n.$	1) {1}; 2) {2}; 3) {3}; 4) (1; 3).	
А3. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{(n+1)4^n}.$	1) [-1; 3]; 2) (-1; 3]; 3) [-1; 3); 4) (-1; 3).	
А4. Вычислите сумму ряда $\sum_{n=1}^{\infty} n(n+1)x^{n-1}$, используя сумму членов бесконечно убывающей прогрессии	1) $\frac{2}{(1-x)^3}$; 2) $\frac{1}{(1+x)^3}$;	
пользуя сумму членов бесконечно убывающей геометрической прогрессии.	$3) \frac{2}{1-x^3}; \qquad 4) \frac{2}{1+x^3}.$	

А5. Найдите разложение в ряд Тейлора в окрестности точки $x = -1$ функции	1) $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n n!} (x+1)^n;$ 2) $1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n n!} (x+1)^n;$
$f(x) = \frac{1}{\sqrt{x+2}}.$	3) $1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n n!} (x+1)^n;$
	4) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n n!} (x+1)^n.$
	1) $\sum_{n=0}^{\infty} \frac{1}{2^n - 1} x^n$;
Аб. Найдите разложение в ряд Маклорена функции $f(x) = \frac{x}{x^2 - 3x + 2}$.	2) $\sum_{n=0}^{\infty} \frac{2^n}{2^n - 1} x^n;$ 3) $\sum_{n=0}^{\infty} (2^n - 1) x^n;$
	$4) \sum_{n=0}^{\infty} \frac{2^n - 1}{2^n} x^n.$
	1) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(x - \frac{\pi}{2} \right)^{2n};$
	$2) \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(x - \frac{\pi}{2} \right)^n;$
$x - \frac{\pi}{2}$ функции $f(x) = \sin x$.	3) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(x - \frac{\pi}{2} \right)^n;$
	4) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(x - \frac{\pi}{2} \right)^{2n}$.
	$1) \sum_{n=0}^{\infty} \frac{\ln^n 2}{n!} x^n;$
А8. Найдите разложение в ряд по степеням x	$2) \sum_{n=0}^{\infty} \frac{(-1)^n \ln^n 2}{n!} x^{2n};$
функции $f(x) = 2^{-x}$.	3) $\sum_{n=0}^{\infty} \frac{\ln^{n} 2}{n!} x^{2n};$ 4) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \ln^{n} 2}{n!} x^{n}$

	(2)
А9. Найдите первые три члена разложения	1) $e\left(1-x-\frac{x^2}{2}+\right);$ 2) $e\left(1-\frac{x^2}{2}+\frac{x^4}{6}+\right);$
	3) $e\left(1-\frac{x^2}{2}+\frac{x^3}{6}+\right)$;
	4) $e\left(1-x+\frac{x^3}{6}+\right)$.
	1) $C - \frac{1}{x} + \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)!}$;
ного ряда.	2) $C + \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!}$;
	3) $C - \frac{1}{x} + \sum_{n=1}^{\infty} \frac{x^n}{(n+1)n!}$;
2	4) $C - \frac{1}{x} + \ln x + \sum_{n=1}^{\infty} \frac{x^n}{(n+1)(n+1)!}$
А11. Найдите первые три члена разложения в	1) $1+x+\frac{x^3}{3}+;$ 2) $1-x+\frac{x^2}{2}+;$
степенной ряд решения дифференциального	$ 2\rangle 1 - x + \frac{1}{2} + \dots;$
уравнения $y' = x^2y^2 - 1$, если $y(0) = 1$.	3) $1 + \frac{x^2}{2} + \frac{x^3}{3} + \dots;$
	4) $1-x+\frac{x^3}{3}+$
	1) $-2+2x-x^2-\frac{x^3}{3}+\frac{x^4}{4}+$;
А12. Найдите первые пять членов разложения в степенной ряд решения дифференциального	2) $-2+2x+x^2-\frac{x^3}{3}+\frac{x^4}{4}+\dots;$
уравнения $y'' = (1+x^2)y$, если $y(0) = -2$, $y'(0) = 2$.	3) $-2+2x-x^2+\frac{x^3}{3}-\frac{x^4}{4}+;$
	$4) -2 + 2x + x^2 + \frac{x^3}{3} - \frac{x^4}{4} + \dots$

А13. Найдите разложение в ряд Фурье
$$2\pi$$
-периодической функции $f(x) = \begin{cases} 1, \text{ если } x \in (-\pi, 0], \\ 0, \text{ если } x \in (0; \pi]. \end{cases}$ $2) \frac{1}{2} + \frac{2}{\pi} \left(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right);$ $3) \frac{1}{2} - \frac{2}{\pi} \left(\sin x - \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin x - \frac{\sin 3x}{3} + \frac{\sin 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 2x}{3} + \frac{\cos 5x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{3} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{3} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{3} - \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{2} + \frac{2}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 3\pi x}{3} + \frac{\sin 5\pi x}{3} + \dots \right);$ $4) \frac{1}{\pi} \left(\sin \pi x + \frac{\sin 3\pi x}{3} + \frac{\sin 3\pi x}{$

Часть В

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{4n^2 x^2}$ в точке x = 1.
- **В2.** Вычислите сумму ряда $\sum_{n=2}^{\infty} \frac{(x+1)^n}{n(n^2-1)}$ в точке x=0.
- **В3.** Вычислите $f^{(5)}(0)$, если $f(x) = x\sqrt[4]{1+x^2}$, используя разложение f(x) в ряд Маклорена.
- **В4.** Вычислите $\sqrt[3]{28}$ с точностью до 0,0001.

- **В5.** Вычислите $\int \sqrt{x} \sin x dx$ с точностью до 0,001.
- **В6.** Вычислите $\int_{2}^{2} \frac{1-e^{-x^{2}}}{x} dx$ с точностью до 0,0001.
- **В7.** Вычислите a_1 коэффициент Фурье 2π -периодической функции

$$f(x) = \begin{cases} 1, \text{ если } x \in \left(-\frac{3\pi}{2}; -\frac{\pi}{2}\right], \\ 0, \text{ если } x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right]. \end{cases}$$

В8. Вычислите b_1 – коэффициент Фурье 2π -периодической функции

$$f(x) = \begin{cases} -\frac{1}{2}, \text{ если } x \in (-\pi; 0], \\ 0, \text{ если } x \in (0; \pi]. \end{cases}$$

В9. Вычислите a_0 – коэффициент Фурье периодической с периодом $\overline{T=4}$

функции
$$f(x) = \begin{cases} 1, \text{ если } x \in (-2; -1], \\ 0, \text{ если } x \in (-1; 1], \\ 2, \text{ если } x \in (1; 2]. \end{cases}$$

В10. Вычислите b_2 – коэффициент Фурье периодической с периодом T=2

функции
$$f(x) = \begin{cases} 0, \text{ если } x \in (-1; 0], \\ x, \text{ если } x \in (0; 1]. \end{cases}$$

Часть С

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Закончите верно утверждение:

Для исследования фунционального ряда $\sum_{n=1}^{\infty} u_n(x)$ на абсолютную сходи-

мость по признаку Коши находят...

1)
$$\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|};$$

$$2) \lim_{n\to\infty} \sqrt{|u_n(x)|}.$$

1)
$$\lim_{n \to \infty} \frac{|u_{n+1}(x)|}{|u_n(x)|}$$
; 2) $\lim_{n \to \infty} \sqrt{|u_n(x)|}$. 3) $\lim_{n \to \infty} \sqrt{\frac{|u_{n+1}(x)|}{|u_n(x)|}}$; 4) $\lim_{n \to \infty} \sqrt{|u_n(x)|}$.

4)
$$\lim_{n\to\infty} \sqrt[n]{u_n(x)}.$$

 ${\bf C2.}$ Укажите формулу нахождения радиуса сходимости r степенного ряда

$$\sum_{n=0}^{\infty} c_n x^n:$$

$$1) r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$$

$$2) r = \lim_{n \to \infty} \sqrt[n]{|c_n|};$$

1)
$$r = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$$
; 2) $r = \lim_{n \to \infty} \sqrt[n]{|c_n|}$; 3) $r = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$; 4) $r = \lim_{n \to \infty} \frac{1}{\sqrt{|c_n|}}$.

$$4) r = \lim_{n \to \infty} \frac{1}{\sqrt{|c_n|}}.$$

С3. Укажите неверную формулу:

1)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbf{R};$$

2)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbf{R};$$

3)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, \quad x \in (-1;1];$$

4)
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \dots + \frac{\alpha(\alpha-1)\cdot\dots\cdot(\alpha-n+1)}{n}x^n + \dots$$
, $x \in (-1;1)$.

С4. Укажите формулу вычисления коэффициента Фурье a_0 для

 2π -периодической функции f(x):

1)
$$a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx dx;$$
 2) $a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx;$

2)
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx;$$

3)
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$
; 4) $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$.

4)
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$
.

C5. Укажите ряд Фурье для четной функции f(x):

1)
$$\sum_{n=1}^{\infty} a_n \cos nx$$
, где $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$;

2)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
, где $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$;

3)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
, где $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$;

4)
$$\sum_{n=1}^{\infty} a_n \cos nx$$
, где $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$.

Тема 14. Теория функций комплексной переменной

TECT № 14.1.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА		
А1. Вычислите $(z_1 + z_2)(z_1 - z_2)$, если $z_1 = 1 - i$, $z_2 = -2 - 3i$.	1) 5-14 <i>i</i> ; 2) -11-14 <i>i</i> ; 3) 5-8 <i>i</i> ; 4) -11-8 <i>i</i> .		
	1) $-\frac{3}{4}i$; 2) $\frac{3}{4}i$; 3) $-\frac{3}{4}$; 4) $\frac{3}{4}$.		
А3. Найдите $x^3 + 2y$ ($x, y \in \mathbb{R}$), если $x, y - pe$ - шение уравнения $x - 4i + i(2x + y) = 2 + i$.	1) 2; 2) 8; 3) 10; 4) 9.		
А4. Вычислите $Im(2+i)^3 + Re(i-1)^4$.	1) 15; 2) -4+11 <i>i</i> ; 3) 7; 4) 9.		
А5. Вычислите $i^{100} + i^{81} + i^{42} + i^{35}$.	1) <i>i</i> ; 2) 0; 3) 1+ <i>i</i> ; 4) - <i>i</i> .		
А6. Вычислите $\left \frac{\sqrt{2}-i}{\sqrt{2}+i} \right $.	1) $\frac{1}{3}$; 2) $\frac{2\sqrt{2}}{3}$; 3) 1; 4) $\frac{1-2\sqrt{2}}{3}$.		
А7. Вычислите $\arg\left(\frac{1+i}{\sqrt{3}-i}\right)$.	1) $\frac{\pi}{12}$; 2) $\frac{5\pi}{12}$; 3) $\frac{7\pi}{12}$; 4) $-\frac{\pi}{12}$.		
А8. Вычислите $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{200}$.	1) $\frac{\sqrt{3}}{2} + \frac{1}{2}i;$ 2) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i;$ 3) $\frac{1}{2} + \frac{\sqrt{3}}{2}i;$ 4) $\frac{1}{2} - \frac{\sqrt{3}}{2}i.$		
А9. Найдите корень z_0 уравнения $z^3 + 1 - i = 0$, если $\text{Re } z_0 > 0$, $\text{Im } z_0 < 0$.	1) $\sqrt[6]{2}e^{\frac{19\pi}{12}i}$; 2) $\sqrt[6]{2}e^{\frac{-19\pi}{12}i}$; 3) $\sqrt[6]{2}e^{\frac{11\pi}{12}i}$; 4) $\sqrt[6]{2}e^{\frac{\pi}{4}i}$.		

A10. Найдите сумму корней уравнения $z^4 - 4z^3 + 6z^2 - 4z - 15 = 0$.	1) 4+4 <i>i</i> ; 2) 0; 3) 4-4 <i>i</i> ; 4) 4.
А11. Найдите образ точки (1;1) при отображении $w = \frac{1}{z}$.	1) $\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right);$ 2) $\left(\frac{1}{2}; \frac{1}{2}\right);$ 3) $\left(\frac{1}{2}; -\frac{1}{2}\right);$ 4) (1;1).
А12. Вычислите $f\left(\frac{4\pi}{3}\right)$, если $f(z) = 2e^{iz}$.	1) $1+i\sqrt{3}$; 2) $\sqrt{3}+i$; 3) $-1-i\sqrt{3}$; 4) $-\sqrt{3}-i$.
А13. Вычислите $\lim_{n\to\infty} \left(\frac{8n-3}{4n+1} - i \frac{6n+1}{3n+2} \right)$.	1) 2; 2) 2-2 <i>i</i> ; 3) 0; 4) 4.
А14. Вычислите $\lim_{n\to\infty}e^{-i\left(\frac{3\pi}{2}+\frac{1}{n}\right)}$.	1) <i>i</i> ; 2) – <i>i</i> ; 3) 1; 4) –1.
A15. Вычислите $\lim_{n\to\infty} \left(\frac{2+i}{5}\right)^n$.	1) 1; 2) e ; 3) 0; 4) ∞ .

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

В1. Найдите модуль 3-го члена последовательности (z_n) , если $z_n = (1-i)^n$.

B2. Найдите Im z, если
$$z = \lim_{n \to \infty} \left(\frac{2n}{n^3 + 2} + i \frac{3n^2 + 2n + 1}{n^2 + 4} \right)$$
.

В3. Найдите модуль предела последовательности (z_n) , если

$$z_n = \frac{(n+2)! + (n+1)!}{(n+3)!} + i \frac{(n+1)!}{n! + (n+1)!}.$$

В4. Найдите модуль предела последовательности (z_n) , если

$$z_n = \left(\sqrt{9n^2 - 2n} - 3n\right) - i\frac{2n - 3}{\sqrt{4n^2 + 7}}.$$

В5. Найдите z^2 , если $z = \lim_{n \to \infty} n \sin \frac{i}{n}$.

- **В6.** Вычислите $f\left(\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i\right)$ при отображении $f(z) = z^4$.
- **В7.** Найдите действительную часть числа f(1-2i), если $f(z) = 2\bar{z} + \frac{1+i}{z}$.
- **В8.** Вычислите $\left| \frac{x^2 y^2 + 2ixy}{xy\sqrt{2} + i\sqrt{x^4 + y^4}} \right|$
- **В9.** Вычислите $|\sin z|$, если $z = \pi + i \ln(2 + \sqrt{5})$.
- **В10.** Найдите радиус окружности $\left| \frac{z-3}{z+1} \right| = 2$.

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Закончите определение:

Множество точек z комплексной плоскости называется ε-окрестностью $(\varepsilon > 0)$ точки z_0 , если...

1)
$$|z-z_0| > \varepsilon$$

2)
$$|z-z_0| < \varepsilon$$
;

3)
$$|z-z_0|=\varepsilon$$

1)
$$|z-z_0| > \varepsilon$$
; 2) $|z-z_0| < \varepsilon$; 3) $|z-z_0| = \varepsilon$; 4) $|z-z_0| \ge \varepsilon$.

С2. Закончите определение:

Множество точек комплексной плоскости называется областью, если оно является...

- 1) открытым и связным;
- 2) открытым и многосвязным;
- 3) замкнутым и связным;
- 4) замкнутым и многосвязным.

С3. Закончите верно утверждение:

Условие $\lim_{n\to\infty} |z_n| = |w|$ по отношению к условию $\lim_{n\to\infty} |z_n| = w$ является...

- 1) достаточным;
- 2) необходимым и достаточным;
- 3) необходимым;
- 4) равносильным.

С4. Укажите неверное утверждение:

- 1) последовательность (z_n) называется сходящейся $\kappa \infty$, если для любого E>0 существует число N такое, что для всех $n \ge N$ выполняется $|z_n| > E$;
- 2) $\lim_{n\to\infty} z_n = \infty$ тогда и только тогда, когда $\lim_{n\to\infty} \left|z_n\right| = \infty$;
- 3) $\lim_{n\to\infty} z_n = \infty \ (z_n \neq 0)$ тогда и только тогда, когда $\lim_{n\to\infty} \frac{1}{z_n} = 0$;
- 4) $\lim_{n\to\infty} z_n = \infty$ тогда и только тогда, когда $\lim_{n\to\infty} \arg z_n = \infty$.

С5. Закончите определение:

B формуле $\Delta f(z) = A\Delta z + \alpha(z, \Delta z)\Delta z$ дифференциалом функции f(z) называется величина...

- 1) $\Delta f(z)$;
- 2) $\alpha(z, \Delta z)\Delta z$;
- 3) $A\Delta z$;
- 4) Δz .

TECT № 14.1.2

Часть А

К каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1–A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА			
А1. Найдите Re w , если $w = z^2 + i$.	1) $x^2 + y^2$; 2) $x^2 - y^2$; 3) $x + y$; 4) $y^2 - x^2$.			
$\Delta 2$ Haйпите Im 70 если 70 —	1) $\frac{x^2 - y^2}{x^2 + y^2}$; 2) $\frac{2xy}{x^2 + y^2}$;			
Z Z	3) $\frac{2ixy}{x^2 + y^2}$; 4) $i\frac{x^2}{y^2}$.			
А3. Найдите образ точки $z_0 = 2 + i$ при отобра-				
жении $w = \frac{1}{\overline{z}}$.	3) $\frac{3}{5}i$; 4) $\frac{2}{3} + \frac{1}{3}i$.			
А4. Найдите алгебраическую форму комплекс-	1) $\ln 2 + i\frac{\pi}{4}$; 2) $\frac{1}{2} \ln 2 - i\frac{\pi}{4}$;			
ного числа $ln(1+i)$.	3) $\ln \sqrt{2}$; 4) $\frac{1}{2} \ln 2 + i \frac{\pi}{4}$.			

$(2) \frac{1}{2};$
; 4) $\sqrt{2}$.
$\frac{x+y+x^2-y^2}{(1+x)^2+y^2};$
$\frac{1+x-y-2xy}{(1+x)^2+y^2}$;
$\frac{(x+y)(1+x-y)}{(1+x)^2+y^2};$
$\frac{x+y}{x^2+y^2}.$
; 2) -1; 4) - <i>i</i> ;
2z; 2) $x^2 + 2x$; 4) z^2 .
$ z =1;$ 2) $ z =\frac{1}{2};$
$ z = \frac{1}{4};$ 4) $ z = 2.$
$x^{2} + y^{2} = 2;$ $x^{2} - y^{2} = 3;$
$c^2 - y = 3,$ $c^2 + (y-1)^2 = 3;$
$c^2 + (y+1)^2 = 3.$
$z=\overline{z}$;
$(z + \overline{z} + i(z - \overline{z}) = 0;$
$z + \overline{z} = 0;$ $z - \overline{z} = 0.$
$-\frac{\pi}{2}i;$ 2) $\frac{\pi}{2};$
2; 4) 1.
; 2) $\frac{8}{3}$; ; 4) $\frac{4}{3}$.

А14. Найдите множество точек плоскости, удовлетворяющих уравнению $z + \overline{z} = 0$.	1) ось <i>Oy</i> ; 3) {(0;0)};	2) ось <i>Ox</i> ; 4) ∅.
	1) 1; 2) 3; 3) 4; 4) 10	

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

В1. Найдите квадрат расстояния между точками, удовлетворяющих условиям $\left|\frac{z-i}{z+1}\right|=1, \ \left|\frac{z+1}{z+i}\right|=2.$

- **В2.** Найдите количество корней уравнения $\sin z = 2$ в круге $|z 1 i| \le 1$.
- **В3.** Вычислите $\lim_{z\to 1} \frac{2z+1}{z+2}$.
- **В4.** Вычислите $\lim_{z \to 4+3i} |z|$.
- **В5.** Найдите w^2 , если $w = \lim_{z \to i} \frac{z^2 3iz 2}{z i}$
- **В6.** Вычислите $\lim_{z\to 0} \frac{\sin 4z}{2z}$
- **В7.** Вычислите $\lim_{z \to -\frac{\pi}{2}i} \frac{e^{2z} + 1}{e^z i}$
- **В8.** Найдите |f'(2-i)|, если $f(z) = z^3$.
- **В9.** Найдите $|f'(i)|^2$, если $f(z) = \frac{5z^3 4z^2 + z}{z 1}$.
- **В10.** Найдите ${\rm Im}\, w$, если $w=\int\limits_{\Gamma}({\rm Re}\,z+{\rm Im}\,z)dz$, Γ отрезок прямой от точки $z_1=0$ до точки $z_2=1+2i$.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите верную формулу:

1)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
; 2) $\cos z = \frac{e^{iz} + e^{-iz}}{2i}$;

2)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2i}$$
;

3)
$$\cos z = \frac{e^z + e^{-z}}{2}$$
; 4) $\cos z = \frac{e^z + e^{-z}}{2i}$.

