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a b s t r a c t

An inverse heat conduction problem (IHCP) related to the recovery of time-dependent coefficients of heat
transfer on the tube surface by the data of temperature measurement at two inner points of the tube is
considered. Heat transfer is described by the initial boundary-value problem for 1D nonlinear heat con-
duction equation. To solve the posed IHCP a modified method of suboptimal stage-by-stage optimization
(SSO) that allows one to process the input data in a real time mode is presented. Based on the computa-
tional experiment a conclusion is drawn that SSO possesses a regularization property in terms of A.N.
Tikhonov.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In investigation of heat transfer processes there arises a wide
class of inverse heat conduction problems (IHCPs), viz., identifica-
tion of coefficients, internal sources, boundary and initial condi-
tions. In particular, for engineering and scientific applications the
problem of recovery of time-dependent heat transfer coefficients
by the data of temperature measurement at the inner points of
the object [1–3].

As is known, IHCP refer to the class of ill-posed problems of
mathematical physics. The fundamental concept of the regulariza-
tion algorithm [4] forms the basis of modern computation proce-
dures of IHCP solution. In this case, development of new
approaches to the solution of IHCP is stimulated by a number of
requirements among which we mention the following:

� stability of numerical algorithms of IHCP solution to small per-
turbations of the input data;
� use of the a priori information on the solution;
� effective implementation and high speed of numerical proce-

dures of IHCP solution.

Extremal methods for solving ill-posed problems [2,4,5] corre-
spond, to one or another degree, to the requirements mentioned

above. In particular, in the theory and practice, the conjugate
gradient method of residual functional minimization [2,5–7] is
wide used for solving IHCP. For linear models of transfer, classical
approaches [1,5] are developed that are based on the combination
of the regularization technique and different notions of fundamen-
tal solutions [8]. The development of a new so-called Li-group
shooting method for solving some classes of IHCP is presented in
[9]. Recently, a Bayesian statistical inference method [10,11] is ac-
tively applied to solution of IHCP. We should mention also hybrid
methods which combine algorithms of artificial neuron networks,
genetic algorithms and procedures of annealing simulation [12,13].

An additional requirement

� data processing in a real time scale (the causality property)

arises in the problems of control over thermal processes.
For a number of problems of the recovery of internal sources

and boundary regimes of heat transfer the methods of sequential
function specification [1], semi-interval regularization [14],
dynamic regularization [15,16], inverse dynamic systems [17–20]
meet this requirement. In [21], a review of the regularization tech-
niques that retain the causality property for solution of the first-
kind Volterra equations is presented.

In the present paper we consider the problem of the recovery of
heat transfer coefficients at the boundaries of the annular region.
To solve this problem we develop the approach of suboptimal
stage-by stage optimization (SSO) [22,23]. This approach belongs
to the class of extremal methods of solution of ill-posed problems
with specially selected regularization functionals.
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Classical extremal regularization techniques do not allow data
processing in the real (current) time scale since they involve con-
jugate problems that are solved in reverse time. An idea of the ap-
proach under development is rather simple (see, e.g., [1,14–16]).
The total time segment is divided to parts (stages) compatible with
the current time scale and at each step IHCP is solved by one of
classical methods. In this case, the problem of joining the solutions
at the points the junction of stages can arise for identification prob-
lems. Depending on the a priori information on the IHCP solution,
this can be the requirement of continuous and rather smooth join-
ing. These requirements are provided by an appropriate choice of
penalty coefficients in the quality functional.

For nonlinear IHCP, the division to stages plays one more impor-
tant role, since at each stage the system can be linearized, which at
small length of the stage properly approximates the initial nonlin-
ear system.

The SSO approach allows control of the vector of regularization
parameters, which consists of

1. the ill-posedness order of the IHCP lumped model;
2. a set of weighting coefficients of Tikhonov regularizers;
3. a set of penalty coefficients that provide the continuity

(smoothness) of the recovered function at the points of the
stage-by-stage junction;

4. the stage length;
5. the step of discretization at a stage.

