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Abstract

Within the left-right symmetric model (LRM) and the effective rank 5 models (ER5M’s)
the Higgsstrahlung process

e+e− → ZH

is considered. It was shown that the deviations from the SM predicted by the LRM are larger
than that predicted by the ER5M’s. Investigation of the Higgsstrahlung disclosed that with
its help one could make a choice between the SM and the SM extensions under consideration.

1 Introduction

On July 4, 2012 the discovery of a narrow resonance, with a mass near 125.7 GeV, in the search
for the Standard Model (SM) Higgs boson at the Large Hadron Collider (LHC) was announced
at CERN by both the ATLAS [1] and CMS [2]. This discovery shows once again that with the
advent of the LHC, particle physics has entered a new exciting era. The Higgs boson observation
not only confirmed the so-called Higgs mechanism for the electroweak symmetry breaking, but
also opened a new possibility to perform a precise test of the SM.Within the current experimental
and theoretical uncertainties the properties of the newly discovered particle are thus far in very
good agreement with the predictions for a SM Higgs boson.

Due to its gauge charges the Higgs boson may interact with the beyond SM particles. This
new interaction can also modify the couplings between the Higgs and SM particles at tree
level or loop level. Some of the simplest extensions of the SM are those that add new neutral
gauge boson Z ′ which could arise from a variety of contexts, ranging from simple extra U(1)
gauge symmetries [3], left-right models (LRM’s)[3], 3-3-1 models [4], little Higgs models [5],
technicolour models [6] and so on.

It is obvious that deviations from the SM predictions could be interpreted in terms of Z ′

parameters. Properties of Z ′ boson are mainly being investigated in collider experiments (see
for review [7]). At hadron colliders the Z ′ boson could be produced via Drell-Yan production
and would then be observed in the invariant mass distribution of the pair produced final state
particles. In the case of e+e− colliders the basic processes for studying Z ′ boson parameters are
fermion pair production, Bhabha and Möller scattering, along with W pair production.

When the LHC reaches its design energy and luminosity it should be able to see evidence for
Z ′ up to ∼ 5 TeV for a large variety of the SM extensions [8], and the HL-LHC will extend this
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reach up to ∼ 6 TeV. The high energy LHC (HE-LHC) would substantially extend this reach to
∼ 11 TeV. In comparison, a 500 GeV e+e− collider with L = 500 fb−1 will be sensitive to mZ′

∼ 6 TeV that is comparable to potentiality of the HL-LHC while a 1 TeV e+e− collider with
L = 1 ab−1 will be able to detect Z ′ with the mass ∼ 12 TeV which has the same order as the
lower bound of mZ′ at HE-LHC.

In this paper we shall centre on the two most popular GUT scenarios, namely, the LRM’s
and models coming from E6 grand unification (effective rank-5 models — ER5M’s). Within
these SM extensions we shall consider the associated Higgs boson production with Z boson at
the electron-positron annihilation

e+ + e− → Z +H, (1)

where H is an analog of the SM Higgs boson. The cross section of (1) are function of mZ′ and
contain the coupling constants gHZZ and gHZZ′ which describe interaction of the Higgs boson
H with the neutral gauge bosons Z and Z ′. The aim of the work is to investigate the influence
of these parameters on the reaction in question. To avoid confusion, for every SM extensions
we shall use the notations which have been universally accepted. For example, in the LRM the
analog of the SM neutral gauge boson and the extra neutral gauge boson are symbolized by Z1

and Z2, respectively, while in the ER5M’s they are indicated by the symbols Z and Z ′.

2 Models

The LRM, based on the low-energy gauge group SU(2)L × SU(2)R × U(1)B−L, can arise from
an SO(10) or E6 GUT. In this model, because of a symmetry between the two gauge SU(2)
groups quarks and leptons enter both into the left- and right-handed doublets. The LRM has
three gauge coupling constants: gL, gR, and g

′ for the SU(2)L, SU(2)R, and U(1)B−L groups,
respectively. In the more simplest case (canonical LRM) the Higgs sector includes one bi-doublet

Φ

(
1

2
,
1∗

2
, 0

)
Φ =

(
Φ0
1 Φ+

2

Φ−
1 Φ0

2

)
, (2)

and two triplets ∆L(1, 0, 2), ∆R(0, 1, 2)

(σ ·∆L) =

(
δ+L /

√
2 δ++

L

δ0L −δ+L /
√
2

)
, (σ ·∆R) =

(
δ+R/

√
2 δ++

R

δ0R −δ+R/
√
2

)
. (3)

The symmetry breaking is triggered by the following VEVs

< Φ >=

(
k1/

√
2 0

0 k2/
√
2

)
, < ∆L,R >=

(
0 0

vL,R/
√
2 0

)
.