4)
$$\cos z = \frac{e^z + e^{-z}}{2i}$$
.

C2. Укажите условия Коши – Римана для функции f(z) = u(x, y) + iv(x, y) в точке z = x + iy:

1)
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}; \end{cases}$$

2)
$$\begin{cases} \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}; \end{cases}$$

3)
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

1)
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}; \end{cases}$$
2)
$$\begin{cases} \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}, \\ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}; \end{cases}$$
3)
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}; \end{cases}$$
4)
$$\begin{cases} \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}; \end{cases}$$

 ${f C3.}$ Укажите формулу уравнения Лапласа для гармонической в области D функции u(x, y):

1)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$
 2) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0;$ 3) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0;$ 4) $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0.$

2)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

3)
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$$

4)
$$\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

С4. Укажите формулу вычисления коэффициента растяжения k в точке z_0 при отображении w = f(z):

1) $k = f'(z_0)$; 2) $k = |f'(z_0)|$; 3) $k = \arg f(z_0)$; 4) $k = \arg f'(z_0)$.

1)
$$k = f'(z_0)$$

2)
$$k = |f'(z_0)|$$
;

3)
$$k = \arg f(z_0)$$
;

4)
$$k = \arg f'(z_0)$$

С5. Укажите формулу вычисления производной аналитической функции f(z) = u(x, y) + iv(x, y) в точке z = x + iy:

1)
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x};$$

2)
$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x};$$

1)
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x};$$
 2) $f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x};$
3) $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y};$ 4) $f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}.$

4)
$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$$
.

TECT № 14.2.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА		
А1. Найдите аналитическую функцию $f(z)$, если $u(x, y) = 2e^x \cos y$ — ее действительная часть, $f(0) = 2$.	1) e^z ; 2) $\cos z$; 3) $2e^z$; 4) $2\cos z$.		
A2. Найдите аналитическую функцию $f(z)$, если $v(x, y) = x + y$ – ее мнимая часть, $f(0) = 0$.	1) $(1+i)z$; 2) z ; 3) zi ; 4) $(1-i)z$.		
А3. Определите, какая из указанных функций не является гармонической:	1) $z = x^{2} + 2x - y^{2}$; 2) $z = \frac{x}{x^{2} + y^{2}}$; 3) $z = \ln(x^{2} + y^{2})$; 4) $z = x^{2} + y^{2}$.		
А4. Вычислите коэффициент растяжения в точ- ке $z_0 = \sqrt{2} - i\sqrt{2}$ при отображении $w = z^2$.	1) 4; 2) $\sqrt{2}$; 3) 2; 4) $2\sqrt{2}$.		
А5. Найдите угол поворота при отображении $w = z^2$ в точке $z_0 = \sqrt{2} + i\sqrt{2}$.	1) $\frac{\pi}{4}$; 2) $-\frac{\pi}{4}$; 3) $\frac{3\pi}{4}$; 4) $-\frac{3\pi}{4}$.		
А6. Вычислите $1^{\sqrt{2}}$.	1) $e^{\sqrt{2\pi}ki}$, $k \in \mathbb{Z}$; 2) $e^{\sqrt{2}}$; 3) $e^{2\sqrt{2\pi}ki}$, $k \in \mathbb{Z}$; 4) 1.		
А7. Найдите $a+b+c$, если известно, что функция $f(z)=x+ay+i(bx+cy)$ – аналитическая.	1) 0; 2) 1; 3) 2; 4) 3.		
А8. Вычислите $f'(1-i)$, если $f(z) = \frac{1}{3}z^3$.	1) 2+2 <i>i</i> ; 2) 2-2 <i>i</i> ; 3) -2 <i>i</i> ; 4) 2.		
А9. Найдите $ f'(1+2i) $, если	1) 15; 2) $6\sqrt{5}$;		
$f(z) = x^3 - 3xy^2 + i(3x^2y - y^3).$	3) $3\sqrt{13}$; 4) $3\sqrt{17}$.		
А10. Вычислите $f'\left(\frac{2-3i}{1+i}\right)$, если $f(z) = z^2 + 2z - 3$.	1) 5- <i>i</i> ; 2) 1-5 <i>i</i> ; 3) 1+5 <i>i</i> ; 4) -5 <i>i</i> .		

А11. Решите уравнение $2\ln(z-i) = \pi i$.	1) $\left\{\frac{1}{2}\right\}$; 2) $\left\{2i\right\}$; 3) $\left\{0\right\}$; 4) $\left\{2i;0\right\}$.
A12. Найдите область, в которой функция $f(z) = z \operatorname{Im} z$ является аналитической.	 вся комплексная плоскость; вся комплексная плоскость, кроме точки z = 0; ни в одной точке комплексной плоскости; вся комплексная плоскость, кроме точек z₁ = 0, z₂ = i.
А13. Найдите разложение функции $f(z) = \frac{1}{z-2}$ в окрестности точки $z = 0$.	1) $-\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$, $ z < 2$; 2) $\sum_{n=0}^{\infty} z^n$, $ z < 1$; 3) $\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$, $ z < 1$; 4) $\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$, $ z < 2$.
А14. Вычислите радиус сходимости ряда $\sum_{n=0}^{\infty} \left(\frac{iz}{3}\right)^{n}.$	1) 3; 2) $\frac{1}{3}$; 3) ∞ ; 4) 0.
А15. Вычислите радиус сходимости ряда $\sum_{n=0}^{\infty} (1+i)^n z^n.$	1) 1; 2) $\frac{\sqrt{2}}{2}$; 3) $\sqrt{2}$; 4) 2.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

содержание задания

В1. Вычислите $\int_{1}^{i} \frac{\ln z}{z} dz$ по дуге окружности |z| = 1.

- **B2.** Вычислите $\int ze^{z^2}dz + \frac{1}{2}.$
- **В3.** Найдите w^2 , если $w = \int_{|z|=2}^{\infty} \frac{zdz}{z^2 + 4z + 3}$.
- **В4.** Найдите |w|, если $w = \int_{|z|=1}^{\infty} \frac{e^z dz}{z^2 + 2z}$.
- **В5.** Вычислите $\frac{w}{i}$, если $w = \int_{|z|=4}^{\infty} \frac{e^z 1}{z^2 + z} dz$.
- **В6.** Вычислите *iw*, если $w = \int_{|z|=1}^{\infty} \frac{\cos z}{z^3} dz$.
- **В7.** Найдите модуль суммы ряда $\sum_{i=1}^{\infty} \frac{(-1)^n}{(3i)^n}$.
- **В8.** Найдите коэффициент при $(z+1)^2$ в разложении в ряд Тейлора по степеням z+1 функции $f(z) = \frac{1}{3z+2}$.
- **В9.** Вычислите площадь круга, в котором расходится ряд $\sum_{n=0}^{\infty} \frac{i^{n+1}}{n^n}$
- В10. Вычислите радиус сходимости ряда, суммой которого является функция $f(z) = \frac{1}{3 - 2z}.$

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **C1.** Укажите период функции $f(z) = e^z$ $(z \in \mathbb{C})$:
- 1) π :
- 2) 2i;
- 3) πi ;
- 4) $2\pi i$.
- С2. Укажите формулу Эйлера:
- 1) $e^{i\varphi} = \cos\varphi i\sin\varphi$; 2) $e^{i\varphi} = \cos\varphi + i\sin\varphi$; 3) $e^{i\varphi} = \sin\varphi + i\cos\varphi$; 4) $e^{i\varphi} = \sin\varphi i\cos\varphi$.

С3. Укажите верное равенство:

- 1) $\cos iz = \operatorname{ch} z$;
- 2) $\cos iz = i \operatorname{ch} z$;
- 3) $\cos iz = -\cosh z$;
- 4) $\cos iz = -i \operatorname{ch} z$.

С4. Укажите верное равенство:

- 1) Ln $z = \ln |z| + i \arg z + 2\pi ki$, $k \in \mathbb{Z}$;
- 2) Ln $z = \ln |z| + i \arg z + \pi ki, k \in \mathbb{Z}$;
- 3) Ln $z = \ln z + 2\pi ki$, $k \in \mathbb{Z}$;
- 4) Ln $z = \ln |z| + i \arg z + 2\pi k$, $k \in \mathbb{Z}$.

С5. Закончите верно утверждение:

Если f(z) – аналитическая функция в (n+1)-связной области D и на ее границе, состоящей из положительно ориентированных внешнего контура Γ и внутренних контуров Γ_k $(k=\overline{1,n}), mo...$

1)
$$\int_{\Gamma} f(z)dz = \frac{1}{2\pi i} \sum_{k=1}^{n} \int_{\Gamma_k} f(z)dz;$$
 2)
$$\int_{\Gamma} f(z)dz = \frac{n!}{2\pi i} \sum_{k=1}^{n} \int_{\Gamma_k} f(z)dz;$$

2)
$$\int_{\Gamma} f(z)dz = \frac{n!}{2\pi i} \sum_{k=1}^{n} \int_{\Gamma} f(z)dz;$$

3)
$$\int_{\Gamma} f(z)dz = \sum_{k=1}^{n} \int_{\Gamma_{k}} f(z)dz;$$

4)
$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \int_{\Gamma_{k}} f(z)dz.$$

TECT № 14.2.2

Часть

К каждому заданию теста А даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (А1–А15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	варианты ответа
А1. Найдите удвоенную сумму ряда $\sum_{n=1}^{\infty} \frac{2^n + i \cdot 3^n}{6^n}.$	1) 1+2 <i>i</i> ; 2) 3+4 <i>i</i> ; 3) 3; 4) 0.
А2. Найдите удвоенный квадрат радиуса сходимости ряда $\sum_{n=1}^{\infty} (-2)^n \frac{z^{2n}}{n^2}$.	1) 1; 2) 2; 3) 4; 4) 8.
А3. Вычислите $\int_{\Gamma} (1+i-z)dz$, если Γ – дуга параболы $y=x^2$ от точки $z_1=0$ до точки $z_2=1+i$.	1) $2+i$; 2) i ; 3) $2+3i$; 4) $2+2i$.
А4. Вычислите $\int_{\Gamma} (z^2 + z) dz$, если $\Gamma -$ дуга окружности $ z = 1$, $0 \le \arg z \le \pi$.	1) $-\frac{2}{3}$; 2) 0; 3) $\frac{4}{3}i$; 4) $-\frac{2}{3}(1+i)$.

А5. Вычислите $\int_{1}^{i} (3z^{5} - 2z^{4} + z^{2}) dz.$	1) $\frac{4}{3} - i$; 3) $-\frac{1}{3}(1 + i)$	4 <i>i</i>);	2) 1+ <i>i</i> ; 4) -1+4 <i>i</i> .
А6. Вычислите $\int_{0}^{i} z \cos z dz.$	1) 1; 3) 0;		
А7. Вычислите $\int_{ z =2} \frac{dz}{z-5}.$	 2πi; ln 3; 		
А8. Вычислите $\int_{ z-i =3} \frac{dz}{z^2 + 9}.$	1) $-\frac{\pi}{3}$; 3) $\frac{2\pi}{3}$;	2) 0; 4) $\frac{\pi}{3}$.	
А9. Вычислите $\int_{\Gamma} \frac{z^3 + 5z - 4}{(1 - z)^3} dz$, если Γ – дуга	1) -6π;	2) -62	πi;
эллипса $\frac{x^2}{4} + \frac{y^2}{2} = 1$.	3) –6 <i>i</i> ;	4) 6π	<i>t</i> .
А10. Вычислите $\int_{ z =3}^{} \frac{z^2 - 5z + 8}{z - 2} dz.$	1) 4; 3) π <i>i</i> ;		
А11. Найдите произведение порядков нулей	1) 1;	2) 2.	
функции $f(z) = z^2 \sin z$.	3) 3;		
A12. Найдите порядок нуля $z = 0$ функции	1) 1;	2) 2:	
$f(z) = z^2 (e^{z^2} - 1).$	3) 3;		
А13. Найдите количество простых полюсов	1) 1.	2) 2.	
функции $f(z) = \frac{1}{z - z^3}$.	1) 1; 3) 3;		
A14. Вычислите вычет в точке $z = 0$ функции	1) 0.	2) 1.	
$f(z) = \frac{e^z - 1}{z^2 + z}.$	1) 0; 3) <i>i</i> ;		
А15. Вычислите вычет в бесконечно удаленной	1)_1.	2) 1.	
точке функции $f(z) = \frac{1}{1+z^4}$.	1) -1; 3) 0;		

Выполните задание. В таблице ответов под номером задания (В1-В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Найдите произведение порядков нулей функции $f(z) = z^3 \cos z$.
- **B2.** Найдите сумму изолированных особых точек функции $f(z) = \frac{\sin z}{z^3 + z^2 z 1}$.
- **B3.** Найдите произведение вычетов в особых точках функции $f(z) = \frac{1}{z^2 + 1}$.
- **В4.** Вычислите вычет в точке z = 0 функции $f(z) = z^3 e^{\frac{z}{z}}$.
- **В5.** Вычислите вычет в точке z = -i функции $w = \frac{1-z}{(z+i)(z-3)^3}$
- **В6.** Вычислите $\underset{z=\infty}{\text{res}} \frac{z^3+1}{z^5-1}$.
- **В7.** Вычислите $\frac{1}{2\pi i} \int_{|z|=2}^{\infty} \frac{z+2}{z^2-5z+4} dz$.
- **В8.** Вычислите $\int_{|z|=4} \frac{(1-2i)z^3}{(z-1)^2(z+i)} dz.$
- **В9.** Вычислите $\int_{0}^{2\pi} \frac{dx}{(2 + \cos x)^2}$ с помощью вычетов.
- **В10.** Вычислите $\int_{-1}^{+\infty} \frac{dx}{(1+x^2)}$

Часть С

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите верное равенство:

- 1) Arcsin $z = -i\operatorname{Ln} i\left(z + \sqrt{z^2 1}\right);$ 2) Arcsin $z = -i\operatorname{Ln}\left(z + \sqrt{z^2 1}\right);$ 3) Arcsin $z = \frac{i}{2}\operatorname{Ln} i\left(z + \sqrt{z^2 1}\right);$ 4) Arcsin $z = \operatorname{Ln}\left(z + \sqrt{z^2 1}\right).$

С2. Укажите интегральную формулу Коши:

1)
$$f^{(n)}(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}};$$
 2) $f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}};$

2)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}};$$

3)
$$f^{(n)}(z_0) = \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}};$$

4)
$$f^{(n)}(z_0) = 2\pi i \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}}$$
.

С3. Укажите ряд Лорана функции комплексной переменной f(z):

1)
$$\sum_{n=0}^{\infty} c_n (z-a)^n;$$

1)
$$\sum_{n=0}^{\infty} c_n (z-a)^n$$
; 2) $\sum_{n=-\infty}^{\infty} c_n (z-a)^n$;

3)
$$\sum_{n=0}^{\infty} c_n (z-a)^{-n};$$

3)
$$\sum_{n=0}^{\infty} c_n (z-a)^{-n};$$
 4) $\sum_{n=-\infty}^{0} c_n (z-a)^n.$

С4. Закончите верно утверждение:

Изолированная особая точка а функции комплексной переменной является полюсом, если...

- 1) главная часть разложения этой функции в ряд Лорана содержит бесконечное число членов;
- 2) правильная часть разложения этой функции в ряд Лорана содержит бесконечное число членов;
- 3) правильная часть разложения этой функции в ряд Лорана содержит конечное число членов;
- 4) главная часть разложения этой функции в ряд Лорана содержит конечное число членов.

С5. Закончите верно утверждение:

Eсли функция f(z) является аналитической на замкнутой положительно ориентированной кривой Γ , ограничивающей область D, и всюду внутри области, кроме конечного числа особых точек $z_1, z_2, ..., z_n$, то...

1)
$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res }} f(z);$$
 2) $\int_{\Gamma} f(z)dz = 2\pi \sum_{k=1}^{n} f(z);$

2)
$$\int_{\Gamma} f(z)dz = 2\pi \sum_{k=1}^{n} f(z)$$
;

3)
$$\int_{\Gamma} f(z)dz = \frac{1}{2\pi i} \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z);$$
 4) $\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} f(z).$

4)
$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} f(z).$$

Комбинированные тесты

TECT № 1.1

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	варианты ответа
А1. Измените порядок интегрирования $\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x, y) dy.$	1) $\int_{0}^{2} dx \int_{0}^{2-x} f(x, y) dy;$ 2) $\int_{0}^{1} dy \int_{y}^{2-y} f(x, y) dx;$ 3) $\int_{0}^{1} f(x, y) dy \int_{0}^{2-y} dx;$ 4) $\int_{x}^{2-x} dy \int_{0}^{2} f(x, y) dx.$
А2. Вычислите $\int_{0}^{1} dx \int_{0}^{2} (x+y)dy$.	1) 2; 2) 3; 3) -2; 4) -3.
А3. Вычислите площадь фигуры, ограниченной линиями $y = x^2$, $y = 1$.	1) $\frac{3}{4}$; 2) $\frac{2}{3}$; 3) $-\frac{2}{3}$; 4) $\frac{4}{3}$.
А4. Вычислите $\int_{0}^{1} dx \int_{0}^{2} dy \int_{0}^{3} xy dz$.	1) 3; 2) $\frac{5}{2}$; 3) $\frac{3}{2}$; 4) 4.
А5. Вычислите $\iiint_T z dx dy dz$, если T – область,	1) 3π ; 2) $\frac{3\pi}{2}$;
ограниченная поверхностями $x^2 + y^2 = 1$, $z = 0$, $z = 2$.	3) $\frac{2\pi}{3}$; 4) 2π .
А6. Вычислите объем тела, ограниченного поверхностями $x+y+z-3=0$, $x=0$, $y=0$, $z=0$.	1) $\frac{2}{9}$; 2) $\frac{9}{2}$; 3) $-\frac{9}{2}$; 4) 9.