We note that using an appropriate set of the regularization vec-
tor components one can take into account the a priori information
on the structure of the input data error, information on the por-
tions of sought-for coefficient monotonicity, etc. The property of
the SSO method to process the input data in a real time scale is
due to reduction of the recovery problem to solving a simple
small-dimension problem of square optimization at each stage.
The same property allows one to use standard software MAPLE,
Mathlab, etc.

The paper is organized as follows: introduction, three sections,
conclusions, and appendix. In the first section the problem is for-
mulated, in the second section the modified SSO method is stated

in detail, in the third section we discuss the results of numerical
simulation of the problem of identification of the heat transfer
coefficient. Numerical simulation is aimed at experimental verifi-
cation of the regularization property of the procedure proposed
for IHCP solution. We note that parameters of the initial bound-
ary-value problem considered at the beginning of the third section
are borrowed from [24] where a mathematical model of ingots
solidification in a jet crystallizer is presented. In the appendix,
for convenience of the readers, we give the notion of the regulariz-
ing operator.

2. Problem formulation

Let an initial boundary-value problem for a nonlinear heat con-
duction equation be specified in the cylindrical system of
coordinates

qðTÞCðTÞ@T
@t
¼1

r
@

@r
rkðTÞ@T

@r

� �
; T¼Tðr;tÞ; r06 r6 r�; t06 t6 t�;

ð1Þ

�kðTÞ @T
@r

����
r¼r0

¼ a1ðtÞðTinðtÞ � Tðr0; tÞÞ; t 2 ½t0; t��; ð2Þ

�kðTÞ @T
@r

����
r¼r�

¼ a2ðtÞðTðr�; tÞ � TflðtÞÞ; t 2 ½t0; t��; ð3Þ

Tðr; t0Þ ¼ TðrÞ; r 2 ½r0; r��: ð4Þ

The system of Eqs. (1)–(4) describes a nonstationary tempera-
ture field in a tube with outer radius r�and inner radius r0. In this
case, the conditions of angular symmetry and independence of
the temperature field of the axial coordinate are assumed to be
met. Here T ¼ Tðr; tÞ; r 2 ½r0; r�� � R; t 2 ½t0; t�� � R is the
temperature distribution, a1(t), a2(t) are the heat transfer coeffi-
cients, k(T) is a heat-conductivity coefficient, C(T) is the specific
heat capacity of material. q(T) is the material density, Tfl(t) is the

Nomenclature

A thermal depth of thermocouple location
C(T) heat capacity
gM
r vector of input data

h step of spatial grid
i� ill-posedness order
j stage number
Lb parameter determining the confidence interval

[sj,sj + LbDt]
L parameter characterizing the step length LDt
M + 1 number of temperature measurements
N dimensionality of the state vector of a finite-dimen-

sional system
p number of stages
r coordinate
r0 inner tube radius
r� outer tube radius
r�1; r�2 points of temperature measurement
T = T(r, t) temperature field
TðrÞ initial temperature
Tfl(t) temperature outside the tube
Tin(t) temperature inside the tube
t time

t0 initial time instant
t� finite time instant
w1,w2 random variables
U(t) control (heat flux)
uM
r vector of output data

Greek symbols
a1,a2 heat transfer coefficients
a�1 estimate of the heat transfer coefficient a1

b aggregate regularization parameter
cj penalty coefficient
k(T) thermal conductivity
q(T) density
gj weighting coefficient of the Tikhonov regularizator
r standard deviation of the measurement error
Dt step of the time grid

Subscripts and superscripts
i index
j index
k index
s index
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temperature of cooling liquid outside the tube, Tin(t) is the temper-
ature on the outer surface of the tube, and TðrÞ is the initial tem-
perature of the tube.