The bidoublet VEVs k1 and k2 break the SM symmetry and are of the order of the electroweak
scale (EWS). Therefore, the VEVs obey to the following hierarchy

vL << max(k1, k2) << vR. (4)

After the spontaneous symmetry breaking we have 14 physical Higgs bosons: four doubly-

charged scalars ∆
(±±)
1,2 , four singly-charged scalars δ̃(±) and h(±), four neutral scalars S1,2,3,4,

and two neutral pseudoscalars P1,2. The S1 boson is an analog of the SM Higgs boson.
In the case gL = gR the Lagrangians which will be needed in our calculation are as follows

(see the book [9])

−LLRMNC =
∑
f

{ψf (x)γµ(g
(1)
Vf

− g
(1)
Af
γ5)Z

µ
1 (x)ψf (x) + ψf (x)γµ(g

(2)
Vf

− g
(2)
Afγ5)Z

µ
2 (x)ψf (x), (5)

339

Би
бл
ио
те
ка

 БГ
УИ
Р



LS1ZnZk = gS1ZnZkS1(x)Z
µ
n(x)Zkµ(x), (n, k = 1, 2), (6)

where

g
(1)
V f =

1

2

{
ecϕc

−1
W s−1

W

[
SW3 (fL)− 2Q(f)s2W

]
+

+
esϕc

−1
W√

e−2g2Rc
2
W − 1

[
e−2g2Rc

2
WS

W
3 (fR) + SW3 (fL)− 2Q(f)

]}
,

g
(1)
Af =

1

2

{
ecϕc

−1
W s−1

W SW3 (fL)−
esϕc

−1
W√

e−2g2Rc
2
W − 1

[
e−2g2Rc

2
WS

W
3 (fR)− SW3 (fL)

]}
,

g
(2)
V f = g

(1)
V f

(
ϕ→ ϕ+

π

2

)
, g

(2)
Af = g

(1)
Af

(
ϕ→ ϕ+

π

2

)
, cϕ = cosϕ, sϕ = sinϕ,

gS1Z1Z1 = −
g2L(k

2
−cθ + 2k1k2sθ)

2
√
2c2Wk+

(cΦ −
√
c2W − s2W sΦ)

2, k− =
√
k21 − k22,

gS1Z1Z2 =
g2L(k

2
−cθ + 2k1k2sθ)√

2c2Wk+
[2c2W cΦsΦ +

√
c2W − s2W (c2Φ − s2Φ)],

gS1Z2Z2 = −
g2L(k

2
−cθ + 2k1k2sθ)

2
√
2c2Wk+

(
√
c2W − s2W cΦ + sΦ)

2,

sW = sin θW , cW = cos θW , θW is the Weinberg angle, and θ is the mixing angle in the sector
of the neutral Higgs bosons S1 and S2 (tan 2θ ∼ k2−/v

2
R). Since the mixing angle in the neutral

gauge boson sector ϕ is very small (it was found −0.0023 < ϕ < 0.0027) then in what follows we
shall ignore by the mixing in the neutral gauge boson sector. In this case the couplings constants

g
(1)
Vf

and g
(1)
Af

are the same as in the SM (g
(1)
Vf

= gVf , g
(1)
Af

= gAf ).

There are two possibilities of defining the left-right (LR) symmetry as a generalized par-
ity P and as a generalized charge conjugation C. However, instead of using parity or charge
conjugation, one could choose D-parity, which is broken spontaneously [10]. In this case the
discrete parity symmetry gets broken (by the VEV of a parity odd singlet scalar field) much
before the SU(2)R gauge symmetry breaks. The gauge group is effectively SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L × P , where P is the discrete left-right symmetry which we call D-parity.
This D-parity symmetry is different from the Lorentz parity in the sense that Lorentz parity
interchanges left handed fermions with the right handed ones but the bosonic fields remain the
same. Whereas, the D-parity also interchanges the SU(2)L Higgs fields with the SU(2)R Higgs
fields. The parity odd singlet field breaks this gauge symmetry at high scale ∼ (1016 − 1019)
GeV to SU(3)c × SU(2)L × SU(2)R × U(1)B−L which further breaks down to the SM gauge
group at a lower scale. In such a version of the LRM’s the relation between gauge boson masses
does not hold and the charged gauge boson W±

R appears to be more massive than the neutral
gauge boson ZR. Then a collider analysis using the 8 TeV ATLAS 20.3 fb−1 luminosity dilepton
data [11] derives mZR ≥ 2.5 TeV for gL = gR.