А7. Вычислите $\int_{L} 4xdl$, если L – дуга параболы $y = x^2$ от точки $O(0;0)$ до точки $A(1;1)$. А8. Вычислите $\int_{S} xdydz + ydxdz + zdxdy$, если $\int_{S} \frac{5\sqrt{5}}{3}$; $\int_{S} \frac{5}{3}$; $\int_{S} \frac{1}{3}(5\sqrt{5}-1)$. А8. Вычислите $\int_{S} xdydz + ydxdz + zdxdy$, если $\int_{S} \frac{4\pi}{3}$; $\int_{S} \frac{1}{3}(5\sqrt{5}-1)$. А9. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$. 10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$. А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$. А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{n!}$. 11. Сходится; $\int_{S} x(x) dx = x(x) dx $		1
А8. Вычислите $\iint_{\sigma} x dy dz + y dx dz + z dx dy$, если σ – внешняя сторона части сферы $x^2 + y^2 + z^2 = 4$, $y + z^2 = $	А7. Вычислите $\int 4xdl$, если L – дуга параболы	_
σ — внешняя сторона части сферы $x^2 + y^2 + z^2 = 4$, $y^2 + z^2 = 4$	$y = x^2$ от точки $O(0;0)$ до точки $A(1;1)$.	3) $\frac{5\sqrt{5}}{3}$; 4) $\frac{1}{3}(5\sqrt{5}-1)$.
σ – внешняя сторона части сферы $x^2+y^2+z^2=4$, 3) 8π ; 4) π . А9. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$. 2 $\frac{1}{3}$; 3 $\frac{1}{3}$; 4) $\frac{1}{6}$. А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$. 2 $\frac{1}{2}$; 3 $\frac{1}{3}$; 4) $\frac{1}{6}$. A11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{n^2}$. 2 $\frac{1}{3}$ сходится; 2 $\frac{1}{3}$ сходится $\frac{1}{3}$	А8. Вычислите $\iint_{S} x dy dz + y dx dz + z dx dy, если$	1) $\frac{4\pi}{\pi}$; 2) 4π ;
А9. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$. 1) 1; 2) $\frac{1}{2}$; 3) $\frac{1}{3}$; 4) $\frac{1}{6}$. А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$. 1) сходится; 2) расходится; 3) сходится абсолютно; 4) сходится условно. А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{n^3}$. 1) сходится; 2) расходится условно. 1) сходится условно; 4) расходится условно; 3) сходится условно; 3) расходится. А12. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{2^{n+1}}$. 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится. А13. Найдите область сходимости ряда $\sum_{n=1}^{\infty} 4^n n^2 (x-1)^n$, 1) $\left(-\frac{1}{4}; \frac{1}{4}\right)$; 2) $\left(\frac{3}{4}; \frac{5}{4}\right)$; 3) $(-4; 4)$; 4) $(-3; 5)$. 1) $\frac{e^2+1}{2e}\cos 5 - i\frac{e^2-1}{2e}\sin 5$; 2) $\frac{e^2+1}{2e}\cos 5 - i\frac{e^2-1}{2e}\sin 5$; 4) $\frac{e^2+1}{2e}\cos 5 - i\frac{e^2-1}{2e}\sin 5$;		
A10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$.2) расходится; 3) сходится абсолютно; 4) сходится условно.A11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{n^3}$.1) сходится; 2) сходится абсолютно; 3) сходится условно; 4) расходится.A12. Исследуйте сходимость ряда1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится.A13. Найдите область сходимости ряда1) $\left(-\frac{1}{4}; \frac{1}{4}; 2\right) \left(\frac{3}{4}; \frac{5}{4};$ 3) $(-4; 4);$ 4) $(-3; 5)$.A14. Вычислите $\cos(5-i)$.1) $\frac{e^2+1}{2e}\cos 5-i\frac{e^2-1}{2e}\sin 5;$ 2) $\frac{e^2+1}{2e}\cos 5-i\frac{e^2+1}{2e}\sin 5;$ 4) $\frac{e^2+1}{2e}\cos 5-i\frac{e^2+1}{2e}\sin 5;$ 4) $\frac{e^2+1}{2e}\cos 5+i\frac{e^2-1}{2e}\sin 5.$	А9. Вычислите сумму ряда $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$.	1) 1; 2) $\frac{1}{2}$; 3) $\frac{1}{3}$; 4) $\frac{1}{6}$.
A11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{n^3}$.2) сходится абсолютно; 3) сходится условно; 4) расходится.A12. Исследуйте сходимость ряда1) сходится абсолютно; 2) сходится условно; 	А10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{n(n+4)}{2n-1}$.	2) расходится; 3) сходится абсолютно;
$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{2^{n+1}}.$ $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{2^{n+1}}.$ $2) \operatorname{сходится условно;}$ 3) расходится; 4) не сходится. $1) \left(-\frac{1}{4}; \frac{1}{4}\right); \qquad 2) \left(\frac{3}{4}; \frac{5}{4}\right);$ 3) $(-4; 4); \qquad 4) (-3; 5).$ $1) \frac{e^2 + 1}{2e} \cos 5 - i \frac{e^2 - 1}{2e} \sin 5;$ $2) \frac{e^2 + 1}{2e} \sin 5 + i \frac{e^2 - 1}{2e} \cos 5;$ 3) $\frac{e^2 - 1}{2e} \cos 5 - i \frac{e^2 + 1}{2e} \sin 5;$ 4) $\frac{e^2 + 1}{2e} \cos 5 + i \frac{e^2 - 1}{2e} \sin 5;$ 4) $\frac{e^2 + 1}{2e} \cos 5 + i \frac{e^2 - 1}{2e} \sin 5;$	А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{5^n}{n^3}$.	2) сходится абсолютно; 3) сходится условно;
$\sum_{n=1}^{\infty} 4^{n} n^{2} (x-1)^{n}.$ $\begin{vmatrix} 1 & \left(-\frac{1}{4}; \frac{1}{4}\right); & 2 & \left(\frac{1}{4}; \frac{1}{4}\right); \\ 3 & \left(-4; 4\right); & 4 & \left(-3; 5\right). \end{vmatrix}$ $\begin{vmatrix} 1 & \frac{e^{2}+1}{2e} \cos 5 - i \frac{e^{2}-1}{2e} \sin 5; \\ 2 & \frac{e^{2}+1}{2e} \sin 5 + i \frac{e^{2}-1}{2e} \cos 5; \\ 3 & \frac{e^{2}-1}{2e} \cos 5 - i \frac{e^{2}+1}{2e} \sin 5; \\ 4 & \frac{e^{2}+1}{2e} \cos 5 + i \frac{e^{2}-1}{2e} \sin 5. \end{vmatrix}$	_ ∞	2) сходится условно; 3) расходится;
A14. Вычислите $\cos(5-i)$. $2) \frac{e^2+1}{2e}\sin 5+i\frac{e^2-1}{2e}\cos 5;$ $3) \frac{e^2-1}{2e}\cos 5-i\frac{e^2+1}{2e}\sin 5;$ $4) \frac{e^2+1}{2e}\cos 5+i\frac{e^2-1}{2e}\sin 5.$	_ ∞	
1) 0. 2) 2-:	А14. Вычислите $\cos(5-i)$.	2) $\frac{e^2 + 1}{2e} \sin 5 + i \frac{e^2 - 1}{2e} \cos 5;$ 3) $\frac{e^2 - 1}{2e} \cos 5 - i \frac{e^2 + 1}{2e} \sin 5;$ 4) $\frac{e^2 + 1}{2e} \cos 5 + i \frac{e^2 - 1}{2e} \sin 5.$
А15. Вычислите $\int_{ z-2 =2} \frac{e^z dz}{(z^2+4)(z-i)}.$ $\begin{vmatrix} 1 & 0 & 2 & 2\pi i \\ 3 & \frac{1}{3}e^i & 4 & -2\pi i \end{vmatrix}.$	А15. Вычислите $\int_{ z-2 =2} \frac{e^z dz}{(z^2+4)(z-i)}.$	1) 0; 2) $2\pi i$; 3) $\frac{1}{3}e^{i}$; 4) $-2\pi i$.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\iint_D \frac{dxdy}{\sqrt{x^2+y^2}}$, если D область, ограниченная линиями $x^2+y^2=9$, x=0 ($x \ge 0$).
- **B2.** Вычислите массу тела, ограниченного плоскостями x+y+z=2, x=0, y=0, z=0, если плотность $\mu(x, y, z)=x+y$.
- **В3.** Вычислите работу силы $\bar{F} = y\bar{i} x\bar{j}$ при перемещении материальной точки вдоль линии $y = \frac{1}{x}, \ x \in [1;2].$
- **В4.** Вычислите $\iint_{\sigma} (2x+2y+2z-5)d\sigma$, если σ часть плоскости x+y+z-5=0, расположенная в первом октанте.
- **В5.** Найдите количество целых чисел, входящих в область сходимости ряда $\sum_{n=1}^{\infty} \left(\frac{2x-3}{4}\right)^{n}.$
- **В6.** Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2}$.
- **В7.** Вычислите $\int_{0}^{1} \frac{\sin 2x}{x} dx$ с точностью до 0,001.
- **В8.** Вычислите b_4 коэффициент Фурье 2π -периодической функции f(x) = x, $x \in [-\pi; \pi]$.
- **В9.** Найдите сумму вычетов в изолированных особых точках функции $f(z) = \frac{z-i}{(z+2)(z-2i)}.$
- **B10.** Найдите коэффициент при z^{-4} в разложении в ряд Лорана в окрестности точки z=0 функции $f(z)=z^2\cos\frac{1}{z}$.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите формулу вычисления площади S плоской фигуры D:

1)
$$S = \iint_D f(x, y) dx dy;$$
 2) $S = \iint_D dx dy;$
3) $S = \iint_D x dx dy;$ 4) $S = \iint_D y dx dy.$

$$2) S = \iint dx dy;$$

$$3) S = \iint_{S} x dx dy;$$

4)
$$S = \iint y dx dy$$
.

С2. Укажите формулу вычисления массы M материальной кривой L с плотностью $\mu = \mu(x, y, z)$:

1)
$$M = \int x \mu(x, y, z) dt$$

1)
$$M = \int_{L} x \mu(x, y, z) dl;$$
 2) $M = \int_{L} y \mu(x, y, z) dl;$
3) $M = \int_{L} z \mu(x, y, z) dl;$ 4) $M = \int_{L} \mu(x, y, z) dl.$

3)
$$M = \int z\mu(x, y, z)dl;$$

4)
$$M = \int \mu(x, y, z) dl.$$

С3. Укажите верное утверждение:

1) если ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится, то $\lim_{n\to\infty} a_n = 1$;

2) если
$$\lim_{n\to\infty} a_n \neq 0$$
, то ряд $\sum_{n=1}^{\infty} a_n$ расходится;

3) если
$$\lim_{n\to\infty} a_n = 0$$
, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;

4) если ряд
$$\sum_{n=1}^{\infty} a_n$$
 расходится, то $\lim_{n\to\infty} a_n = 0$.

С4. Закончите верно утверждение:

Если r (r>0) является радиусом сходимости степенного ряда $\sum c_n(x-a)^n$,

то его интервал сходимости...

1)
$$(-r; r);$$

2)
$$(a-r; a+r);$$

3)
$$(-a-r; a+r);$$
 4) $(-a+r; a+r).$

4)
$$(-a+r; a+r)$$
.

С5. Закончите верно утверждение:

Если точка а является простым полюсом функции f(z), то...

1)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} (f(z)(z-a));$$

2)
$$\operatorname{res}_{z=a} f(a) = \lim_{z \to a} f(z)$$

1)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} (f(z)(z-a));$$
 2) $\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} f(z);$ 3) $\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} (f(z)(z-a)^2);$ 4) $\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} \frac{f(z)}{z-a}.$

4)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} \frac{f(z)}{z - a}$$
.

TECT № 1.2

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Измените порядок интегрирования $\int_{0}^{2} dy \int_{\frac{y}{2}}^{y} f(x, y) dx + \int_{2}^{4} dy \int_{\frac{y}{2}}^{2} f(x, y) dx.$	1) $\int_{0}^{2} dx \int_{0}^{4} f(x, y) dy;$ 2) $\int_{0}^{2} dx \int_{x}^{2x} f(x, y) dy;$ 3) $\int_{0}^{4} dy \int_{\frac{y}{2}}^{4} f(x, y) dx;$ 4) $\int_{0}^{4} dx \int_{0}^{2x} f(x, y) dy.$
А2. Вычислите $\int_{-1}^{1} dy \int_{-1}^{1} (x^2 + y^2) dx$.	1) $\frac{8}{3}$; 2) $-\frac{8}{3}$; 3) $\frac{9}{2}$; 4) $\frac{4}{3}$.
А3. Вычислите площадь фигуры, ограниченной линиями $y = x^3$, $x = 1$, $y = 0$.	1) $\frac{1}{8}$; 2) $\frac{3}{4}$; 3) $\frac{1}{4}$; 4) $-\frac{1}{4}$.
А4. Вычислите $\int_{0}^{2} dx \int_{0}^{2} dy \int_{0}^{2} xyzdz$.	1) 16; 2) 4; 3) 8; 4) 9.
А5. Вычислите $\iint_T (x+y) dx dy dz$, если $T-$ область, ограниченная поверхностями $x = \sqrt{4-y^2}$, $z=0, \ z=5$.	1) $-\frac{40}{3}$; 2) $\frac{80}{3}$; 3) $\frac{40}{3}$; 4) $\frac{3}{80}$.
А6. Вычислите объем тела, ограниченного поверхностями $x^2 + y^2 = z$, $x^2 + y^2 = 1$, $z = 0$.	1) $\frac{\pi}{3}$; 2) $\frac{4\pi}{3}$; 3) $\frac{\pi}{2}$; 4) $\frac{3\pi}{2}$.

А7. Вычислите $\int_{L} \frac{x}{\sqrt{x^2 + y^2}} dl$, если $L -$ дуга кар-	1) 8; 2) $\frac{4}{3}$; 3) $\frac{16\sqrt{2}}{3}$; 4) $\frac{8\sqrt{2}}{3}$.
диоиды $\rho = 2(1 + \cos \varphi), \ \varphi \in \left[0; \frac{\pi}{2}\right].$	3) $\frac{16\sqrt{2}}{3}$; 4) $\frac{8\sqrt{2}}{3}$.
А8. Вычислите $\iint x dy dz - 4y dx dz + z dx dy$, если	1, 1, 2, 1,
σ — внешняя сторона поверхности пирамиды, ограниченной плоскостями $x+2y+z-1=0$, $x=0, y=0, z=0$.	1) $\frac{1}{12}$; 2) $\frac{1}{6}$; 3) $\frac{1}{3}$; 4) $-\frac{1}{6}$.
А9. Вычислите сумму ряда $\sum_{n=0}^{\infty} \frac{(-1)^n}{9^n}$.	1) $\frac{10}{9}$; 2) 1; 3) $\frac{9}{10}$; 4) 3.
A10. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+1}\right)^n$.	 сходится; расходится; сходится абсолютно; сходится условно.
А11. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{3n-1}{3^n(n+1)!}$.	 1) сходится; 2) не сходится; 3) сходится условно; 4) расходится.
A12. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} (-1)^n \operatorname{tg}\left(\frac{\pi}{3^n}\right).$	 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится.
А13. Найдите область сходимости ряда $\sum_{n=1}^{\infty} \frac{(x+2)^n}{2^n n}.$	1) (-4;0); 2) (-4;0]; 3) [-4;0); 4) (-2;2].
А14. Вычислите Ln(1-i).	1) $\sqrt{2} + i\left(2k\pi - \frac{\pi}{4}\right)$, $k \in \mathbb{Z}$; 2) $\ln 2 + 2k\pi i$, $k \in \mathbb{Z}$; 3) $\frac{1}{2}\ln 2 - \frac{\pi}{4}i$;
$\cos 2zdz$	4) $\frac{1}{2}\ln 2 + i\left(2k\pi - \frac{\pi}{4}\right)$, $k \in \mathbb{Z}$. 1) $2\pi i$; 2) $-2\pi i$;
A15. Вычислите $\int_{ z+1 =1}^{\infty} \frac{\cos 2z dz}{(z^2+1)(z^2-9)}.$	3) 0; 4) $\frac{\pi}{2}i$.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите $\iint_D \frac{dxdy}{x^2 + y^2}$, если D область, ограниченная линиями $x^2 + y^2 = 4$, $x^2 + y^2 = 16$.
- **B2.** Вычислите массу тела, ограниченного поверхностями $z = \sqrt{25 x^2 y^2}$, $z = \sqrt{16 x^2 y^2}$ ($x \ge 0$, $y \ge 0$), если плотность $\mu(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$.
- **В3.** Вычислите циркуляцию векторного поля $\bar{F} = y\bar{i}$ вдоль окружности $\begin{cases} x = 2\cos t, \\ y = 2 + 2\sin t \end{cases}$ при положительном направлении обхода.
- **В4.** Вычислите $\int_{\sigma} (x^2 + y^2) d\sigma$, если σ часть поверхности $z = \sqrt{x^2 + y^2}$, ограниченной плоскостью z = 1.
- **B5.** Найдите количество целых чисел, входящих в интервал сходимости ряда $\sum_{n=1}^{\infty} \frac{\ln^n x}{n^2}.$
- **В6.** Вычислите радиус сходимости ряда $\sum_{n=1}^{\infty} 5^n (x+1)^n$.
- **В7.** Вычислите $\int_{0}^{0.2} xe^{-x^2} dx$ с точностью до 0,0001.
- **В8.** Вычислите a_3 коэффициент Фурье 2π -периодической функции f(x) = |x|, $x \in [-\pi; \pi]$.
- **В9.** Вычислите вычет в изолированной особой точке функции $f(z) = \frac{\cos \pi z}{(z-1)^3}$.
- **B10.** Найдите коэффициент при z^{-1} в разложении в ряд Лорана в окрестности точки z=0 функции $f(z)=\frac{\ln(1+z)}{z^3}$.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите формулу вычисления объема V тела T:

1)
$$V = \iiint_T f(x, y, z) dx dy dz$$
; 2) $V = \iiint_T dx dy dz$;
3) $V = \iiint_T xyz dx dy dz$; 4) $V = \iiint_T z dx dy dz$.

$$2) V = \iiint dx dy dz;$$

$$3) V = \iiint xyzdxdydz;$$

4)
$$V = \iiint_T z dx dy dz$$
.

С2. Укажите формулу вычисления работы A, совершаемой переменной силой $\bar{F}=P(x,y,z)\bar{i}+Q(x,y,z)\bar{j}+R(x,y,z)\bar{k}$ вдоль кривой L:

1)
$$A = \int_{z}^{z} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz;$$

2)
$$A = \int_{I} Q(x, y, z) dx + R(x, y, z) dy + P(x, y, z) dz;$$

3)
$$A = \int_{L} R(x, y, z)dx + P(x, y, z)dy + Q(x, y, z)dz;$$

4)
$$A = -\int_{L} P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$
.

С3. Закончите верно утверждение:

Если для знакоположительного ряда $\sum_{n=1}^{\infty} a_n$ существует $\lim_{n\to\infty} \sqrt[n]{a_n} = C$, то ряд

сходится, если...

2)
$$C < 1$$
; 3) $C \ge 1$;

C4. Укажите ряд Фурье для четной функции f(x):

1)
$$\sum_{n=1}^{\infty} b_n \cos nx$$
, где $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$;

2)
$$\sum_{n=1}^{\infty} b_n \sin nx$$
, где $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$;

3)
$$\sum_{n=1}^{\infty} b_n \cos nx$$
, где $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$;

4)
$$\sum_{n=1}^{\infty} b_n \sin nx$$
, где $b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$.

С5. Закончите верно утверждение:

Если точка а является полюсом n-го порядка функции f(z), то...

1)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} (f(z)(z-a)^n);$$

1)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} (f(z)(z-a)^n);$$
 2) $\underset{z=a}{\text{res}} f(a) = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} (f(z)(z-a)^n);$

3)
$$\operatorname{res}_{z=a} f(a) = \lim_{z \to a} \frac{d^n}{dz^n} (f(z)(z-a)^n);$$

3)
$$\underset{z=a}{\text{res}} f(a) = \lim_{z \to a} \frac{d^n}{dz^n} \Big(f(z)(z-a)^n \Big);$$
 4) $\underset{z=a}{\text{res}} f(a) = \frac{1}{n!} \lim_{z \to a} \frac{d^n}{dz^n} \Big(f(z)(z-a)^n \Big).$

TECT № 2.1

Часть А

К каждому заданию теста А даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (А1–А15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Вычислите $\frac{2+2i}{1-i}$.	1) 2 <i>i</i> ; 2) -2 <i>i</i> ; 3) 2; 4) -2.
А2. Найдите сумму элементов матрицы $(A^T)^2$, если $A = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}$.	1) 4; 2) -6; 3) 8; 4) -10.
А3. Вычислите $\begin{vmatrix} 2 & 1 & -1 \\ 0 & -3 & 2 \\ 4 & 0 & 3 \end{vmatrix}$.	1) 12; 2) -20; 3) 24; 4) -22.
А4. Найдите сумму координат точки C , если известно, что точка C является серединой отрезка AB , $A = (-1; 0; 3)$, $B = (1; 4; -1)$.	1) 0; 2) -2; 3) 3; 4) 6.
А5. Определите, при каком значении λ векторы $\bar{a} = (-2; 3; \lambda), \ \bar{b} = (4; -6; -8)$ ортогональны.	1) $\frac{5}{4}$; 2) $-\frac{7}{4}$; 3) $\frac{9}{4}$; 4) $-\frac{13}{4}$.
А6. Определите тип линии $\frac{(x-2)^2}{9} + \frac{(y+2)^2}{4} = 1$.	 парабола; гипербола; эллипс; пара прямых.