We consider the problem of calculation of the heat transfer
coefficients a1(t), a2(t), t 2 [t0, t�], on the basis of the known data

y1ðtÞ ¼ T r�1; t
� �

þ v1ðtÞ; y2ðtÞ ¼ T r�2; t
� �

þ v2ðtÞ; t 2 ½t0; t��; ð5Þ

on the values of temperature fields at two specified points
r�1; r�2; r0 6 r�1 < r�2 6 r�.

Here the functions v1(t), v2(t) denote the measurement error.
Following [1,2], in order to model the functions v1(�), v2(�) we use
statistical description. With account for discrete presentation of
measurements this description has the form

y1ðtiÞ ¼ T r�1; ti
� �

þw1r; i ¼ 0;1; . . . ;M; ð6Þ
y2ðtiÞ ¼ T r�2; ti

� �
þw2r; i ¼ 0;1; . . . ;M; ð7Þ

where

ti ¼ t0 þ iDt; Dt ¼ ðt� � t0Þ=M; ð8Þ

ris the standard deviation of measurement errors, w1 and w2 are
the random variables with normal distribution, zero-mean and uni-
tary standard deviation.

Let the thermophysical parameters q, k, and C, temperatures
Tfl(t), Tin(t), t 2 ½t0; t��; TðrÞ; r 2 ½r0; r��, and a value of error devia-
tion r be known. Then the general problem of identification of
the heat transfer coefficients is in recovery of the functions a1(t),
a2(t), t 2 [t0, t�], by the data (6), (7), and the system of Eqs. (1)–(4).

We note that the problem under consideration disintegrates to
two subproblems which can be solved independently. The first
subproblem is to determine the coefficient a1(t), t 2 [t0, t�], by the
data (6) and the system

qðTÞCðTÞ @T
@t
¼ 1

r
@

@r
rkðTÞ @T

@r

� �
; r0 6 r 6 r�2; t0 6 t 6 t�; ð9Þ

�kðTÞ @T
@r

����
r¼r0

¼ a1ðtÞðTinðtÞ � Tðr0; tÞÞ; T r�2; t
� �

¼ y2ðtÞ; t 2 ½t0; t��;

ð10Þ

Tðr; t0Þ ¼ TðrÞ; r 2 r0; r�2
� �

: ð11Þ

The second subproblem of the recovery of the coefficient a2(t),
t 2 [t0, t�], by the data (7) is determined similarly.

3. Approach of suboptimal optimization

We formulate the SSO method by an example of the problem
recovery of the heat transfer coefficient by the data (6) and the sys-
tem of Eqs. (9)–(11). We assume that the grid (8) is uniform, i.e.,
ti = t0 + iDt, i = 0,1, . . . ,M, Dt = (t� � t0)/M.

The essence of the method is in reduction of the problem of the
coefficient a1(t) recovery on the entire time interval t 2 [t0, t�] to
successive solution of p problems of recovery of the coefficient
a1(t) on small time intervals t 2 [sj,sj+1], j = 0,1, . . . ,p � 1, where
sj = t0 + jLDt, and the integers L > 0, p > 0, M > 0 are related as
(p � 1)L = M. Here LDt is the length of the time interval determined
by the parameter L and the quantity Dt > 0, which is the step of
measurements in (6). The advantages of this approach will be sta-
ted below.

For a given j (j = 0, . . . ,p � 1), in order to recover the coefficient
a1(t) at the jth stage t 2 [sj,sj+1] the following optimal control prob-
lem is solved.

Problem Pj: To find heat flux (a control) U(t), t 2 [sj,sj+1], which
minimizes the performance criterion