Further we consider the simplest E6-based low-energy group, SU(2)L × U(1)Y × U(1)Y ′ re-
sulting from compactification of 10-dimensional E8 × E′

8 superstring theory to four dimensions
on a manifold with a SU(3) holonomy [12]. The compactification scheme of the model predicts
that the matter fields occur in three supersymmetric chiral multiplets, each transforming ac-
cording to the quantum numbers of the fundamental 27 of E6. Among the fields associated with
each such multiplet are five colorless neutral superfields: one is usually assigned nonzero lepton

number, while two, H
(a)
1 and H

(a)
2 (a = 1, 2, 3), belong to doublets of the residual SU(2), and
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the remaining two, N
(a)
1 and N

(a)
2 , are singlets under SU(2). Usually one works in the basis

when the breaking of the SU(2)L×U(1)Y ×U(1)Y ′ symmetry down to U(1)em is realized when

only the neutral components of the third-family Higgs fields N
(3)
1 , N

(3)
2 and H

(3)
1 acquire nonzero

VEV’s — v1, v2 and n (v1, v2 ≪ n), respectively. As usual, several of the degrees of freedom of
these third-family Higgs bosons are eaten by the W,Z, and Z ′ in acquiring mass, and we are
left with the six physical Higgs bosons: one neutral pseudoscalar H0

3 , three neutral scalars H0
α

(α = 2, deg, Z ′), and two singly-charged scalars H± (the neutral scalar degenerate with H0
3 and

H± is denoted by H0
deg and that degenerate with Z ′ by H0

Z′).
The third-family Higgs bosons will have trilinear tree-level couplings to vector-boson pairs

and their Yukawa couplings to fermions of all generations will be tied to the fermion masses.
In contrast, the Higgs fields of the first and second families by definition do not have VEV’s
and they possess only quartic couplings to vector-boson pairs, and their Yukawa couplings to
fermions of their own and other generations cannot be very large. Therefore, only the Higgs
bosons associated with the third-generation 27 multiplet of E6 participate in the electroweak
symmetry breaking.

Below we give the Lagrangians of the neutral Higgs boson H0
2 being an analog of the SM

Higgs with the fermions and neutral gauge bosons:

−LE6
NC =

∑
f

{ψf (x)γµ(gVf − gAfγ5)Z
µ(x)ψf (x) + ψf (x)γµ(g

′
Vf

− g′Afγ5)Z
′µ(x)ψf (x), (7)

LE6
NGB = gH0

2ZZ
H0

2 (x)Zµ(x)Z
µ(x) + gH0

2ZZ
′H0

2 (x)Zµ(x)Z
′µ(x), (8)

where
Z = Z1 cosϕ+ Z2 sinϕ, Z ′ = Z1 sinϕ+ Z2 cosϕ,

g′Vl = −g′Vd =
ecβ
cW

√
5

30
, g′Al = g′Ad =

e

2cW

√
5

3

[
cβ√
10

+
sβ√
6

]
,

g′Vν = g′Aν =
e

2cW

√
5

3

[
3cβ√
40

+
sβ√
24

]
, g′Vu =

e

2cW

√
5

3

[
− cβ√

10
+
sβ√
6

]
, g′Au = 0,

gH0
2ZZ

=
emZ

sW cW
, gH0

2ZZ
′ =

emZ

3cW
(c2β − 4s2β), tanβ =

v2
v1

cβ = cosβ and sβ = sinβ (the expressions for gH0
2ZZ

and gH0
2ZZ

′ are given in the limit of large

n and small neutral gauge boson mixing). β is treated as a free parameter and its particular
values correspond to special models. The more popular models of this kind (effective rank-5
models — ER5M’s) are as follows: the Zχ model (β = 0), the Zψ model (β = π/2), the Zη
model (β = π − arctan

√
5/3), the ZI model — the inert model (−β = arctan

√
3/5), the ZN

model — the neutral model (β = arctan
√
15), the ZN model — the secluded sector model

(β = arctan
√
15/9).