А7. Вычислите $\lim_{n\to\infty} \frac{7n^3 - n^2 + n + 7}{2n + 5n^2 - n^3}.$	1) $\frac{7}{2}$; 2) -7; 3) $\frac{7}{5}$; 4) 7.
А8. Вычислите $y''(1)$, если $y = \frac{e^x}{x}$.	1) 0; 2) <i>e</i> ; 3) 1; 4) 2 <i>e</i> .
А9. Найдите точку минимума функции $y = \frac{x^4}{4} - 2x^3 + 5.$	1) 0; 2) -5; 3) 2; 4) 6.
А10. Вычислите $\frac{\partial^3 z(0,1)}{\partial x^2 \partial y}$, если	1) $\frac{1}{2}$; 2) 1; 3) 0; 4) $e + \frac{1}{2}$.
$z = e^x \ln y + y \ln(x+1).$	3) 0; 4) $e + \frac{1}{2}$.
	1) $\arctan \frac{5-x}{2} + C$; 2) $\ln \frac{\left 5+10x-x^2\right }{2} + C$; 3) $\arcsin \frac{5-x}{2} + C$; 4) $\frac{1}{2} \ln \left 5+10x-x^2\right + C$.
A12. Вычислите несобственный интеграл $\int_{-\infty}^{-1} \frac{dx}{x^4}$.	$ \begin{vmatrix} 1) \frac{1}{3}; & 2) -\frac{1}{3}; \\ 3) 1; & 4) -1. $
А13. Решите задачу Коши $y^2dx+(x+1)dy=0$, $y(0)=-1$.	1) $y^{-1} = \ln \left \frac{x+1}{e} \right $; 2) $y^{-1} = -\ln x+1 $; 3) $y^{2} = \ln \left \frac{x+1}{e} \right $; 4) $y^{2} = \ln x+e $.
A14. Вычислите $\iint x dx dy$, если D – область,	1) 2; 2) $\frac{1}{3}$;
ограниченная линиями $y = 2x$, $y = 0$, $x = 1$.	$3) \frac{2}{3};$ 4) 4.
А15. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^2 - 1}.$	 1) сходится условно; 2) сходится абсолютно; 3) не сходится; 4) расходится.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите объем параллелепипеда, построенного на векторах $\bar{a}=(0;1;-1)$, $\bar{b}=(-2;0;3),\ \bar{c}=(0;4;1).$
- **В2.** Вычислите $\lim_{x\to 4} \frac{(x-3)^3-1}{x-4}$.
- **В3.** Вычислите $\int_{1}^{e} \frac{1 + \ln x}{x} dx.$
- **В4.** Вычислите объем тела, ограниченного поверхностями $z = 3x^2$, x + y = 2, x = 0, y = 0, z = 0.
- **В5.** Вычислите $\int_L y dx + x dy$, если L дуга параболы $y = 2x x^2$ от точки O(0;0) до точки M(1;1).
- **В6.** Вычислите дивергенцию векторного поля $\bar{F} = (xy + z^3; yz + y^3; x^2y^2z^2 + e^x)$ в точке $M_0(1; 1; 1)$.
- **В7.** Найдите длину интервала сходимости ряда $\sum_{n=1}^{\infty} \frac{5^n x^n}{n}$.
- **В8.** Вычислите b_3 коэффициент Фурье 2π -периодической функции $f(x) = \begin{cases} 2, \text{если } x \in (-\pi; 0], \\ 0, \text{если } x \in (0; \pi]. \end{cases}$
- **В9.** Вычислите f(1+i), если f(z) аналитическая функция, u(x, y) = x + y ее действительная часть, f(0) = 0.
- **B10.** Вычислите вычет в точке z = 2 функции $f(z) = \frac{z+5}{z^2 3z + 2}$.

Выполните задание. В таблице ответов под номером задания (С1–С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Закончите определение:

Матрицы А и В в произведении АВ называются согласованными, если...

- 1) число строк матрицы A равно числу строк матрицы B;
- 2) число строк матрицы А равно числу столбцов матрицы В;
- 3) число столбцов матрицы А равно числу строк матрицы В;
- 4) число столбцов матрицы А равно числу столбцов матрицы В.

С2. Закончите верно утверждение:

Модуль смешанного произведения векторов равен...

- 1) площади параллелограмма;
- 2) объему параллелепипеда;
- 3) площади треугольника;
- 4) объему тетраэдра.

С3. Укажите верную формулу:

1)
$$\int \operatorname{tg} x dx = -\ln|\cos x| + C;$$
 2)
$$\int \operatorname{tg} x dx = \ln|\cos x| + C;$$

3)
$$\int \operatorname{tg} x dx = -\ln|\sin x| + C;$$
 4)
$$\int \operatorname{tg} x dx = \ln|\sin x| + C.$$

4)
$$\int \operatorname{tg} x dx = \ln \left| \sin x \right| + C.$$

С4. Закончите верно утверждение:

Если характеристическое уравнение линейного однородного дифференциального уравнения 2-го порядка с постоянными коэффициентами имеет пару комплексно-сопряженных корней $\lambda_{1,2} = \alpha \pm i\beta$, то общее решение заданного дифференциального уравнения...

1)
$$y = C_1 e^{\beta x} \cos \alpha x + C_2 e^{\beta x} \sin \alpha x$$
; 2) $y = C_1 e^{\alpha x} + C_2 e^{\beta x}$;

2)
$$y = C_1 e^{\alpha x} + C_2 e^{\beta x}$$
;

3)
$$y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$$
; 4) $y = C_1 \cos \alpha x + C_2 \sin \beta x$.

4)
$$y = C_1 \cos \alpha x + C_2 \sin \beta x.$$

C5. Укажите формулу разложения функции $y = e^x$ в ряд Маклорена:

1)
$$e^x = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
, $x \in (-1; 1)$;

1)
$$e^{x} = \sum_{n=1}^{\infty} \frac{x^{n}}{n}$$
, $x \in (-1;1)$; 2) $e^{x} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}$, $x \in (-1;1]$;
3) $e^{x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n}}{n!}$, $x \in \mathbb{R}$; 4) $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, $x \in \mathbb{R}$.

3)
$$e^x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}, x \in \mathbf{R}$$

4)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbf{R}.$$

TECT № 2.2

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Вычислите $ z $, если $z = 3i^{19} + 2i^{17} + i^9$.	1) 0; 2) 1; 3) 2; 4) 3.
A2. Найдите сумму элементов матрицы A^{-1} , если $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$.	1) 4; 2) 3; 3) 2; 4) 1.
А3. Найдите $x_1 + x_2 + x_3$, если x_1, x_2, x_3 – решение системы $\begin{cases} x_1 + 2x_2 + x_3 = 1, \\ -x_2 + 2x_3 = 0, \\ 2x_1 + x_2 - x_3 = -1. \end{cases}$	1) $\frac{1}{3}$; 2) $\frac{2}{3}$; 3) 1; 4) $\frac{4}{3}$.
А4. Вычислите площадь треугольника, построенного на векторах $\bar{a}=(2;0;-1),\ \bar{b}=(-2;1;0).$	1) $\frac{1}{2}$; 2) 1; 3) $\frac{3}{2}$; 4) 2.
А5. Найдите уравнение прямой, проходящей через точку $M(1;0)$ перпендикулярно прямой $x+2y=0$.	1) $x-2y=0$; 2) $2x-y-2=0$; 3) $x-2y-2=0$; 4) $2x-y=0$.
А6. Определите тип линии $y^2 = 2x - 4$.	 эллипс; гипербола; окружность; парабола.
А7. Вычислите $\lim_{x\to\infty} \left(1+\frac{1}{2x}\right)^{x+1}$.	1) e^2 ; 2) e ; 3) \sqrt{e} ; 4) 1.
А8. Вычислите $y''\left(\frac{\pi}{4}\right)$, если $y = tg^2 x$.	1) 12; 2) 16; 3) 10; 4) $12\sqrt{2}$.
А9. Найдите точку минимума функции $y = 2x^3 - 3x^2 - 12x + 5$ на отрезке [-2; 2].	1) -1; 2) -2; 3) 1; 4) 2.

А10. Вычислите $\frac{\partial^3 z(1,-1)}{\partial x \partial y^2}$, если	1) 0; 2) 1;
$z = 2x^2y - \sin(x+y).$	$3)-1;$ 4) $\frac{1}{2}$.
	1) $\ln 3x^2 + 4x - 6 + C$;
А11. Найдите $\int \frac{(3x+2)dx}{(3x^2+4x-6)^2}.$	2) $\frac{1}{2}$ arctg $\frac{3x^2 + 4x - 6}{2} + C$;
$\int \frac{1}{(3x^2+4x-6)^2}$	$3) -\frac{1}{6x^2 + 8x - 12} + C;$
	4) $\arcsin \frac{3x+2}{2} + C$.
2 A12 Prymary (v. 2) la side	1) $\frac{5}{4} - 2 \ln 2$; 2) $\frac{3}{4} + \ln 2$;
A12. Вычислите $\int_{1}^{\infty} (x-2) \ln x dx$.	3) $\frac{7}{4} - 2 \ln 2$; 4) $\frac{7}{4} + \ln 2$.
А13. Решите задачу Коши $(y^2+1)dx-\cos^2 xdy=0$, $y(0)=1$.	1) $y = \cos^2\left(\frac{\pi}{2} + \operatorname{tg} x\right);$
	$2) y = tg\left(\cos^2 x - \frac{\pi}{4}\right);$
	3) $y = \cos\left(\frac{\pi}{4} - \lg x\right)$;
	$4) y = tg\left(\frac{\pi}{4} + tg x\right).$
А14. Вычислите $\iint_{D} \frac{dxdy}{\sqrt{x^2 + y^2}}$, если D – область,	1) $\frac{\pi}{6}$; 2) $\frac{\pi}{2}$;
ограниченная линиями $y = -\sqrt{1-x^2}$, $y = 0$ ($x \ge 0$).	3) π ; 4) $\frac{\pi}{3}$.
А15. Исследуйте сходимость ряда	1) расходится;
	2) сходится абсолютно;
$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{2n+2}{n(n+2)}.$	3) сходится условно;
n=1	4) не сходится.

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

В1. Вычислите объем треугольной пирамиды, построенной на векторах $\bar{a}=(-3;1;-1),\ \bar{b}=(2;0;-2),\ \bar{c}=(1;0;4).$

- **В2.** Вычислите $\lim_{x\to 2} \frac{\ln(3-x)}{x^2-4}$.
- **В3.** Вычислите $\int \arctan x dx$.
- **В4.** Вычислите объем тела, ограниченного поверхностями $z = 1 x^2 y^2$, z = 0, $x = 0 \ (x \ge 0).$
- **В5.** Вычислите $\int_{t}^{t} -x dx + y dy$, если L дуга окружности $\begin{cases} x = 2\cos t, \\ y = 2\sin t, \end{cases}$ $t \in \left[-\frac{\pi}{4}; \frac{\pi}{2} \right]$.
- В6. Найдите квадрат длины ротора векторного поля $\overline{F} = (x^2 + y^2; z^2 - y; x^2 + y^2 + z^3)$ в точке $M_0(0; 1; -1)$.
- **В7.** Найдите длину интервала сходимости ряда $\sum_{n=1}^{\infty} \frac{nx^n}{3^n(n+1)}$.
- **В8.** Вычислите a_1 коэффициент Фурье 2π -периодической функции $f(x) = \begin{cases} x, \text{ если } x \in (-\pi; 0], \\ 0, \text{ если } x \in (0; \pi]. \end{cases}$
- **В9.** Вычислите f(2i), если f(z) аналитическая функция, $v(x, y) = x^2 - y^2 + 2x + 4$ – ее мнимая часть, f(0) = 4i.
- **B10.** Вычислите $\int_{|z|=2}^{\infty} \frac{3izaz}{z^2 5z + 4}.$

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите уравнение конуса второго порядка:

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0;$$
 2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$

2)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

3)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0;$$
 4) $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

4)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
.

С2. Укажите верное равенство:

1)
$$\lim_{x\to 0} \frac{(1+x)^3-1}{x} = 3;$$

1)
$$\lim_{x \to 0} \frac{(1+x)^3 - 1}{x} = 3;$$
 2) $\lim_{x \to 0} \frac{(1+x)^3 - 1}{x} = \ln 3;$

3)
$$\lim_{x\to 0} \frac{(1+x)^3-1}{x} = 1$$

3)
$$\lim_{x \to 0} \frac{(1+x)^3 - 1}{x} = 1;$$
 4) $\lim_{x \to 0} \frac{(1+x)^3 - 1}{x} = 0.$

С3. Укажите верное равенство:

1)
$$\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = (\overline{F}, \overline{i});$$
 2) $\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = [\overline{F}, \overline{i}];$

2)
$$\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = \lceil \overline{F}, \overline{i} \rceil$$
;

3)
$$\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = \overline{0};$$
 4) $\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = 0.$

4)
$$\operatorname{div}(\overline{\operatorname{rot}}\overline{F}) = 0$$
.

C4. Укажите формулу разложения функции $y = \sin x$ в ряд Маклорена:

1)
$$\sin x = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, x \in \mathbf{R};$$

1)
$$\sin x = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, \quad x \in \mathbf{R};$$
 2) $\sin x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}, \quad x \in \mathbf{R};$

3)
$$\sin x = \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}, x \in \mathbf{R};$$

3)
$$\sin x = \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}, \quad x \in \mathbf{R};$$
 4) $\sin x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n-1}}{(n-1)!}, \quad x \in \mathbf{R}.$

С5. Закончите верно утверждение:

Если функция комплексной переменной f(z) разлагается в ряд Тейлора в окрестности особой точки z = a, то точка a...

1) устранимая особая точка;

2) простой полюс;

3) полюс k-го порядка;

4) существенно особая точка.

TECT № 3.1 Часть А

К каждому заданию теста А даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (А1–А15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Вычислите $ z $, если $z = 3 + 2i$.	1) 3; 2) 2; 3) $\sqrt{13}$; 4) $\sqrt{5}$.
А2. Найдите сумму элементов матрицы $A^T \cdot A$, если $A = \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix}$.	1) -3; 2) 0; 3) 10; 4) -5.
А3. Вычислите $\begin{vmatrix} 3 & -2 & 1 \\ 0 & 1 & 3 \\ -1 & 4 & 0 \end{vmatrix}$.	1) 5; 2) 17; 3) -19; 4) -29.

А4. Найдите расстояние от начала координат до середины отрезка AB , если $A = (-2; -3; 5)$, $B = (4; 1; 3)$.	1) $\sqrt{2}$; 2) $3\sqrt{2}$; 3) 2; 4) 4.
А5. Определите, при каком значении λ векторы $\bar{a} = (-1; 2; 4), \ \bar{b} = (2; -4; \lambda)$ коллинеарны.	1) -1; 2) -2; 3) -4; 4) -8.
А6. Определите тип линии $\frac{(x-5)^2}{4} - (y+3)^2 = 1$.	 гипербола; парабола; эллипс; пара прямых.
А7. Вычислите $\lim_{x\to 1} \frac{x^2 - 2x + 1}{1 - x^2}$.	1) 0; 2) 1; 3) -1; 4) 2.
А8. Вычислите $y''(0)$, если $y = e^x x^2$.	1) 0; 2) 1; 3) 2; 4) 4.
А9. Найдите точку максимума функции $y = 3x^4 - 2x^3 - 3x^2 + 10$.	1) $-\frac{1}{2}$; 2) 1; 3) -1; 4) 0.
А10. Вычислите $\frac{\partial^3 z(-1,1)}{\partial x^2 \partial y}$, если $z = (x+2)e^{3y} + \frac{y}{x}$.	1) 0; 2) -2; 3) e; 4) 1.
А11. Найдите $\int \frac{(2x-1)dx}{25+3x-3x^2}$.	1) $-\frac{1}{3}\ln 25+3x-3x^2 +C;$ 2) $\frac{1}{3}\arctan(25+3x-3x^2)+C;$ 3) $-\frac{1}{3}\ln\left \frac{x-5}{3}\right +C;$ 4) $\frac{1}{3}\arctan\left \frac{x-5}{3}\right +C.$
A12. Вычислите несобственный интеграл	1) $-\frac{1}{2}$; 2) 0;
$\int_{0}^{\infty} \frac{dx}{e^{2x}}.$	3) $\frac{1}{2}$; 4) 1.
А13. Решите задачу Коши $2 \ln x dx - xy^2 dy = 0$, $y(1) = -3$.	1) $y = -3 \ln x$; 2) $\ln x = \frac{y^2}{2} + 3$; 3) $\ln^2 x = \frac{y^3}{3} + 9$; 4) $\ln^2 x = \frac{y^2}{4} - 9$.

А14. Вычислите $\iint_{\Sigma} x^2 dx dy$, если D – область,	1) 1; 2) $\frac{2}{3}$;
ограниченная линиями $y = x$, $y = 2$, $x = 0$.	3) 2; 4) $\frac{4}{3}$.
ΙΑΙΑ ΙΙΟΟΠΑΠΙΙΙΤΑ ΟΥΟΠΙΙΜΟΟΤΙ Ήσης	1) расходится; 2) сходится; 3) сходится абсолютно на (-1;1); 4) сходится условно на (-1;1).

Часть В

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

- **В1.** Вычислите объем параллелепипеда, построенного на векторах $\bar{a}=(1;1;1)$, $\bar{b}=(2;0;-1),\ \bar{c}=(-3;0;-2).$
- **B2.** Вычислите $\lim_{x\to 3} \frac{e^{x-3}-1}{x^2-9}$.
- **В3.** Вычислите $\int_{-1}^{1} \frac{x dx}{\sqrt{2-x^2}}$.
- **В4.** Вычислите объем тела, ограниченного поверхностями $z = y^2$, x + y = 1, x = 0, y = 0, z = 0.
- **В5.** Вычислите $\int_L y^2 dx + x^2 dy$, если L отрезок прямой от точки A(1;3) до точки B(2;6).
- **В6.** Вычислите дивергенцию векторного поля $\bar{F} = (x^2 y^2 + z^2; e^x + \ln y z^3; \cos xy z^4)$ в точке $M_0(1;1;2)$.
- **В7.** Найдите длину интервала сходимости ряда $\sum_{n=1}^{\infty} \frac{2^n x^n}{n(n+1)}$.
- **В8.** Вычислите a_1 коэффициент Фурье 2π -периодической функции

$$f(x) = \begin{cases} 0, \text{ если } x \in \left[-\pi; \frac{\pi}{2}\right], \\ 3, \text{ если } x \in \left[\frac{\pi}{2}; \pi\right]. \end{cases}$$

В9. Вычислите f(1+2i), если f(z) – аналитическая функция, v(x, y) = 2x - y - yее мнимая часть, f(0) = 0.

В10. Вычислите вычет в точке
$$z = -1$$
 функции $f(z) = \frac{16z + 4}{z^2 + 6z + 5}$.

Часть С

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите неверное равенство:

1)
$$(A^{-1})^{-1} = A$$
;

2)
$$(AB)^{-1} = A^{-1}B^{-1}$$
;

3)
$$(A^T)^{-1} = (A^{-1})^T$$
:

3)
$$(A^T)^{-1} = (A^{-1})^T$$
; 4) $(A^n)^{-1} = (A^{-1})^n, n \in \mathbb{N}$.

С2. Закончите определение:

Базисом в пространстве называется...

- 1) упорядоченная тройка некомпланарных векторов;
- 2) упорядоченная тройка компланарных векторов;
- 3) упорядоченная пара линейно независимых векторов;
- 4) упорядоченная тройка линейно зависимых векторов.

С3. Укажите верную формулу:

1)
$$\int \frac{dx}{x^2 - 9} = \ln \left| \frac{x - 9}{x + 9} \right| + C$$

1)
$$\int \frac{dx}{x^2 - 9} = \ln \left| \frac{x - 9}{x + 9} \right| + C;$$
 2) $\int \frac{dx}{x^2 - 9} = \frac{1}{6} \ln \left| \frac{x - 9}{x + 9} \right| + C;$

3)
$$\int \frac{dx}{x^2-9} = \ln \left| \frac{x-3}{x+3} \right| + C$$
;

3)
$$\int \frac{dx}{x^2 - 9} = \ln \left| \frac{x - 3}{x + 3} \right| + C;$$
 4) $\int \frac{dx}{x^2 - 9} = \frac{1}{6} \ln \left| \frac{x - 3}{x + 3} \right| + C.$

С4. Закончите правильно утверждение:

Если характеристическое уравнение линейного однородного дифференциального уравнения 3-го порядка с постоянными коэффициентами имеет действительный корень λ кратностью 3, то общее решение заданного дифференциального уравнения...