Xðjþ1ÞL

i¼jLþ1

T r�1; ti
� �

� y1ðtiÞ
� �2 þ gj

Z sjþ1

sj

dUðtÞ
dt

� �2

dt þ cjðU
ðj�1Þðsj � 0Þ

� Uðsj þ 0ÞÞ2 !min ð12Þ

on the trajectories Tðr; tÞ; r 2 ½r0; r�2�; t 2 ½sj; sjþ1�, of the system

qðTÞCðTÞ @T
@t
¼ 1

r
@

@r
rkðTÞ @T

@r

� �
; r0 6 r 6 r�2; t 2 ½sj; sjþ1�; ð13Þ

�kðTðr0; tÞÞ
@Tðr0; tÞ

@r
¼ UðtÞ; T r�2; t

� �
¼ y2ðtÞ; t 2 ½sj; sjþ1�; ð14Þ

Tðr; sjÞ ¼ Tðj�1Þðr; sj � 0Þ; r 2 r0; r�2
� �

: ð15Þ

Here gj > 0 is the weighting coefficient of the Tikhonov regularizer
in the performance criterion (12), cj > 0 is the penalty coefficient
for the term cj(U⁄(sj � 0) � U(sj + 0))2 in (12) which is responsible
for junction of U(j�1)(sj � 0) and U(j)(sj + 0); Uðj�1ÞðtÞ; Tðj�1Þðr; tÞ; t 2
½sj�1; sj�; r 2 r0; r�2

� �
, are the optimal control and the corresponding

temperature obtained at the previous (j � 1)th stage. At j = 0 we as-
sume that c0 = 0 and T ðj�1Þðr; s0 � 0Þ ¼ TðrÞ; r 2 r0; r�2

� �
.

Let U(j)(t) be the optimal control and
TðjÞðr; tÞ; t 2 ½sj; sjþ1�; r 2 r0; r�2

� �
, is the trajectory of the problem

Pj correspondent to it. Then we assume

a1ðtÞ � a�1ðtÞ :¼ UðjÞðtÞ=ðTinðtÞ � T ðjÞðr0; tÞÞ; t 2 ½sj; sjþ1�; ð16Þ

where a�1ðtÞ; t 2 ½sj; sjþ1�, is an estimate of the coefficient a1(t) at the
jth stage.

To solve the problem Pj numerically, we approximate the non-
linear system of partial differential Eqs. (13)–(15) by a linear sys-
tem of ordinary differential equations.

With this in mind we divide the interval r0; r�2
� �

to N parts by the
points

ri ¼ r0 þ ih; i ¼ 0;1; . . . ;N; h ¼ r�2 � r0
� �

=N; r�1 ¼ ri� ¼ r0 þ i�h;

ð17Þ

and denote T(ri, t) = Ti(t). Then the performance criterion (12) takes
the form

Xðjþ1ÞL

i¼jLþ1

ðTi� ðtiÞ�y1ðtiÞÞ2þgj

Z sjþ1

sj

dUðtÞ
dt

� �2

dtþcjðU
ðj�1Þðsj�0Þ�Uðsjþ0ÞÞ2!min:

ð18Þ

If N is rather large, then system (13)–(15) can be approximated
by the nonlinear system of ordinary differential equations

_T0ðtÞ ¼
kðT1ðtÞÞðT1ðtÞ � T0ðtÞÞð1=r0 þ 1=hÞ þ UðjÞðtÞ

hcðT0ðtÞÞqðT0ðtÞÞ
; ð19Þ

_TiðtÞ ¼
kðTiðtÞÞðTiþ1ðtÞ � TiðtÞÞðh=ri þ 1Þ � kðTi�1ðtÞÞðTiðtÞ � Ti�1ðtÞÞ

h2cðTiðtÞÞqðTiðtÞÞ
;

i ¼ 1;2; . . . ;N � 2;

_TN�1ðtÞ¼
kðTN�1ðtÞÞðy2ðtÞ�TN�1ðtÞÞðh=rN�1þ1Þ�kðTN�2ðtÞÞðTN�1ðtÞ�TN�2ðtÞÞ

h2cðTN�1ðtÞÞqðTN�1ðtÞÞ
;

t2 ½sj;sjþ1�;

with the initial conditions

TiðsjÞ ¼ T0
i ðsjÞ :¼ T ðj�1Þðri; sj � 0Þ; i ¼ 0;1; . . . ;N � 1: ð20Þ

Problems (18)–(20) is a problem of optimal control of the non-
linear dynamic system (19) with the N-dimensional vector of state
(T0(t),T1(t), . . . ,TN�1(t)) and scalar control U(t), t 2 [sj,sj+1]. It has a
number of special features which do not allow use of standard
computational packages designed for ‘‘standard’’ problems of opti-
mal control. Therefore we make a series of simplifications.
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First of all, on the interval [sj,sj+1] we linearize system (19) hav-
ing substituted it by the system of linear differential equations of
the form