At present, the highest mass bounds on most extra neutral gauge bosons are obtained by
searches at the LHC by the ATLAS and CMS experiments. The current direct limits of mZ′

are ∼ 3 TeV. For example, results based on dilepton resonance searches in µ+µ− and e+e− final
states have used data from the 7 TeV proton collisions collected in 2011 and the more recent 8
TeV data collected in 2012. ATLAS [?] has obtained exclusion limits at 95% C.L. of mZη > 2.44
TeV, mZχ > 2.54 TeV and mZψ > 2.38 TeV from 8 TeV collisions with 20 fb−1 integrated
luminosity, while CMS [13] has obtained 95% C.L. exclusion limits of mZψ > 2.60 TeV from 8

TeV collisions using 20 fb−1 of integrated luminosity.
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3 The process e+e− → ZH

Now we investigate the Higgsstrahlung (HS) that should be measured with precision at high-
energy e+e− colliders. At present various options of such devices are being considered. The
most nature concept is a linear e−e+ collider, and two projects are being developed, namely, the
International Linear Collider (ILC) that would operate at energies up to 1 TeV, and Compact
Linear Collider (CLIC) that could possibly operate at energies up to 3 TeV.

Let us start with the LRM. The Feynman diagram corresponding to the process e+e− → Z1S1
are shown on Fig.1. The total cross section is defined by the expression

σLRM (e+e− → Z1S1) =
βZ1(3m

2
Z1

+ β2Z1
)

18πm2
Z1

√
s

{
g2S1Z1Z1

(g2Ve + g2Ae)

[(s−m2
Z1
)2 +m2

Z1
Γ2
Z1

+

+
2gS1Z1Z1gS1Z1Z2(gVeg

(2)
Ve

+ gAeg
(2)
Ae

)[(s−m2
Z1
)(s−m2

Z2
) +mZ1mZ2ΓZ1ΓZ2 ]

[(s−m2
Z1
)2 +m2

Z1
Γ2
Z1
][(s−m2

Z2
)2 +m2

Z2
Γ2
Z2
]

+

+
g2S1Z1Z2

[(g
(2)
Ve

)2 + (g
(2)
Ae

)2]

[(s−m2
Z2
)2 +m2

Z2
Γ2
Z2
]

}
, (9)

where

βZ1 =

√
s− (m2

Z1
−m2

S1
)
√
s− (m2

Z1
+m2

S1
)

2
√
s

,

and s is the center-of-mass energy squared.
The first term in Eq. (9) which we shall symbolize as a σZ1Z1 is connected with the Feynman

diagram for e−e+ → Z1Z
∗
1 → Z1S1 and when gS1Z1Z1 = gHZZ = 2emZ/ sin 2θW it coincides with

the SM result [14]. The third term denoted by σZ2Z2 is associated with the Feynman diagram
for e−e+ → Z1Z

∗
2 → Z1S1. The second term σZ1Z2 describes the interference of the diagrams

with the Z1- and Z2-boson in the virtual states. Since at the substitution

gS1Z1Z2 → gS1Z1Z1 , g
(2)
Ve

→ gVe , g
(2)
Ae

→ gAe , mZ2 → mZ1 , ΓZ2 → ΓZ1 , (10)

the diagram describing e−e+ → Z1Z
∗
2 → Z1S1 passes into the diagram describing e−e+ →

Z1Z
∗
1 → Z1S1, then the expression (25) admits the following simple checking. When we fulfill

the replacement (10) then the third term must change over to the first one and the second term
(interference term) divided by two converts to the first one too, that is to say,

σZ2Z2 → σZ1Z1 ,
1

2
σZ1Z2 → σZ1Z1 . (11)

In Refs.[15, 16] the HS has been considered within the SU(2)L×U(1)Y ×U(1)B−L model with
the extra Z ′ boson. The results of these works do not coincide even with each other. Moreover,
in the cross section obtained in Ref. [15] the term σZZ does not equal to the SM expression. In
regard to the work [16], then here the obtained cross section holds the SM contribution but at
the replacement of the type (10) the interference term divided by two does not change-over to
the SM term as one should expect.

At e+e− collider the Higgsstrahlung process is dominant for moderate values of the ratio
mH/

√
s. At high energies it falls off according to the scaling law s−1. When

√
s = mZ2 there

is the resonance peak whose high crucially depends on the ratio r = gS1Z1Z2/gS1Z1Z1 and the

total decay width of Z2 boson. By virtue of the fact that in the LRM r = −2
√
c2W − s2W , the

resonance effect will be important.
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Figure 1: The Feynman diagrams for e+e− → Z1S1.

If one assumes that gS1Z1Z1 takes the SM value, then we may directly compare the SM cross
section with the LRM one. In this case the latter will look like

σLRM = σSM +∆σ, (12)

where

∆σ =
g4LβZ1(3m

2
Z1

+ β2Z1
)

72πc4W
√
s

{
(16s4W − 6s2W )[(s−m2

Z1
)(s−m2

Z2
) +mZ1mZ2ΓZ1ΓZ2 ]

[(s−m2
Z1
)2 +m2

Z1
Γ2
Z1
][(s−m2

Z2
)2 +m2

Z2
Γ2
Z2
]

−

− 20s4W − 12s2W + 2

[(s−m2
Z2
)2 +m2

Z2
Γ2
Z2
]

}
.