1)
$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + C_3 x^2$$
;

2)
$$y = C_1 e^{\lambda x} + C_2 \cos \lambda x + C_3 \sin \lambda x$$
;

3)
$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + C_3 x^2 e^{\lambda x}$$
;

1)
$$y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + C_3 x^2;$$
 2) $y = C_1 e^{\lambda x} + C_2 \cos \lambda x + C_3 \sin \lambda x;$
3) $y = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + C_3 x^2 e^{\lambda x};$ 4) $y = C_1 e^{\lambda x} + C_2 x \cos \lambda x + C_3 x^2 \sin \lambda x.$

C5. Укажите формулу разложения функции $y = \ln(1+x)$ в ряд Маклорена:

1)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{x^n}{n}, x \in (-1;1]$$

1)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
, $x \in (-1;1]$; 2) $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, $x \in (-1;1]$;

3)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}, x \in (-1;1]$$

3)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
, $x \in (-1;1]$; 4) $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$, $x \in (-1;1]$.

75

TECT № 3.2

Часть А

K каждому заданию теста A даны четыре варианта ответа, из которых только один является верным. Выполните задание. В таблице ответов под номером задания (A1-A15) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ	ВАРИАНТЫ ОТВЕТА
А1. Найдите Im z , если $z = 3 + 2i^{27} + 5i^{17}$.	1) 1; 2) 2; 3) 3; 4) 4.
А2. Найдите сумму элементов матрицы A^{-1} , если $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.	1) 1; 2) 2; 3) 3; 4) 4.
А3. Найдите $x_1 + x_2 + x_3$, если x_1, x_2, x_3 – решение системы $\begin{cases} x_1 + x_2 + 2x_3 = 1, \\ 2x_1 - x_2 = 0, \\ x_1 + 2x_2 + 4x_3 = 1. \end{cases}$	1) 1; 2) 2; 3) 3; 4) 4.
А4. Вычислите площадь параллелограмма, построенного на векторах $\bar{a}=(-2;1;0)$, $\bar{b}=(0;-3;-1)$.	1) $\sqrt{19}$; 2) $2\sqrt{19}$; 3) $\sqrt{37}$; 4) $\sqrt{41}$.
А5. Найдите уравнение прямой, проходящей через точку $M(2;1)$ параллельно прямой $x-3y+5=0$.	1) $x+3y-5=0$; 2) $3x-y-5=0$; 3) $x-3y+1=0$; 4) $3x+y-7=0$.
А6. Определите тип линии $x^2 - 4x - y^2 + 6y = 6$.	 эллипс; гипербола; парабола; пара прямых.
А7. Вычислите $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$.	1) $\frac{1}{2}$; 2) 1; 3) 2; 4) ∞ .
А8. Вычислите $y''(1)$, если $y = x \ln x - x^2$.	1) 2; 2) -2; 3) 1; 4) -1.
А9. Найдите абсциссу точки перегиба графика функции $y = x^3 - 3x^2 + 3x - 10$.	1) -1; 2) 0; 3) 2; 4) 1.

А10. Вычислите $\frac{\partial^3 u \left(1, \frac{\pi}{4}, 0\right)}{\partial x \partial y \partial z}$, если $u = x^2 \sin(2y + z) - z^2 y$.	1) -2; 2) -4; 3) 2; 4) 4.
А11. Найдите $\int \frac{(x-2)dx}{\sqrt{1+4x-x^2}}$.	1) $-\sqrt{1+4x-x^2} + C$; 2) $\sqrt{1+4x-x^2} + C$; 3) $\frac{1}{\sqrt{1+4x-x^2}} + C$; 4) $-\frac{1}{\sqrt{1+4x-x^2}} + C$.
A12. Вычислите $\int_{-1}^{1} \frac{x}{e^x} dx.$	1) $\frac{1}{e}$; 2) $-\frac{1}{e}$; 3) $\frac{2}{e}$; 4) $-\frac{2}{e}$.
A13. Решите задачу Коши $y \ln y dx + x dy = 0$, $y(1) = e$.	1) $y = e^{-x}$; 2) $y = e^{x}$; 3) $y = e^{\frac{1}{x}}$; 4) $y = e^{-\frac{1}{x}}$.
	1) $\frac{\pi}{4}$; 2) $\frac{\pi}{6}$; 3) $\frac{\pi}{3}$; 4) $\frac{\pi}{2}$.
А15. Исследуйте сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2+1)}{\sqrt[5]{n^{20}+4}}.$	 1) сходится абсолютно; 2) сходится условно; 3) расходится; 4) не сходится.

Часть В

Выполните задание. В таблице ответов под номером задания (В1–В10) запишите полученный вами ответ.

СОДЕРЖАНИЕ ЗАДАНИЯ

В1. Определите, при каком значении λ векторы $\bar{a} = (1; 0; 1), \ \bar{b} = (0; -1; 2), \ \bar{c} = (3; -2; \lambda)$ компланарны.

B2. Вычислите $\lim_{x\to 2} \frac{x^2-4x+4}{\sin(x^2-4)}$.

В3. Вычислите
$$\int_{0}^{\frac{\pi}{2}} x \sin 3x dx.$$

- **В4.** Вычислите объем тела, ограниченного поверхностями $x^2 + y^2 = 4$, $z = x^2 + y^2$, z = 0, y = 0 $(y \ge 0)$.
- **В5.** Вычислите $\int ydx + xdy$, если L дуга окружности $\begin{cases} x = 4\sin t, \\ y = 4\cos t, \end{cases}$ $t \in [0; \frac{\pi}{4}]$
- В6. Найдите квадрат длины ротора векторного поля $\bar{F} = (e^{3x} + y^3x; \ln^2 y + z^2y; \sin^2 z - x^2y^2)$ в точке $M_0(1; 1; 0)$.
- **В7.** Найдите длину интервала сходимости ряда $\sum_{n=0}^{\infty} \frac{2^n x^n}{5^n n^n}$
- **В8.** Вычислите b_2 коэффициент Фурье 2π -периодической функции

$$f(x) = \begin{cases} 0, \text{ если } x \in \left(-\pi; \frac{\pi}{4}\right], \\ x, \text{ если } x \in \left(\frac{\pi}{4}; \pi\right]. \end{cases}$$

- **В9.** Вычислите f(4), если f(z) аналитическая функция, $v(x, y) = x^2 - y^2 + 3x + 2$ – ее действительная часть, f(0) = 2.
- **B10.** Вычислите $\int_{|z|=\frac{3}{2}} \frac{(3-i)z}{z^2 + (3+i)z + 3i} dz.$

Часть С

Выполните задание. В таблице ответов под номером задания (С1-С5) запишите номер выбранного вами ответа.

СОДЕРЖАНИЕ ЗАДАНИЯ

С1. Укажите уравнение однополостного гиперболоида:

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1;$$

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1;$$
 2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0;$

3)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1;$$
 4) $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

4)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
.

С2. Укажите верное равенство:

1)
$$\lim_{x\to 0} \frac{2^x - 1}{x} = 1;$$

1)
$$\lim_{x\to 0} \frac{2^x - 1}{x} = 1;$$
 2) $\lim_{x\to 0} \frac{2^x - 1}{x} = 2;$

3)
$$\lim_{x\to 0} \frac{2^x - 1}{x} = \ln 2$$

3)
$$\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2;$$
 4) $\lim_{x \to 0} \frac{2^x - 1}{x} = 2 \ln 2.$

С3. Укажите верное равенство:

1)
$$\overline{\text{rot}}(\text{grad } u) = u$$
;

2)
$$\overline{\text{rot}}(\text{grad }u) = u\overline{i}$$
;

3)
$$\overline{\text{rot}}(\text{grad }u) = 0;$$

4)
$$\overline{\text{rot}}(\text{grad } u) = \overline{0}$$
.

С4. Укажите формулу разложения функции $y = \cos x$ в ряд Маклорена:

1)
$$\cos x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \ x \in (-1;1);$$
 2) $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \ x \in \mathbb{R};$

2)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbf{R}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}, \quad x \in (-1;1); \qquad 2 = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}, \quad x \in \mathbf{R}.$$

4)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}, x \in \mathbf{R}$$

С5. Закончите верно утверждение:

Если функция комплексной переменной f(z) разлагается в ряд Лорана в окрестности особой точки z = a и это разложение содержит бесконечное число отрицательных степеней z, то точка а...

- 1) устранимая особая точка;
- 2) простой полюс;
- 3) полюс к-го порядка;
- 4) существенно особая точка.

Решение комбинированного теста № 1.1

Задание А1. *Решение*. Из пределов интегрирования в повторном интеграле следует, что область интегрирования D соответствующего двойного интеграла ограничена прямыми y = x, y = 2 - x, y = 0. Эта область является правильной в направлении оси Ox, причем

$$D = \{(x, y) | 0 \le y \le 1, y \le x \le 2 - y \}.$$

Следовательно,

$$\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x, y) dy = \int_{0}^{1} dy \int_{y}^{2-y} f(x, y) dx.$$

Вариант ответа: 2) $\int_{0}^{1} dy \int_{y}^{2-y} f(x, y) dx.$

Задание А2. Решение.

$$\int_{0}^{1} dx \int_{0}^{2} (x+y) dy = \int_{0}^{1} \left(xy + \frac{y^{2}}{2} \right) \Big|_{0}^{2} dx = \int_{0}^{1} (2x+2) dx = (x^{2}+2x) \Big|_{0}^{1} = 1 + 2 - 0 = 3.$$

Вариант ответа: 2) 3.

Задание А3. *Решение*. Плоская фигура D ограничена снизу параболой $y = x^2$, сверху прямой y = 1.

Решая уравнение $x^2 = 1$, найдем две точки пересечения заданных линий: A(-1;1), B(1;1). Следовательно, площадь фигуры

$$S = \iint_D dx dy = \int_{-1}^1 dx \int_{x^2}^1 dy = \int_{-1}^1 y \Big|_{x^2}^1 dx = \int_{-1}^1 (1 - x^2) dx = \left(x - \frac{x^3}{3}\right) \Big|_{-1}^1 = \frac{2}{3} - \left(-\frac{2}{3}\right) = \frac{4}{3}.$$

Вариант ответа: 4) $\frac{4}{3}$

Задание А4. Решение.

$$\int_{0}^{1} dx \int_{0}^{2} dy \int_{0}^{3} xy dz = \int_{0}^{1} dx \int_{0}^{2} xyz \Big|_{0}^{3} dy = \int_{0}^{1} dx \int_{0}^{2} 3xy dy =$$

$$= \int_{0}^{1} \frac{3}{2} xy^{2} \Big|_{0}^{2} dx = \int_{0}^{1} 6x dx = 3x^{2} \Big|_{0}^{1} = 3.$$

Вариант ответа: 1) 3.

Задание А5. *Решение*. Область T ограничена эллиптическим цилиндром $x^2+y^2=1$ с образующей, параллельной оси Oz, и плоскостями z=0, z=2. Область T проецируется на плоскость xOy в область D, ограниченную окружностью $x^2+y^2=1$. Следовательно,

$$\iint_T z dx dy dz = \iint_D dx dy \int_0^2 z dz = \iint_D \frac{z^2}{2} \bigg|_0^2 dx dy = \iint_D 2 dx dy = 2S_D = 2 \cdot \pi \cdot 1^2 = 2\pi,$$
 где S_D – площадь круга $x^2 + y^2 \le 1$.

Вариант ответа: 4) 2π.

Задание Аб. *Решение*. Тело *T* ограничено снизу плоскостью z = 0, сверху плоскостью z = 3 - x - y. Область *T* проецируется на плоскость xOy в треугольник, образованный прямыми x = 0, y = 0, y = 3 - x. Следовательно, объем тела

$$V = \iiint_{T} dx dy dz = \int_{0}^{3} dx \int_{0}^{3-x} dy \int_{0}^{3-x-y} dz = \int_{0}^{3} dx \int_{0}^{3-x-y} dy =$$

$$= \int_{0}^{3} dx \int_{0}^{3-x} (3-x-y) dy = \int_{0}^{3} \left(3y-xy-\frac{y^{2}}{2}\right) \Big|_{0}^{3-x} dx = \int_{0}^{3} \left(3y-xy-\frac{y^{2}}{2}\right) \Big|_{0}^{3-x} dx =$$

$$= \int_{0}^{3} \left(3(3-x)-x(3-x)-\frac{(3-x)^{2}}{2}\right) dx = \int_{0}^{3} \left(9-3x-3x+x^{2}-\frac{9}{2}+3x-\frac{x^{2}}{2}\right) dx =$$

$$= \int_{0}^{3} \left(\frac{x^{2}}{2}-3x+\frac{9}{2}\right) dx = \left(\frac{x^{3}}{6}-\frac{3x^{2}}{2}+\frac{9}{2}x\right) \Big|_{0}^{3} = \frac{27}{6}-\frac{27}{2}+\frac{27}{2}=\frac{9}{2}.$$

Вариант ответа: 2) $\frac{9}{2}$.

Задание А7. Решение. Находим

$$dl = \sqrt{1 + (y'(x))^2} dx = \sqrt{1 + (2x)^2} dx = \sqrt{1 + 4x^2} dx.$$

Следовательно,

$$\int_{L} 4x dl = \int_{0}^{1} 4x \sqrt{1 + 4x^{2}} dx = \frac{1}{2} \int_{0}^{1} \sqrt{1 + 4x^{2}} d(1 + 4x^{2}) = \frac{1}{2} \cdot \frac{2}{3} (1 + 4x^{2})^{\frac{3}{2}} \Big|_{0}^{1} = \frac{1}{3} (5\sqrt{5} - 1).$$

Вариант ответа: 4) $\frac{1}{3} (5\sqrt{5} - 1)$.

Задание А8. Решение. По формуле Остроградского – Гаусса имеем

$$\iint_{\sigma} x dy dz + y dx dz + z dx dy = \iiint_{T} \left(\frac{\partial(x)}{\partial x} + \frac{\partial(y)}{\partial y} + \frac{\partial(z)}{\partial z} \right) dx dy dz =$$

$$= \iiint_{T} (1 + 1 + 1) dx dy dz = 3 \iiint_{T} dx dy dz = 3V_{T} = 3 \cdot \frac{1}{8} \cdot \frac{4}{3} \pi \cdot 2^{3} = 4\pi,$$

где V_T – объем $\frac{1}{8}$ части шара $x^2 + y^2 + z^2 \le 4$.

Вариант ответа: 2) 4π.

Задание А9. *Решение*. Разложим общий член ряда a_n на простейшие дроби:

$$\frac{1}{(n+2)(n+3)} = \frac{1}{n+2} - \frac{1}{n+3}.$$

Тогда *п*-я частичная сумма ряда

$$S_n = \sum_{n=1}^n \frac{1}{(n+2)(n+3)} = \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots + \left(\frac{1}{n+2} - \frac{1}{n+3}\right) = \frac{1}{3} - \frac{1}{n+3}.$$

Находим сумму ряда:

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{n+3} \right) = \frac{1}{3}.$$

Вариант ответа: 3) $\frac{1}{3}$.

Задание А10. Решение. Так как

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n(n+4)}{2n-1} = \lim_{n \to \infty} \frac{n+4}{2 - \frac{1}{n}} = +\infty \neq 0,$$

то ряд расходится (не выполняется необходимый признак сходимости).

Вариант ответа: 2) расходится.

Задание А11. Решение. Воспользуемся признаком Д'Аламбера. Имеем:

$$a_{n} = \frac{5^{n}}{n^{3}}, \quad a_{n+1} = \frac{5^{n+1}}{(n+1)^{3}},$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n \to \infty} \frac{5^{n+1} n^{3}}{5^{n} (n+1)^{3}} = \lim_{n \to \infty} \frac{5}{\left(1 + \frac{1}{n}\right)^{3}} = 5 > 1,$$

т. е. данный ряд расходится

Вариант ответа: 4) расходится.

Задание А12. Решение. Исследуем сходимость ряда

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{n}{2^{n+1}} \right| = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}.$$

Применим признак Коши. Так как

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n}{2^{n+1}}} = \frac{1}{2} < 1,$$

то ряд $\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$ сходится. Значит, данный ряд сходится абсолютно.

Вариант ответа: 1) сходится абсолютно.

Задание А13. Решение. Найдем радиус сходимости ряда:

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{4^n n^2}} = \frac{1}{4}.$$

Следовательно, ряд сходится абсолютно, если $-\frac{1}{4} < x - 1 < \frac{1}{4}$, т. е. в интервале сходимости $\left(\frac{3}{4}; \frac{5}{4}\right)$.

Исследуем сходимость ряда на концах интервала.

При $x = \frac{3}{4}$ получим числовой ряд $\sum_{n=1}^{\infty} (-1)^n n^2$. Этот знакочередующийся ряд расходится, т. к. $\lim_{n\to\infty} (-1)^n n^2 \neq 0$.

При $x=\frac{5}{4}$ получим числовой ряд $\sum_{n=1}^{\infty}n^2$, который расходится, т. к. $\lim_{n\to\infty}n^2\neq 0$.

Таким образом, область сходимости данного ряда $\left(\frac{3}{4}; \frac{5}{4}\right)$.

Bариант ответа: 2) $\left(\frac{3}{4}; \frac{5}{4}\right)$.

Задание А14. Решение. Так как

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad e^{iz} = \cos z + i \sin z,$$

TO

$$\cos(5-i) = \frac{e^{i(5-i)} + e^{-i(5-i)}}{2} = \frac{e^{5i+1} + e^{-5i-1}}{2} = \frac{1}{2} \left(e \cdot e^{5i} + \frac{1}{e} e^{-5i} \right) =$$

$$= \frac{1}{2} \left(e \left(\cos 5 + i \sin 5 \right) + \frac{1}{e} \left(\cos(-5) + i \sin(-5) \right) \right) = \frac{1}{2} \left(e \cos 5 + \frac{1}{e} \cos 5 + i \left(e \sin 5 - \frac{1}{e} \sin 5 \right) \right) =$$

$$= \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 5 + \frac{i}{2} \left(e - \frac{1}{e} \right) \sin 5 = \frac{e^2 + 1}{2e} \cos 5 + i \frac{e^2 - 1}{2e} \sin 5.$$

Вариант ответа: 4) $\frac{e^2+1}{2e}\cos 5+i\frac{e^2-1}{2e}\sin 5$.

Задание А15. Решение. Интеграл представим в виде

$$\int_{|z-2|=2} \frac{e^z dz}{(z^2+4)(z-i)} = \int_{|z-2|=2} \frac{e^z dz}{(z+2i)(z-2i)(z-i)}.$$

Точки z=-2i, z=i, z=2i, очевидно, лежат вне круга $|z-2| \le 2$. Подынтегральная функция аналитична в замкнутом круге $|z-2| \le 2$. Поэтому, согласно теореме Коши для односвязной области,

$$\int_{|z-2|=2} \frac{e^z dz}{(z^2+4)(z-i)} = 0.$$

Вариант ответа: 1) 0.

Задание В1. *Решение*. Область D — правая половина круга радиуса 3 с центром в начале координат.

Перейдем к полярным координатам

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases}$$

где $0 \le \rho \le 3$, $-\frac{\pi}{2} \le \phi \le \frac{\pi}{2}$. Тогда

$$\iint_{D} \frac{dxdy}{\sqrt{x^{2}+y^{2}}} = \iint_{D^{*}} \frac{\rho d\phi d\rho}{\rho} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi \int_{0}^{3} d\rho = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \rho \Big|_{0}^{3} d\phi = 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi = 3 \phi \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 3 \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = 3\pi.$$

Ответ: 3 т.

Задание В2. *Решение*. Тело *T* ограничено снизу плоскостью z = 0, сверху плоскостью z = 2 - x - y. Область *T* проецируется на плоскость xOy в треугольник, образованный прямыми x = 0, y = 0, y = 2 - x. Следовательно, масса тела

$$M = \iiint_{T} \mu(x, y, z) dx dy dz = \iiint_{T} (x + y) dx dy dz = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{2-x-y} (x + y) dz =$$

$$= \int_{0}^{2} dx \int_{0}^{2-x} (x + y) z \Big|_{0}^{2-x-y} dy = \int_{0}^{2} dx \int_{0}^{2-x} (x + y) (2 - x - y) dy =$$

$$= \int_{0}^{2} dx \int_{0}^{2-x} (2x + 2y - x^{2} - 2xy - y^{2}) dy = \int_{0}^{2} \left(2xy + y^{2} - x^{2}y - xy^{2} - \frac{y^{3}}{3}\right) \Big|_{0}^{2-x} dx =$$

$$= \int_{0}^{2} \left(2x(2 - x) + (2 - x)^{2} - x^{2}(2 - x) - x(2 - x)^{2} - \frac{(2 - x)^{3}}{3}\right) dx =$$

$$= \int_{0}^{2} \left(\frac{x^{3}}{3} - x^{2} + \frac{4}{3}\right) dx = \left(\frac{x^{4}}{12} - \frac{x^{3}}{3} + \frac{4}{3}x\right) \Big|_{0}^{2} = \frac{16}{12} - \frac{8}{3} + \frac{8}{3} = \frac{4}{3}.$$

Omeem: $\frac{4}{3}$.

Задание ВЗ. Решение.

$$A = \int_{L} y dx - x dy = \int_{1}^{2} \left(\frac{1}{x} dx - x d \left(\frac{1}{x} \right) \right) = \int_{1}^{2} \left(\frac{1}{x} - x \left(-\frac{1}{x^{2}} \right) \right) dx =$$

$$= \int_{1}^{2} \left(\frac{1}{x} dx - x d \left(\frac{1}{x} \right) \right) = \int_{1}^{2} \frac{2}{x} dx = 2 \ln x \Big|_{1}^{2} = 2 (\ln 2 - \ln 1) = 2 \ln 2.$$

Ответ: 2ln 2.

Задание В4. Решение. Находим

$$d\sigma = \sqrt{1 + (z_x'(x, y))^2 + (z_y'(x, y))^2} dxdy = \sqrt{1 + (-1)^2 + (-1)^2} dxdy = \sqrt{3} dxdy.$$

Следовательно,

$$\iint_{\sigma} (2x + 2y + 2z - 5) d\sigma = \iint_{D} (2x + 2y + 2(5 - x - y) - 5) \sqrt{3} dx dy =$$

$$= 5\sqrt{3} \iint_{D} dx dy = 5\sqrt{3} S_{D} = 5\sqrt{3} \cdot \frac{1}{2} \cdot 5 \cdot 5 = \frac{125\sqrt{3}}{2},$$

где S_D – площадь треугольника, образованного прямыми $x=0,\ y=0,\ y=5-x$. *Ответ*: $\frac{125\sqrt{3}}{2}$.

Задание В5. Решение. Применим признак Коши. Так как

$$\lim_{n \to \infty} \sqrt[n]{|u_n(x)|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2x-3}{4}\right)^n} = \left|\frac{2x-3}{4}\right| < 1,$$

то ряд сходится абсолютно, если -4 < 2x - 3 < 4, т. е. в интервале $\left(-\frac{1}{2}; \frac{7}{2}\right)$.

Исследуем сходимость ряда на концах интервала.

При $x = -\frac{1}{2}$ получим числовой ряд $\sum_{n=1}^{\infty} (-1)^n$. Этот знакочередующийся ряд расходится, т. к. $\lim_{n\to\infty} (-1)^n \neq 0$.

При $x = \frac{7}{2}$ получим числовой ряд $\sum_{n=1}^{\infty} 1^n$, который расходится, т. к. $\lim_{n \to \infty} 1^n \neq 0$.

Таким образом, область сходимости данного функционального ряда $\left(-\frac{1}{2};\frac{7}{2}\right)$.

Количество целых чисел, входящих в область сходимости ряда, равно 4. *Ответ*: 4.

Задание Вб. Решение. Так как

$$c_n = \frac{1}{n^2}, \quad c_{n+1} = \frac{1}{(n+1)^2},$$

то радиус сходимости

$$r = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = 1.$$

Ответ: 1.

Задание В7. *Решение*. Разложим подынтегральную функцию в ряд Маклорена:

$$\frac{\sin 2x}{x} = \frac{1}{x} \left(2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - \dots + (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!} + \dots \right) =$$

$$=2-\frac{8x^2}{3!}+\frac{32x^4}{5!}-...+(-1)^n\frac{2^{2n+1}x^{2n}}{(2n+1)!}+...$$

Этот ряд сходится на всей числовой прямой, поэтому его можно всюду почленно интегрировать. Следовательно,

$$\int_{0}^{1} \frac{\sin 2x}{x} dx = \int_{0}^{1} \left(2 - \frac{8x^{2}}{3!} + \frac{32x^{4}}{5!} - \dots + (-1)^{n} \frac{2^{2n+1}x^{2n}}{(2n+1)!} + \dots \right) dx =$$

$$= \left(2x - \frac{8x^{3}}{3 \cdot 3!} + \frac{32x^{5}}{5 \cdot 5!} - \dots + (-1)^{n} \frac{2^{2n+1}x^{2n+1}}{(2n+1) \cdot (2n+1)!} + \dots \right) \Big|_{0}^{1} =$$

$$= 2 - \frac{8}{3 \cdot 3!} + \frac{32}{5 \cdot 5!} - \dots + \frac{(-1)^{n}2^{2n+1}}{(2n+1) \cdot (2n+1)!} \approx 2 - \frac{8}{18} + \frac{32}{600} - \frac{128}{35280} \approx$$

$$\approx 2 - 0.4444 + 0.0533 - 0.0036 = 1.6053 \approx 1.605.$$

Взяли четыре слагаемых, т. к. уже пятый член полученного знакочередующегося ряда, $\frac{2^9}{9\cdot 9!} = \frac{512}{3265920} < 0{,}001$.

Ответ: 1,605.

Задание В8. *Решение*. Так как f(x) = x – нечетная функция, то

$$b_4 = \frac{2}{\pi} \int_0^{\pi} x \sin 4x dx = \begin{vmatrix} u = x, & dv = \sin 4x dx \\ du = dx, & v = -\frac{1}{4} \cos 4x \end{vmatrix} = \frac{2}{\pi} \left(-\frac{1}{4} x \cos 4x \Big|_0^{\pi} + \frac{1}{4} \int_0^{\pi} \cos 4x dx \right) = \frac{2}{\pi} \left(-\frac{1}{4} \pi \cos 4\pi + \frac{1}{16} x \sin 4x \Big|_0^{\pi} \right) = -\frac{2}{\pi} \cdot \frac{1}{4} \pi \cdot 1 + 0 = -0, 5.$$

Ответ: -0,5.

Задание В9. *Решение*. Функция $f(z) = \frac{z-i}{(z+2)(z-2i)}$ имеет две изолированные особые точки: $z_1 = -2$, $z_2 = -2i$ – простые полюсы. Найдем вычеты в этих точках.

$$\operatorname{res}_{z=-2} f(z) = \lim_{z \to -2} (z+2) f(z) = \lim_{z \to -2} (z+2) \frac{z-i}{(z+2)(z-2i)} = \lim_{z \to -2} \frac{z-i}{z-2i} = \frac{-2-i}{-2-2i} = \frac{(-2-i)(-2+2i)}{(-2-2i)(-2+2i)} = \frac{4+2i-4i+2}{4+4} = \frac{6-2i}{8} = \frac{3}{4} - \frac{1}{4}i;$$

$$\operatorname{res}_{z=2i} f(z) = \lim_{z \to 2i} (z-2i) f(z) = \lim_{z \to 2i} (z-2i) \frac{z-i}{(z+2)(z-2i)} = \lim_{z \to 2i} \frac{z-i}{z+2} = \frac{2i-i}{2i+2} = \frac{i(2-2i)}{(2+2i)(2-2i)} = \frac{2i+2}{8} = \frac{1}{4} + \frac{1}{4}i.$$

Следовательно,

$$\operatorname{res}_{z=-2} f(z) + \operatorname{res}_{z=2i} f(z) = \left(\frac{3}{4} - \frac{1}{4}i\right) + \left(\frac{1}{4} + \frac{1}{4}i\right) = 1.$$

Ответ: 1.

Задание В10. *Решение*. Разложим функцию f(z) в ряд Лорана в окрестности точки z = 0:

$$z^{2}\cos\frac{1}{z} = z^{2}\left(1 - \frac{1}{z^{2}2!} + \frac{1}{z^{4}4!} - \frac{1}{z^{6}6!} + \dots\right) = z^{2} - \frac{1}{2!} + \frac{1}{z^{2}4!} - \frac{1}{z^{4}6!} + \dots$$

Отсюда видно, что коэффициент при z^{-4} равен $-\frac{1}{720}$.

Ответ: $-\frac{1}{720}$.

Задание С1. Вариант ответа: 2).

Задание С2. Вариант ответа: 4).

Задание С3. Вариант ответа: 2).

Задание С4. Вариант ответа: 2).

Задание С5. Вариант ответа: 1).

Используя полученные ответы, заполняем таблицу ответов.

Номер задания	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
Номер ответа	2	2	4	1	4	2	4	2	3	2	4	1	2	4	1

Номер задания	B1	B2	В3	B4	B5	B6	B7	В8	В9	B10
Ответ	3π	$\frac{4}{3}$	2ln 2	$\frac{125\sqrt{3}}{2}$	4	1	1,605	-0,5	1	$-\frac{1}{720}$

Номер задания	C1	C2	С3	C4	C5
Номер ответа	2	4	2	2	1

Ответы к заданиям комбинированного теста № 1.2

Решите тест № 1.2 самостоятельно и сверьте полученные вами ответы с указанными в таблице.

Номер задания	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
Номер ответа	2	1	3	3	2	3	4	4	3	2	1	1	3	4	3

Номер задания	B1	B2	В3	B4	В5	B6	В7	B8	В9	B10
Ответ	$2\pi \ln 2$	$\frac{9\pi}{4}$	-4π	$\frac{\pi\sqrt{2}}{2}$	2	$\frac{1}{5}$	0,0196	$-\frac{4}{9\pi}$	$\frac{\pi^2}{2}$	-0,5

Номер задания	C1	C2	С3	C4	C5
Номер ответа	2	1	2	1	2

Краткие теоретические сведения

Тема 11. Кратные интегралы

Двойной интеграл. Основные свойства двойного интеграла:

- линейность:

$$\iint_{D} (\alpha f_1(x, y) + \beta f_2(x, y)) dxdy = \alpha \iint_{D} f_1(x, y) dxdy + \beta \iint_{D} f_2(x, y) dxdy,$$

где α , β = const;

– аддитивность:

$$\iint_{D_1 \cup D_2} f(x, y) dxdy = \iint_{D_1} f(x, y) dxdy + \iint_{D_2} f(x, y) dxdy,$$

причем $D_1 \cap D_2 = \emptyset$.

Методы вычисления двойного интеграла:

– в декартовой системе координат:

а) если

$$D = \{(x; y) | a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x) \},\$$

TO

$$D = \{(x; y) | a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x) \}$$

$$\iint_D f(x, y) dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy;$$

$$D = \{(x, y) | x \le y \le d, \ yy(y) \le x \le yy(y) \}$$

б) если

$$D = \{(x, y) | c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y) \},$$

TO

$$D = \{(x, y) | c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y) \},$$

$$\iint_D f(x, y) dx dy = \int_c^d dx \int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dy;$$

- в полярной системе координат. Переменные х, у в двойном интеграле заменяют полярными координатами:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases}$$

где $0 \le \rho < +\infty$, $0 \le \phi < 2\pi$. Затем используют формулу

$$\iint_{D} f(x, y) dx dy = \iint_{D_{*}^{*}} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\varphi d\rho,$$

где D^* – область в полярной системе координат, соответствующая области D в декартовой системе координат. В частности, если

$$D = \{ (\varphi, \rho) | \alpha \le \varphi \le \beta, \ \rho_1(\varphi) \le \rho \le \rho_2(\varphi) \},$$

$$\iint_{D} f(x, y) dx dy = \int_{\alpha}^{\beta} d\varphi \int_{\rho_{1}(\varphi)}^{\rho_{2}(\varphi)} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho.$$

Приложения двойного интеграла. Площадь плоской фигуры D:

$$S = \iint_D dx dy.$$

Объем цилиндрического тела, ограниченного сверху поверхностью z = f(x, y) (f(x, y) ≥ 0), снизу плоскостью z = 0 и сбоку цилиндрической поверхностью, вырезающей на плоскости xOy область D:

$$V = \iint_D f(x, y) dx dy.$$

Площадь поверхности, заданной уравнением z = f(x, y):

$$S = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy,$$

где D – проекция поверхности на плоскость xOy.

Масса пластины D, имеющей плотность $\mu = \mu(x, y)$:

$$M = \iint_D \mu(x, y) dx dy.$$

Координаты центра тяжести $C(x_c; y_c)$ пластины D:

– имеющей плотность $\mu = \mu(x, y)$:

$$x_C = \frac{1}{M} \iint_D x\mu(x, y) dxdy, \quad y_C = \frac{1}{M} \iint_D y\mu(x, y) dxdy,$$

где M — масса пластины;

– однородной:

$$x_C = \frac{1}{S} \iint_D x dx dy, \quad y_C = \frac{1}{S} \iint_D y dx dy,$$

где S — площадь пластины.

Тройной интеграл. Основные свойства тройного интеграла:

линейность:

$$\iiint_T (\alpha f_1(x, y, z) + \beta f_2(x, y, z)) dx dy dz = \alpha \iiint_T f_1(x, y, z) dx dy dz + \beta \iiint_T f_2(x, y, z) dx dy dz,$$
 где $\alpha, \beta = \text{const}$;

– аддитивность:

$$\iiint_{T_1 \cup T_2} f(x, y, z) dx dy dz = \iiint_{T_1} f(x, y, z) dx dy dz + \iiint_{T_2} f(x, y, z) dx dy dz,$$

причем $T_1 \cap T_2 = \emptyset$.

Методы вычисления тройного интеграла:

- в декартовой системе координат. Если

$$T = \{(x; y; z) | a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x), \ \psi_1(x, y) \le z \le \psi_2(x, y) \},\$$

TO

$$\iiint_{T} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy \int_{\psi_{1}(x, y)}^{\psi_{2}(x, y)} f(x, y, z) dz;$$

- в цилиндрической системе координат. Переменные x, y, z в тройном интеграле заменяют цилиндрическими координатами:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ z = z, \end{cases}$$

где $0 \le \rho < +\infty$, $0 \le \phi < 2\pi$, $-\infty < z < +\infty$. Затем используют формулу

$$\iiint_{T} f(x, y, z) dx dy dz = \iiint_{T^*} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\varphi d\rho dz,$$

где T^* — область в цилиндрической системе координат, соответствующая области T в декартовой системе координат;

- в сферической системе координат. Переменные x, y, z в тройном интеграле заменяют сферическими координатами:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta, \end{cases}$$

где $0 \le r < +\infty$, $0 \le \varphi < 2\pi$, $0 \le \theta \le \pi$. Затем используют формулу

$$\iiint_{T} f(x, y, z) dx dy dz = \iiint_{T^*} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) r^2 \sin \theta d\varphi d\theta dr,$$

где T^* – область в сферической системе координат, соответствующая области T в декартовой системе координат.

Приложения тройного интеграла. Объем тела Т:

$$V = \iiint_T dx dy dz.$$

Масса тела Т, имеющего плотность $\mu = \mu(x, y, z)$:

$$M = \iiint_T \mu(x, y, z) dx dy dz.$$

Координаты центра тяжести $C(x_C; y_C; z_C)$ тела T:

– имеющего плотность $\mu = \mu(x, y, z)$:

$$x_C = \frac{1}{M} \iiint_T x \mu(x, y, z) dx dy dz, \qquad y_C = \frac{1}{M} \iiint_T y \mu(x, y, z) dx dy dz,$$

$$z_C = \frac{1}{M} \iiint_T z \mu(x, y, z) dx dy dz,$$

где M — масса тела;

- однородного:

$$x_C = \frac{1}{V} \iiint_T x dx dy dz, \quad y_C = \frac{1}{V} \iiint_T y dx dy dz, \quad z_C = \frac{1}{V} \iiint_T z dx dy dz,$$

где V – объем тела.

Тема 12. Криволинейные и поверхностные интегралы. Теория поля

Криволинейный интеграл 1-го рода. Основные свойства криволинейного интеграла 1-го рода:

– линейность:

$$\int_{L} (\alpha f_1(x, y, z) + \beta f_2(x, y, z)) dl = \alpha \int_{L} f_1(x, y, z) dl + \beta \int_{L} f_2(x, y, z) dl,$$
const:

где $\alpha, \beta = \text{const};$

– аддитивность:

$$\int_{L_1 \cup L_2} f(x, y, z) dl = \int_{L_1} f(x, y, z) dl + \int_{L_2} f(x, y, z) dl,$$

причем $L_1 \cap L_2 = \emptyset$;

- если кривая L соединяет точки A и B, то

$$\int_{AB} f(x, y, z)dl = \int_{BA} f(x, y, z)dl.$$

Методы вычисления криволинейного интеграла 1-го рода:

– если кривая L задана уравнением $y = y(x), x \in [a, b]$, то

$$\int_{L} f(x, y)dl = \int_{a}^{b} f(x, y(x))\sqrt{1 + (y'(x))^{2}}dx;$$

– если кривая L задана уравнением $x = x(y), y \in [c, d]$, то

$$\int_{L} f(x, y) dl = \int_{c}^{d} f(x(y), y) \sqrt{1 + (x'(y))^{2}} dy;$$

– если кривая L задана параметрически $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ $t \in [\alpha, \beta]$, то

$$\int_{L} f(x, y) dl = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt;$$

— если кривая
$$L$$
 задана параметрически $\begin{cases} x=x(t), \\ y=y(t), \ t\in [\alpha,\beta], \end{cases}$ то $z=z(t),$

$$\int_{L} f(x, y, z) dl = \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt;$$

– если кривая L задана в полярных координатах уравнением $\rho = \rho(\phi)$, $\phi \in [\phi_1, \phi_2]$, то

$$\int_{L} f(x, y) dl = \int_{\varphi_{1}}^{\varphi_{2}} f(\rho(\varphi) \cos \varphi, \rho(\varphi) \sin \varphi) \sqrt{\rho^{2}(\varphi) + (\rho'(\varphi))^{2}} d\varphi.$$

Криволинейный интеграл 2-го рода. Основные свойства криволинейного интеграла 2-го рода аналогичны свойствам криволинейного интеграла 1-го рода, кроме одного:

$$\int_{AB} P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz =$$

$$= -\int_{BA} P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz.$$

Положительным направлением обхода замкнутого контура называется направление, при котором линия интегрирования обходится против хода часовой стрелки, а *отрицательным* – по ходу часовой стрелки.

Методы вычисления криволинейного интеграла 2-го рода:

– если кривая L задана уравнением $y = y(x), x \in [a, b]$, то

$$\int_{L} P(x, y)dx + Q(x, y)dy = \int_{a}^{b} \left(P(x, y(x)) + Q(x, y(x)) \cdot y'(x) \right) dx;$$

– если кривая L задана уравнением $x = x(y), y \in [c, d]$, то

$$\int_{L} P(x, y)dx + Q(x, y)dy = \int_{C}^{d} \left(P(x(y), y) \cdot x'(y) + Q(x(y), y) \right) dy;$$

— если кривая L задана параметрически $\begin{cases} x=x(t), \\ y=y(t), \end{cases}$ $t\in [\alpha,\beta],$ то

$$\int_{L} P(x, y)dx + Q(x, y)dy = \int_{\alpha}^{\beta} \left(P(x(t), y(t)) \cdot x'(y) + Q(x(t), y(t)) \cdot y'(t) \right) dt;$$

- если кривая
$$L$$
 задана параметрически $\begin{cases} x=x(t), \\ y=y(t), \ t\in [\alpha,\beta], \end{cases}$ то $z=z(t),$

$$\int_{L} P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz =$$

$$= \int_{a}^{\beta} \left(P(x(t), y(t), z(t)) \cdot x'(y) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t) \right) dt;$$

-формула Грина:

$$\int_{L} P(x, y) dx + Q(x, y) dy = \iint_{D} \left(\frac{\partial Q(x, y)}{\partial x} - \frac{\partial P(x, y)}{\partial y} \right) dx dy,$$

где P(x, y), Q(x, y) — непрерывно дифференцируемые функции в замкнутой ограниченной области D с границей L, интегрирование вдоль которой производится в положительном направлении.