Calculations show that in the case under consideration contributions coming from the second
term in (12) are sizable

∆σ

σSM

∣∣∣∣∣√
s=0.5 TeV

≃


8.3%, when mZ2 = 2.5 TeV,
3.2%, when mZ2 = 4 TeV,
0.5%, when mZ2 = 10 TeV,

(13)

and

∆σ

σSM

∣∣∣∣∣√
s=1 TeV

≃


35%, when mZ2 = 2.5 TeV,
13.5%, when mZ2 = 4 TeV,
2.1%, when mZ2 = 10 TeV.

(14)

Once it will prove that the coupling constant gS1Z1Z1 does not equal to the SM value, then
we have to examine the case of the polarized electron-positron beams. With this object in mind
the following quantities are introduced

λSM± =
σSM±

σSM+ + σSM−
, λLRM± (s) =

σLRM±
σLRM+ + σLRM−

, λLRM± (s) = λSM± + δLRM± (s), (15)
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where σSM+ (σSM− ) is the SM cross section for the left- (right-) polarized electrons. Then we have

δLRM+ (s)

λSM+

∣∣∣∣∣√
s=0.5 TeV

≃


1.7%, when mZ2 = 2.5 TeV,
0.6%, when mZ2 = 4 TeV,
0.1%, when mZ2 = 10 TeV,

(16)

and

δLRM+ (s)

λSM+

∣∣∣∣∣√
s=1 TeV

≃


9%, when mZ2 = 2.5 TeV,
2.8%, when mZ2 = 4 TeV,
0.4%, when mZ2 = 10 TeV.

(17)

The total cross section of the Higgsstrahlung for the ER5M’s follows from Eq. (9) under
replacements like (10). In that event we shall also work with the polarized electron-positron
beams. Analysis reveals that the maximal deviation from the SM prediction occurs for the
η-model. But now the value of δE6

+ is one order of magnitude less than in the LRM case. To
cite an example, we have

δE6
+ (s)

∣∣∣∣∣√
s=1 TeV

≃


−0.026, when mZ2 = 1.5 TeV
−0.013, when mZ2 = 2 TeV,
−0.003, when mZ2 = 4 TeV.

(18)

At ILC one could achieve luminosity L ∼ O(ab−1) at
√
s ∼ O(TeV). In this range, for

example, the SM cross section has the order of magnitude of few× 10−1 pb. Then, the number
of the produced Higgs bosons which is predicted by the SM is as large as

n = σSM (e+e− → ZH)× L ∼ few pb× 1 ab−1 ∼ few× 105.

So, we have a good chance to establish whether deviations from the SM take place or not.
The cleanest channel for isolating the Higgsstrahlung from the background is provided by

the µ+µ− or e+e− decay mode for the Z boson and bb decay mode for H boson. The detail
analysis of the background processes could be found in Ref. [14].

4 Conclusion

Two kinds of models arising in a GUT scenario, the LRM and ER5M’s, have been consid-
ered. The associated Higgs production with Z boson at the electron positron annihilation
(Higgsstrahlung)

e+ + e− → Z +H

has been investigated. For the LRM two cases, gS1Z1Z1 = gHZZ and gS1Z1Z1 ̸= gHZZ , have been
treated. In the former the total cross sections of the LRM and the SM have been compared
directly. Analysis shows that even at the first stage of the ILC (

√
s = 0.5 TeV) one could get

the lower bound on the extra neutral gauge boson mass equal to 7 TeV. To do this, one should
measure the Higgsstrahlung with the precision of about 1%.

For the case gS1Z1Z1 ̸= gHZZ we have compared the ratios of the cross section with the
left-polarized electrons to the cross section with the unpolarized electrons for the SM and LRM.
If one supposes that the cross sections would be measured with the precision of about 1%, then
the lower bound on the extra neutral gauge boson mass equal to 6.4 TeV would be obtained
only at the second stage of the ILC (

√
s = 1 TeV).

The Higgsstrahlung investigation has shown that among the ER5M’s the maximal deviations
from the SM gives the η model. In that event the deviations from the SM predictions appear to
be small than for the LRM, and, as a result, the 1% precision of the cross section measurement
allows to obtain the bound mZ′ ≥ 2.5 TeV only at

√
s = 1 TeV.
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