Если функции P(x, y) и Q(x, y) непрерывно дифференцируемы в замкнутой ограниченной области D, то равносильны условия:

- $1) \int\limits_{L} P(x,y) dx + Q(x,y) dy = 0, \ \ \text{где } L \text{любой замкнутый контур, целиком}$ лежащий в D;
- 2) $\int_{L} P(x, y) dx + Q(x, y) dy$ не зависит от линии интегрирования, соединяющей две данные точки;
- 3) выражение P(x, y)dx + Q(x, y)dy является полным дифференциалом некоторой однозначной функции;
 - 4) $\frac{\partial P(x, y)}{\partial y} = \frac{\partial Q(x, y)}{\partial x}$ во всех точках области D.

Приложения криволинейных интегралов. Длина дуги плоской или пространственной *кривой L*:

$$l = \int_{I} dl.$$

Масса материальной кривой L, имеющей плотность $\mu = \mu(x, y, z)$:

$$M = \int_{I} \mu(x, y, z) dl.$$

Координаты центра тяжести $C(x_C; y_C; z_C)$ материальной кривой L:
– имеющей плотность $\mu = \mu(x, y, z)$:

$$x_C = \frac{1}{M} \int_L x \mu(x, y, z) dl, \quad y_C = \frac{1}{M} \int_L y \mu(x, y, z) dl, \quad z_C = \frac{1}{M} \int_L z \mu(x, y, z) dl,$$

где M — масса кривой;

– однородной:

$$x_C = \frac{1}{l} \int_L x dl$$
, $y_C = \frac{1}{l} \int_L y dl$, $z_C = \frac{1}{l} \int_L z dl$,

где l — длина дуги кривой.

Площадь области D, ограниченной замкнутым контуром L:

$$S = \frac{1}{2} \int_{I} x dy - y dx,$$

где обход контура L совершается в положительном направлении.

Работа, совершаемая переменной силой $\bar{F}(P(x, y, z), Q(x, y, z), P(x, y, z))$ вдоль кривой L:

$$A = \int_{L} P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz.$$

Поверхностный интеграл 1-го рода. Основные свойства поверхностного интеграла 1-го рода:

– линейность:

$$\iint_{\sigma} (\alpha f_1(x, y, z) + \beta f_2(x, y, z)) ds = \alpha \iint_{\sigma} f_1(x, y, z) ds + \beta \iint_{\sigma} f_2(x, y, z) ds,$$

где α , β = const;

– аддитивность:

$$\iint_{\sigma_1 \cup \sigma_2} f(x, y, z) ds = \iint_{\sigma_1} f(x, y, z) ds + \iint_{\sigma_2} f(x, y, z) ds,$$

причем $\sigma_1 \cap \sigma_2 = \emptyset$.

Методы вычисления поверхностного интеграла 1-го рода:

- если поверхность σ задана уравнением z = z(x, y), то

$$\iint_{S} f(x, y, z) ds = \iint_{D} f(x, y, z(x, y)) \sqrt{1 + (z'_{x}(x, y))^{2} + (z'_{y}(x, y))^{2}} dx dy,$$

где D – проекция поверхности σ на плоскость xOy;

— если поверхность σ задана уравнением F(x,y,z)=0, причем $F_z'(x,y,z)\neq 0$ на всей σ , то

$$\iint_{C} f(x, y, z) ds = \iint_{D} f(x, y, z(x, y)) \frac{\sqrt{(F'_{x})^{2} + (F'_{y})^{2} + (F'_{z})^{2}}}{|F'_{z}|} dx dy,$$

где D – проекция поверхности σ на плоскость xOy.

Поверхностный интеграл 2-го рода. Двусторонней называется поверхность, у которой могут быть определены две стороны (внешняя и внутренняя), т. е. в каждой точке которой существуют нормальные векторы \bar{n} и $-\bar{n}$ соответственно. Поверхность с выбранной стороной называется *ориентированной*.

Основные свойства поверхностного интеграла 2-го рода аналогичны свойствам поверхностного интеграла 1-го рода, кроме зависимости его от ориентации поверхности: при выборе нормального вектора $-\overline{n}$ вместо \overline{n} знак интеграла изменится.

Если $\cos\alpha$, $\cos\beta$, $\cos\gamma$ – направляющие косинусы единичного вектора нормали \overline{n} , то

$$\iint_{\sigma} (\bar{F}, \bar{n}) ds = \iint_{\sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds.$$

Связь между поверхностными интегралами 1-го и 2-го рода:

$$\iint_{\sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds = \iint_{\sigma} P(x, y, z)dydz + Q(x, y, z)dzdx + R(x, y, z)dxdy.$$

Методы вычисления поверхностного интеграла 2-го рода:

- если поверхность σ задана уравнением z = z(x, y), то

$$\iint_{\sigma} \left(\bar{F}, \bar{n} \right) ds = \pm \iint_{D} \left(P \frac{\partial z}{\partial x} + Q \frac{\partial z}{\partial y} - R \right) dx dy,$$

где P = P(x, y, z(x, y)), Q = Q(x, y, z(x, y)), R = R(x, y, z(x, y)) – известные функции; D – проекция поверхности σ на плоскость xOy. Если вектор \bar{n} образует с осью Oz угол $\gamma < \frac{\pi}{2}$, то берут знак «-», если угол $\gamma > \frac{\pi}{2}$, то берут знак «+»;

-формула Остроградского - Гаусса:

$$\iint_{\Omega} P dy dz + Q dz dx + R dx dy = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz,$$

где P(x, y, z), Q(x, y, z), R(x, y, z) — функции, непрерывные вместе со своими частными производными первого порядка в пространственной области T; σ — граница области T и интегрирование производится по внешней стороне.

Приложения поверхностных интегралов. Площадь поверхности о:

$$S = \iint_{\Omega} ds$$
.

Масса материальной поверхности σ , имеющей плотность $\mu = \mu(x, y, z)$:

$$M = \iint_{\sigma} \mu(x, y, z) ds.$$

Координаты центра тяжести $C(x_C; y_C; z_C)$ материальной поверхности σ :

– имеющей плотность $\mu = \mu(x, y, z)$:

$$x_C = \frac{1}{M} \iint_{\sigma} x \mu(x, y, z) ds, \quad y_C = \frac{1}{M} \iint_{\sigma} y \mu(x, y, z) ds, \quad z_C = \frac{1}{M} \iint_{\sigma} z \mu(x, y, z) ds,$$

где M – масса поверхности σ ;

– однородной:

$$x_C = \frac{1}{S} \iint_{S} x ds$$
, $y_C = \frac{1}{S} \iint_{S} y ds$, $z_C = \frac{1}{S} \iint_{S} z ds$,

где S – площадь поверхности σ .

Теория поля. Потоком вектора \bar{a} через поверхность σ называется поверхностный интеграл по поверхности σ от скалярного произведения вектора поля $\bar{a} = (P, Q, R)$ и единичного вектора $\bar{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ нормали к поверхности:

$$K = \iint_{\Omega} (\bar{a}, \bar{n}) ds = \iint_{\Omega} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds.$$

 Φ изический смысл потока вектора: поток вектора \bar{a} есть скалярная величина, численно равная объему несжимаемой жидкости, протекающей через поверхность σ за единицу времени.

Дивергенцией векторного поля $\bar{a} = \bar{a}(M)$ в точке M(x; y; z) называется предел отношения потока поля через замкнутую поверхность σ , окружающую точку M, к объему V тела, ограниченного этой поверхностью, при стремлении диаметра d этого тела к нулю:

$$\operatorname{div} \bar{a}(M) = \lim_{d \to 0} \frac{\int_{\sigma} (\bar{a}, \bar{n}) ds}{V}.$$

Дивергенция вычисляется по формуле

$$\operatorname{div} \bar{a}(M) = \frac{\partial P(M)}{\partial x} + \frac{\partial Q(M)}{\partial y} + \frac{\partial R(M)}{\partial z}.$$

 Φ изический смысл дивергенции: $\operatorname{div} \bar{a}(M)$ выражает наличие источника или стока несжимаемой жидкости в точке M.

Формула Остроградского – Гаусса в векторном виде:

$$\iint_{\overline{a}} (\overline{a}, \overline{n}) ds = \iiint_{T} \operatorname{div} \overline{a} dV.$$

Циркуляцией векторного поля $\bar{a} = (P, Q, R)$ вдоль замкнутого контура L называется криволинейный интеграл

$$C = \int_{I} (\bar{a}, \bar{\tau}) dl = \int_{I} P dx + Q dy + R dz,$$

где $\bar{\tau}$ — единичный вектор, направленный по касательной к кривой L в направлении ее обхода.

 Φ изический смысл циркуляции: циркуляция равна работе силы \bar{a} вдоль замкнутой кривой L.

Ротором (или вихрем) векторного поля $\bar{a} = (P,Q,R)$ в точке M(x;y;z) называется вектор

$$\overline{\operatorname{rot}}\,\overline{a}(M) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\overline{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\overline{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\overline{k},$$

или в символической форме:

$$\overline{\cot}\,\overline{a}(M) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix},$$

где частные производные вычислены в точке M.

 Φ изический смысл ротора: направление ротора — это направление, вокруг которого циркуляция имеет наибольшую плотность по сравнению с циркуляцией вокруг любого направления, не совпадающего с нормалью к поверхности σ .

Формула Стокса:

$$\int_{L} Pdx + Qdy + Rdz = \iint_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy,$$

где P(x, y, z), Q(x, y, z), R(x, y, z) — функции, непрерывные вместе со своими частными производными первого порядка в точках поверхности σ ; L — граница поверхности σ и интегрирование вдоль кривой L производится в положительном направлении.

Формула Стокса в векторном виде:

$$\int_{L} (\overline{a}, \overline{\tau}) dl = \iint_{\sigma} ((\overline{\cot} \overline{a}), \overline{n}) ds.$$

Тема 13. Ряды

Числовые ряды. Числовым рядом называется выражение вида

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n,$$

где $a_n \in \mathbf{R} \ (n \in \mathbf{N})$. $a_n - n$ -й член ряда; $a_n = f(n)$ — формула общего члена ряда.

Ряд называется *знакопостоянным*, если все его члены имеют одинаковый знак, *знакопеременным*, если члены ряда имеют различные знаки, и *знакоположительным*, если $a_n > 0$ для всех $n \in \mathbb{N}$.

Сумма

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

называется п-й частичной суммой.

Ряд

$$R_n = a_{n+1} + a_{n+2} + \dots = \sum_{k=n+1}^{\infty} a_k$$

называется *п-м остатком ряда*.

Если существует предел

$$\lim_{n\to\infty} S_n = S,$$

то ряд называется cxodящимся, а S – его суммой; пишут

$$\sum_{n=1}^{\infty} a_n = S.$$

Если $\lim_{n\to\infty} S_n$ не существует, то ряд называется расходящимся.

Heoбxoдимое условие сходимости. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то

$$\lim_{n\to\infty}a_n=0.$$

Если $\lim_{n\to\infty} a_n \neq 0$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Знакоположительные ряды. *Признак сравнения*. Пусть для знакоположительных рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ начиная с некоторого n ($n \in \mathbb{N}$) выполняется

$$a_n \leq b_n$$

Тогда:

- а) из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$;
- б) из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum_{n=1}^{\infty} b_n$.

Предельный признак сравнения. Если для знакоположительных рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ существует

$$\lim_{n \to \infty} \frac{a_n}{b_n} = C \quad (0 < C < +\infty),$$

то эти ряды оба сходятся или оба расходятся.

Для исследования знакоположительных рядов на сходимость по признаку сравнения или предельному признаку сравнения часто используют следующие ряды:

ряд, составленный из членов геометрической прогрессии

$$a + aq + aq^{2} + ... + aq^{n-1} + ... = \sum_{n=1}^{\infty} aq^{n-1},$$

который сходится при |q| < 1 и расходится при $|q| \ge 1$;

– ряд Дирихле (или обобщенный гармонический ряд)

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^p},$$

который сходится при p > 1 и расходится при $p \le 1$;

– гармонический ряд

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{\infty} \frac{1}{n},$$

который расходится.

 Π ризнак Π 'Аламбера. Пусть для знакоположительного ряда $\sum_{n=1}^{\infty} a_n$ существует

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=C.$$

Тогда:

- а) при C < 1 ряд сходится;
- б) при C > 1 ряд расходится.

 $Признак \ Kouu$. Пусть для знакоположительного ряда $\sum_{n=1}^{\infty} a_n$ существует

$$\lim_{n\to\infty} \sqrt[n]{a_n} = C.$$

Тогда:

- а) при C < 1 ряд сходится;
- б) при C > 1 ряд расходится.

Если в предельных признаках Д'Аламбера и Коши получаем C=1, то нужны дополнительные исследования по другим признакам.

Интегральный критерий сходимости. Пусть члены ряда $\sum_{n=1}^{\infty} a_n$ имеют вид $a_n = f(n)$, где f(x) — неотрицательная монотонно убывающая на $[1, +\infty)$ функция. Ряд сходится (расходится) тогда и только тогда, когда сходится (расходится) несобственный интеграл $\int_{-\infty}^{\infty} f(x) dx$.

Знакопеременные ряды. Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Абсолютно сходящийся ряд сходится.

Знакопеременный ряд называется условно сходящимся, если он сходится, но не абсолютно.

Знакопеременный ряд называется знакочередующимся, если любые два его соседних члена имеют разные знаки:

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} a_n,$$

где $a_n > 0 \ (n \in \mathbb{N}).$

Признак Лейбница. Если для знакочередующегося ряда $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ вынотся условия: 1) $a_1 \ge a_2 \ge ... \ge a_n \ge ...$; полняются условия:

- $2) \lim_{n\to\infty} a_n = 0,$

то ряд сходится.

Если S – сумма, R_n – остаток знакочередующегося ряда, то

$$S \le a_1, \quad |R_n| \le a_{n+1}.$$

Функциональные ряды. Функциональным рядом называется выражение вида

$$u_1(x) + u_2(x) + \dots + u_n(x) + \dots = \sum_{n=1}^{\infty} u_n(x),$$

где $u_n(x)$ $(n \in \mathbb{N})$ – функции, определенные на множестве $X \subset \mathbb{R}$.

$$S_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) = \sum_{k=1}^n u_k(x) - n$$
-я частичная сумма.

$$R_n(x) = u_{n+1}(x) + u_{n+2}(x) + \dots = \sum_{k=n+1}^{\infty} u_k(x) - n$$
-й остаток ряда.

Значение $x_0 \in X$, при котором числовой ряд $\sum_{n=1}^{\infty} u_n(x_0)$ сходится, называется точкой сходимости функционального ряда.

Множество D, $D \subseteq X$, всех точек сходимости ряда $\sum u_n(x)$ называется его областью сходимости.

Если S = S(x) — сумма ряда, то пишут

$$\sum_{n=1}^{\infty} u_n(x) = S(x).$$

Функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ называется абсолютно сходящимся на множестве D, если на D сходится ряд $\sum_{n=1}^{\infty} |u_n(x)|$.

Абсолютно сходящийся на множестве D функциональный ряд сходится.

Функциональный ряд называется условно сходящимся в точке x, если в этой точке он сходится, но не абсолютно.

Признак абсолютной сходимости Д'Аламбера. Пусть для функционального ряда $\sum_{n=0}^{\infty}u_{n}(x)$ существует

$$\lim_{n\to\infty}\left|\frac{u_{n+1}(x)}{u_n(x)}\right|=C(x),\quad x\in D.$$

Тогда:

- а) в тех точках x, для которых C(x) < 1, ряд сходится абсолютно;
- б) в тех точках x, для которых C(x) > 1, ряд расходится.

Признак абсолютной сходимости Коши. Пусть для функционального ряда $\sum_{n=0}^{\infty} u_n(x)$ существует

$$\lim_{n\to\infty} \sqrt[n]{|u_n(x)|} = C(x), \quad x \in D.$$

Тогда:

- а) в тех точках x, для которых C(x) < 1, ряд сходится абсолютно;
- б) в тех точках x, для которых C(x) > 1, ряд расходится.

То значение x, при котором C(x) = 1 в признаках Д'Аламбера и Коши, необходимо подставить в заданный функциональный ряд и исследовать полученный числовой ряд на сходимость.

Степенные ряды. Степенным рядом называется функциональный ряд вида

$$c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n,$$

где $a, c_n \in \mathbb{R}$ (n = 0, 1, 2, ...). c_n называются коэффициентами ряда.

 $Paduycom\ cxodumocmu$ степенного ряда называется число r, которое находят по формулам

$$r = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$
 или $r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}}$.

Ряд $\sum_{n=0}^{\infty} c_n (x-a)^n$ сходится, причем абсолютно, на *интервале сходимости* (a-r,a+r), где $0 \le r \le +\infty$, и расходится на $(-\infty,a-r) \cup (a+r,+\infty)$.

Ряд $\sum_{n=0}^{\infty} c_n (x-a)^n$ сходится при r=0 только в точке x=a, а при $r=+\infty$ –

на всей числовой оси.

Для определения области сходимости степенного ряда следует:

- 1) найти его радиус сходимости;
- 2) определить интервал сходимости с центром в точке a;
- 3) выяснить вопрос о сходимости ряда в граничных точках этого интервала, подставив их вместо x в заданный ряд.

Ряд Тейлора. Степенной ряд вида

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

называется рядом Тейлора функции f(x).

Числа $\frac{f^{(n)}(a)}{n!}$ (n=0,1,2,...) называются коэффициентами Тейлора функции f(x) в точке x=a.

Ряд Маклорена функции f(x):

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n.$$

Разложения некоторых элементарных функций в ряд Маклорена:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad x \in \mathbf{R};$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbf{R};$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \quad x \in \mathbf{R};$$

$$\ln(1+x) = \frac{x}{1} - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}, \quad x \in (-1,1];$$

$$(1+x)^{\alpha} = 1 + \alpha x - \frac{\alpha(\alpha-1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^{n} + \dots, \quad x \in (-1,1].$$

Ряд Фурье. Рядом Фурье 2π -периодической функции f(x) называется функциональный ряд

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

где

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \quad (n \in \mathbb{N}),$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \quad (n \in \mathbb{N}).$$

Числа a_0 , a_n , b_n называются коэффициентами Фурье функции f(x).

Теорема Дирихле. Пусть 2π -периодическая функция f(x) является кусочно-гладкой на $[-\pi,\pi]$. Тогда ее ряд Фурье сходится к f(x) в каждой точке непрерывности и к $\frac{1}{2}(f(x-0)+f(x+0))$ в точке разрыва, где f(x-0) и f(x+0) – соответственно левосторонний и правосторонний пределы функции в точке x.

Если f(x) – четная 2π -периодическая функция, то ее ряд Фурье:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

где

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx \quad (n \in \mathbb{N}).$$

Если f(x) – нечетная 2π -периодическая функция, то ее ряд Фурье:

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

где

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx \quad (n \in \mathbb{N}).$$

Если f(x) - 2l -периодическая функция, $l \in \mathbf{R}$, то ее ряд Фурье:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} nx + b_n \sin \frac{\pi nx}{l} \right),$$

где

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx,$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx \quad (n \in \mathbb{N}),$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx \quad (n \in \mathbb{N}).$$

Теорема Дирихле обобщается и на случай 2l-периодической функции, $l \in \mathbf{R}$.

Тема 14. Теория функций комплексной переменной

Основные понятия теории функций комплексной переменной. Комплексной плоскостью ${\bf C}$ называется плоскость xOy, каждой точке которой однозначно соответствует комплексное число. Комплексная плоскость, дополненная точкой $z=\infty$, называется расширенной комплексной плоскостью и обозначается ${\bf \bar C}$.

Последовательностью (z_n) комплексных чисел называется функция натурального аргумента, которая каждому значению $n \in \mathbb{N}$ ставит в соответствие единственное комплексное число $z_n \in \mathbb{C}$.

Последовательность (z_n) , имеющая предел, называется *сходящейся*.

Если каждому числу z, $z \in D \subseteq \mathbb{C}$ по некоторому правилу f ставится в соответствие одно или несколько комплексных чисел w, то говорят, что на множестве D задана ϕ ункция w = f(z) комплексной переменной z.

Если каждому z соответствует единственное значение w, то функция называется *однозначной*, в противном случае — *многозначной*.

Множество D – область определения функции.

Функцию f(z) можно представить в виде

$$w = f(z) = f(x+iy) = u(x, y) + iv(x, y),$$

где u(x, y), v(x, y) – действительные функции переменных x, y:

$$u(x, y) = \text{Re } f(z), \quad v(x, y) = \text{Im } f(z).$$

Дифференцирование функций комплексной переменной. Пусть однозначная функция f(z) определена в точке z_0 и некоторой ее окрестности.

 Π роизводной функции f(z) в точке z_0 называется конечный предел

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0).$$

Основные правила дифференцирования функций комплексной переменной те же, что и для функций действительного аргумента.

Функция f(z) = u(x, y) + iv(x, y) дифференцируема в точке z = x + iy тогда и только тогда, когда функции u, v дифференцируемы в точке (x; y) и выполняются *условия Коши – Римана*:

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\
\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
\end{cases}$$

Если функция f(z) дифференцируема в точке z = x + iy, то

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}, \qquad f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Геометрический смысл модуля производной: модуль производной $|f'(z_0)|$ в точке z_0 есть коэффициент растяжения в точке z_0 при отображении w = f(z).

Геометрический смысл аргумента производной: аргумент производной $\arg f'(z_0)$ в точке z_0 есть угол поворота касательной к кривой в точке z_0 при отображении w=f(z).

Функция называется *аналитической в точке*, если существует некоторая окрестность этой точки, в которой функция однозначна и дифференцируема.

Функция f(z) называется аналитической в области D, если она аналитична в каждой точке этой области.

Функция f(z) называется аналитической в замкнутой области \bar{G} , если существует область $D \supset \bar{G}$, в которой функция аналитична.

Необходимыми и достаточными условиями аналитичности функции w = u(x, y) + iv(x, y) в области D являются дифференцируемость в D функций u, v и выполнение в этой области условий Коши – Римана.

Элементарные функции. 1. Экспонента:

$$e^z = \exp z = e^x(\cos y + i\sin y).$$

Основные свойства экспоненты:

- определена и непрерывна на С;
- производная определена на С:

$$(e^z)'=e^z;$$

$$-|e^z|=e^x$$
, $\arg e^z=y$;

- справедливы равенства:

$$\exp z_1 \cdot \exp z_2 = \exp(z_1 + z_2), \quad \frac{\exp z_1}{\exp z_2} = \exp(z_1 - z_2);$$

— периодична с основным периодом $2\pi i$:

$$e^z = e^{z+2\pi i}.$$

2. Тригонометрические функции.

Функции косинус и синус:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2}.$$

Формула Эйлера:

$$e^{iz} = \cos z + i \sin z$$
.

Основные свойства функций $\cos z$ и $\sin z$:

- определены и непрерывны на С;
- производная определена на C:

$$(\cos z)' = -\sin z$$
, $(\sin z)' = \cos z$;

справедливы равенства:

 $\cos z = \cos x \operatorname{ch} y - i \sin x \operatorname{sh} y$, $\sin z = \sin x \operatorname{ch} y + i \cos x \operatorname{sh} y$;

 $-\cos z$ – четная, $\sin z$ – нечетная:

$$\cos(-z) = \cos z, \quad \sin(-z) = -\sin z;$$

– периодичны с основным периодом 2π:

$$\cos z = \cos(z + 2\pi), \quad \sin z = \sin(z + 2\pi);$$

справедливы равенства:

$$\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2, \quad \sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \mp \cos z_1 \sin z_2, \\ \sin^2 z + \cos^2 z = 1.$$

Для некоторой точки $z \in \mathbb{C}$ может оказаться $|\sin z| > 1$ или $|\cos z| > 1$.

Функции тангенс и котангенс:
$$\operatorname{tg} z = \frac{\sin z}{\cos z} \quad \left(z \neq \frac{\pi}{2} + n\pi, n \in \mathbf{Z} \right), \quad \operatorname{ctg} z = \frac{\cos z}{\sin z} \quad (z \neq n\pi, n \in \mathbf{Z}).$$

Функции тангенс и котангенс являются нечетными и периодическими с основным периодом π.

3. Гиперболические функции:

$$\sinh z = \frac{e^z - e^{-z}}{2}$$
, $\cosh z = \frac{e^z + e^{-z}}{2}$, $\tan z = \frac{\sinh z}{\cosh z}$, $\coth z = \frac{\cosh z}{\sinh z}$

гиперболические синус, косинус, тангенс и котангенс соответственно.

Основные свойства гиперболических функций:

- функции ch z, sh z определены и непрерывны на \mathbb{C} ;
- производные функций ch z, sh z определены на ${f C}$:

$$(\operatorname{ch} z)' = \operatorname{sh} z, \quad (\operatorname{sh} z)' = \operatorname{ch} z;$$

справедливы равенства:

$$\operatorname{ch} z = \cos(iz)$$
, $\operatorname{sh} z = -i\sin(iz)$, $\cos z = \operatorname{ch}(iz)$, $\sin z = -i\operatorname{sh}(iz)$;

справедливы равенства:

$$ch(z_1 \pm z_2) = ch z_1 ch z_2 \pm sh z_1 sh z_2$$
, $sh(z_1 \pm z_2) = sh z_1 ch z_2 \pm ch z_1 sh z_2$,
 $ch^2 z - sh^2 z = 1$.

4. Логарифмическая функция:

$$\operatorname{Ln} z = \ln |z| + i \operatorname{Arg} z \quad (z \neq 0),$$

где

$$\operatorname{Arg} z = \operatorname{arg} z + 2k\pi, \quad k \in \mathbb{Z}.$$

w = Ln z является бесконечнозначной функцией.

Можно записать

$$\operatorname{Ln} z = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

Выражение

$$\ln z = \ln |z| + i \arg z$$

называется главным значением логарифма Ln z.

Основные свойства логарифмической функции:

$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2 \quad (z_1, z_2 \neq 0).$$

5. Степенная функция:

$$w = z^p$$

1) если $p \in \mathbb{N}$, то

$$z^p = r^p(\cos p\varphi + i\sin p\varphi),$$

где r = |z|, $\phi = \arg z$. В этом случае $w = z^p$ – однозначная функция;

2) если $p = \frac{m}{n}$ ($m \in \mathbb{Z}$, $n \in \mathbb{N}$, m и n – взаимно простые числа), то

$$z^{p} = \sqrt[n]{r^{m}} \left(\cos \frac{m(\varphi + 2k\pi)}{n} + i \sin \frac{m(\varphi + 2k\pi)}{n} \right),$$

где $k=\overline{0,n-1}$. В этом случае $w=z^p-n$ -значная функция $(z\neq 0$ при $m\leq 0)$.

По определению

$$z^{-m} = \frac{1}{z^m}, \qquad z^0 = 1;$$

 $z^{-m}=\frac{1}{z^m}, \quad z^0=1;$ 3) если $p=\alpha+i\beta$ — произвольное комплексное число, $\alpha,\beta\in {\bf R}$, причем $z \neq 0, p \notin \mathbf{N}, p \neq \frac{m}{n}$, To

$$z^p = e^{p \operatorname{Ln} z}.$$

В этом случае $w = z^p$ — бесконечнозначная функция.

6. Показательная функция:

$$w = a^z = e^{z \operatorname{Ln} a}, \quad a \neq 0.$$

 $w = a^{z}$ является бесконечнозначной функцией.

7. Обратные тригонометрические функции:

Arccos
$$z = -i\operatorname{Ln}\left(z + \sqrt{z^2 - 1}\right)$$
, Arcsin $z = -i\operatorname{Ln}\left(iz + \sqrt{1 - z^2}\right)$,
Arctg $z = \frac{i}{2}\operatorname{Ln}\frac{1 - iz}{1 + iz}$, Arcctg $z = \frac{i}{2}\operatorname{Ln}\frac{iz + 1}{iz - 1}$.

Обратные тригонометрические функции являются бесконечнозначными.

Интегрирование функций комплексной переменной. Основные свойства интеграла от функции комплексной переменной:

- линейность:

$$\int_{\Gamma} (\alpha f_1(z) + \beta f_2(z)) dz = \alpha \int_{\Gamma} f_1(z) dz + \beta \int_{\Gamma} f_2(z) dz,$$

где $\alpha, \beta \in \mathbb{C}$;

– аддитивность:

$$\int_{\Gamma_1 \cup \Gamma_2} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz,$$

причем $\Gamma_1 \cap \Gamma_2 = \emptyset$;

– если кривая Γ соединяет точки A и B, то

$$\int_{AB} f(z)dz = -\int_{BA} f(z)dz.$$

Методы вычисления интеграла от функции комплексной переменной:

- если f(z) = u(x, y) + iv(x, y), то

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} u(x, y)dx - v(x, y)dy + i \int_{\Gamma} v(x, y)dx + u(x, y)dy;$$

– если кривая Γ задана параметрически $z=z(t)=x(t)+iy(t),\ t\in [\alpha,\beta],$ то

$$\int_{\Gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt;$$

-формула Ньютона - Лейбница:

$$\int_{z_1}^{z_2} f(z)dz = F(z)\Big|_{z_1}^{z_2} = F(z_2) - F(z_1),$$

где f(z) — аналитическая функция в односвязной области D; F(z) — первообразная для функции f(z); $z_1, z_2 \in D$;

- *теорема Коши*. Если f(z) — аналитическая функция в односвязной области D, то для любой замкнутой гладкой кривой $\Gamma \subset D$ выполняется

$$\int_{\Sigma} f(z)dz = 0;$$

— *то* — — *то* — — *то* — —

$$\int_{\Gamma} f(z)dz = \sum_{k=1}^{n} \int_{\Gamma_{k}} f(z)dz;$$

-интегральная формула Коши:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z - z_0)^{n+1}} \qquad (n = 0, 1, 2, ...),$$

где f(z) — аналитическая функция в односвязной замкнутой области \bar{D} ; Γ — граница D; $z_0 \in D$; $f^{(0)}(z_0) = f(z_0)$.

Ряды на комплексной плоскости. *Числовым рядом на комплексной плоскости* называется выражение вида

$$z_1 + z_2 + \dots + z_n + \dots = \sum_{n=1}^{\infty} z_n,$$

где $z_n = x_n + iy_n \in \mathbb{C}$ $(n \in \mathbb{N})$. z_n – элементы ряда.

$$S_n = \sum_{k=1}^n z_k - n$$
-я частичная сумма; $R_n = \sum_{k=n+1}^\infty z_k - n$ -й остаток ряда.

Если существует предел

$$\lim_{n\to\infty} S_n = S,$$

то ряд называется cxodящимся, а S — его суммой; пишут

$$\sum_{n=1}^{\infty} z_n = S.$$

Если $\lim_{n\to\infty} S_n$ не существует или он бесконечно большой, то ряд называется pac- ходящимся.

Необходимое условие сходимости. Если ряд $\sum_{n=1}^{\infty} z_n$ сходится, то $\lim_{n\to\infty} z_n = 0$.

Если $\lim_{n\to\infty} z_n \neq 0$, то ряд $\sum_{n=1}^{\infty} z_n$ расходится.

Ряд $\sum_{n=1}^{\infty} z_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |z_n|$.

Абсолютно сходящийся ряд сходится.

Пусть существует

$$\lim_{n\to\infty}\frac{\left|z_{n+1}\right|}{\left|z_{n}\right|}=C\quad\text{или}\quad\lim_{n\to\infty}\sqrt[n]{\left|z_{n}\right|}=C.$$

Тогда:

- а) при C < 1 ряд сходится абсолютно;
- б) при C > 1 ряд расходится.

Степенным рядом называется ряд вида

$$c_0 + c_1(z-a) + c_2(z-a)^2 + \dots + c_n(z-a)^n + \dots = \sum_{n=0}^{\infty} c_n(z-a)^n,$$

где $a, c_n \in \mathbf{R}$ (n = 0, 1, 2, ...). c_n называются коэффициентами ряда.

Радиусом сходимости степенного ряда называется такое действительное число r, что ряд абсолютно сходится при |z-a| < r и расходится при |z-a| > r.

Кругом сходимости называется круг |z-a| < r.

Пусть существует

$$\lim_{n\to\infty}\frac{\left|c_{n+1}(z-a)^{n+1}\right|}{\left|c_{n}(z-a)^{n}\right|}=L(z)\quad\text{или}\quad\lim_{n\to\infty}\sqrt[n]{\left|c_{n}(z-a)^{n}\right|}=L(z).$$

Тогда:

- а) в тех точках z, для которых L(z) < 1, ряд сходится абсолютно;
- б) в тех точках z, для которых L(z) > 1, ряд расходится.

Степенной ряд вида

$$f(a) + \frac{f'(a)}{1!}(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^n$$

называется рядом Тейлора функции f(z).

Функция f(z), аналитическая в круге |z-a| < r, разлагается в этом круге в абсолютно сходящийся ряд Тейлора:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

Ряд Маклорена функции f(z):

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}.$$

Разложения некоторых элементарных функций в ряд Маклорена:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad |z| < \infty;$$

$$|z| < \infty;$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}, \quad |z| < \infty;$$

$$\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{n}}{n}, \quad |z| < 1;$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n}, \quad |z| < 1.$$

Pядом Лорана функции f(z) называется ряд вида

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{\infty} c_n (z-a)^n,$$

где $a, c_n \in \mathbb{C}$ $(n = 0, 1, 2, ...); c_n$ называются коэ ϕ фициентами ряда.

Функция f(z), аналитическая в кольце r < |z-a| < R, разлагается в этом кольце в абсолютно сходящийся ряд Лорана:

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{\infty} c_n (z-a)^n.$$

Ряд $\sum c_n(z-a)^n$, называемый *правильной частью* ряда Лорана, сходится

в круге |z-a| < R. Ряд $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n}$, называемый главной частью ряда Лорана, сходится вне круга |z-a| > r.

Нули и особые точки функции. *Нулем* аналитической в области Dфункции f(z) называется комплексное число $a \in D$, такое, что f(a) = 0.

Для того чтобы точка a была hулем кратностью k (или hулем порядка k) функции f(z), необходимо и достаточно выполнение одного из условий:

дии
$$f(z)$$
, необходимо и достаточно выполнение од
1) $f(a) = f'(a) = \dots = f^{(k-1)}(a) = 0$, $f^{(k)}(a) \neq 0$;

2)
$$f(z) = (z-a)^k \varphi(z), \quad \varphi(a) \neq 0;$$

3)
$$f(z) = c_k (z-a)^k + c_{k+1} (z-a)^{k+1} + ..., c_k \neq 0.$$

Если $z = \infty$ – нуль кратности k функции f(z), то

$$f(z) = \frac{1}{z^k} \varphi(z), \quad \lim_{z \to \infty} \varphi(z) \neq 0.$$

Правильной точкой функции f(z) называется точка, в которой функция f(z) является аналитической.

Изолированной особой точкой функции f(z) называется точка, в некоторой проколотой окрестности которой функция f(z) аналитична и не аналитична в самой этой точке (или не определена в ней).

Точка $z = \infty$ называется изолированной особой точкой функции f(z), если точка w = 0 является особой для функции $f\left(\frac{1}{w}\right)$ и существует окрестность $|z| > \rho$, которая не содержит других особых точек функции f(z) (кроме $z = \infty$).

Классификация изолированных особых точек:

- особая точка a функции f(z) называется устранимой, если ряд Лорана функции имеет вид

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad 0 < |z-a| < R.$$

Тогда

$$\lim_{z \to a} f(z) = c_0 \neq \infty;$$

— особая точка a функции f(z) называется полюсом k-го порядка, если

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \frac{c_{-1}}{z-a} + \frac{c_{-2}}{(z-a)^2} + \dots + \frac{c_{-k}}{(z-a)^k},$$

где $c_{-k} \neq 0$, 0 < |z-a| < R.

Тогда

$$\lim_{z\to a} f(z) = \infty.$$

При k = 1 полюс называют *простым полюсом*.

Если точка a – полюс k-го порядка функции f(z), то

$$f(z) = \frac{1}{(z-a)^k} s(z), \quad s(a) \neq 0,$$

где s(z) – аналитическая функция;

- особая точка a функции f(z) называется существенно особой, если

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n, \quad 0 < |z-a| < R,$$

и бесконечное количество элементов c_{-n} $(n \in \mathbb{N})$ отлично от нуля. Тогда $\lim_{z \to a} f(z)$ не существует.

Бесконечно удаленная точка $z = \infty$ функции f(z) называется:

- устранимой особой точкой, если ее разложение в ряд Лорана не содержит положительных степеней z;
- *полюсом k-го порядка*, если разложение содержит конечное число элементов с положительными степенями z, причем последним ненулевым коэффициентом является c_k , $k \ge 1$;
- существенно особой точкой, если это разложение содержит бесконечное число положительных степеней z.

Вычеты и их приложения. Вычетом функции f(z) в особой точке a называется коэффициент при первой отрицательной степени ряда Лорана функции f(z) в проколотой окрестности точки a. Пишут

$$\operatorname{res}_{z=a} f(z) = c_{-1}.$$

Справедлива формула

$$\operatorname{res}_{z=a} f(z) = \frac{1}{2\pi i} \int_{\gamma} f(z) dz,$$

где γ — положительно ориентированная окружность $|z-a|=\rho$, такая, что f(z) аналитична всюду на круге $|z-a| \le \rho$, за исключением точки z=a.

Если a – устранимая особая точка, то

$$\operatorname{res}_{z=a} f(z) = 0.$$

Если a — простой полюс, то

$$\operatorname{res}_{z=a} f(z) = \lim_{z \to a} (z-a) f(z).$$

В частности, если $f(z) = \frac{\varphi(z)}{\psi(z)}$, где $\varphi(z)$, $\psi(z)$ – аналитичны в точке a и $\psi(a) = 0$, $\psi'(a) \neq 0$, $\varphi(a) \neq 0$, то

$$\operatorname{res}_{z=a} f(z) = \frac{\varphi(a)}{\psi'(a)}.$$

Если a – полюс k-го порядка, то

$$\operatorname{res}_{z=a} f(z) = \frac{1}{(k-1)!} \lim_{z \to a} \frac{d^{k-1}}{dz^{k-1}} \Big((z-a)^k f(z) \Big).$$

Если a — существенно особая точка, то вычет находится как коэффициент c_{-1} в ряде Лорана.

Вычетом функции f(z) в точке $z = \infty$ называется коэффициент при первой отрицательной степени ряда Лорана функции f(z) в окрестности точки $z = \infty$, взятый с обратным знаком:

$$\operatorname{res}_{z=\infty} f(z) = -c_{-1}$$

Справедлива формула

$$\operatorname{res}_{z=\infty} f(z) = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz,$$

где Γ — окружность достаточно большого радиуса, которая обходится по часовой стрелке.

Основная теорема о вычетах. Если функция f(z) является аналитической в односвязной области D, кроме конечного числа особых точек, Γ – замкнутая положительно ориентированная кривая, расположенная в D и содержащая внутри себя особые точки a_1, a_2, \ldots, a_n , то

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z).$$

Если функция f(z) является аналитической на плоскости $\bar{\mathbf{C}}$, кроме конечного числа особых точек $a_1, a_2, ..., a_n$, то

$$\sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z) + \operatorname{res}_{z=\infty} f(z) = 0.$$

Пусть $R(\sin x, \cos x)$ – рациональная функция от $\sin x$, $\cos x$. Тогда

$$\int_{0}^{2\pi} R(\sin x, \cos x) dx = \frac{1}{i} \int_{|z|=1}^{2\pi} R\left(\frac{z^{2}-1}{2iz}, \frac{z^{2}+1}{2z}\right) \frac{dz}{z}.$$

Далее интеграл вычисляют с помощью вычетов.

Учебное издание

Майсеня Людмила Иосифовна Жавнерчик Валерий Эдуардович Ермолицкий Александр Александрович и др.

МАТЕМАТИЧЕСКИЕ ТЕСТЫ

В 2-х частях

Часть 2

Математический анализ. Векторный анализ. Комплексный анализ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

Корректоры Е. Н. Батурчик, Е. С. Чайковская Ответственный за выпуск В. Э. Жавнерчик Компьютерная правка, оригинал-макет В. М. Задоля

Подписано в печать 29.05.2013. Формат 60х84 1/16. Бумага офсетная. Гарнитура «Таймс». Отпечатано на ризографе. Усл. печ. л. 6,86. Уч.-изд. л. 5,9. Тираж 200 экз. Заказ 108.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ №02330/0494371 от 16.03.2009. ЛП №02330/0494175 от 03.04.2009. 220013, Минск, П. Бровки, 6

BubhuomekabhyMi