_T0ðtÞ ¼
k T0

1ðsjÞ
	 


ðT1ðtÞ � T0ðtÞÞð1=r0 þ 1=hÞ þ UðjÞðtÞ

hc T0
0ðsjÞ

	 

q T0

0ðsjÞ
	 
 ; ð21Þ

_TiðtÞ¼
k T0

i ðsjÞ
	 


ðTiþ1ðtÞ�TiðtÞÞðh=riþ1Þ�k T0
i�1ðsjÞ

	 

ðTiðtÞ�Ti�1ðtÞÞ

h2c T0
i ðsjÞ

	 

qðT0

i ðsjÞÞ
;

i¼1;2; . .. ;N�2;

_TN�1ðtÞ¼
k T0

N�1ðsjÞ
	 


ðy2ðtÞ�TN�1ðtÞÞðh=rN�1þ1Þ�k T0
N�2ðsjÞ

	 

ðTN�1ðtÞ�TN�2ðtÞÞ

h2c T0
N�1ðsjÞ

	 

q T0

N�1ðsjÞ
	 
 ;

with the initial conditions (20). We recall that here the data
T0

0ðsjÞ; T0
1ðsjÞ; . . . ; T0

N�1ðsjÞ are determined according to (20), i.e., they
are known at the time instant sj.

Moreover, we solve this problem in the class of piecewise con-
stant admissible control

UðtÞ ¼ Ui ¼ const; t 2 ½ti; tiþ1�; i ¼ jL; . . . ; ðjþ 1ÞL� 1: ð22Þ

The problem (18), (20)–(22) is easily reduced (see, e.g., [23]) to a
problem of quadratic programming and can be solved by standard
techniques. Let U(t) = U(j)(t), t 2 [sj,sj+1], be the optimal control of
the linear-quadratic problem (18), (20)–(22). Using this control,
we integrate the system of nonlinear partial differential Eqs.
(13)–(15) and obtain the corresponding trajectory

TðjÞðr; tÞ; r 2 ½r0; r��; t 2 ½sj; sjþ1�: ð23Þ

Knowing trajectory (23), we calculate the coefficient
a�1ðtÞ; t 2 ½sj; sjþ1�, by formula (16) and find the initial conditions

TðjÞðr; sjþ1 � 0Þ; r 2 r0; r�2
� �

;

for the following (j + 1) th stage (for the following problem Pj+1).
Thus, in the technique suggested the solution of one problem of

recovery for linear system (9) and (10) on a ‘‘large’’ interval t 2 [t0,
t�] is reduced to successive solution of the problems of optimal
control (18), (20)–(22) by linear systems on each ‘‘small’’ interval
t 2 [sj,sj+1], j = 0, . . . ,p � 1.

We note that in the one-stage (p = 1) procedure of recovery one
problem of optimal control is solved on the entire interval [t0, t�]. In
this case, its dimensions increase with decrease of steps Dt and h,
which makes impossible solution of the problem at high accuracy
of approximation.

In the approach suggested at any choice of arbitrary small val-
ues of steps Dt and h the dimensions of quadratic programming
problems, which are solved at the stages, can be arbitrary a priori
specified (only the number of stages can increase).

Moreover, at each stage the results of recovery can be analyzed,
and using the results of the analysis the regularization parameters
can be corrected.

It is seen from the given description of the SSO method that its
implementation is related to the solution of optimal control prob-
lems (18), (20)–(22) on each interval [sj,sj+1], j = 0, . . . ,p � 1. Since
each of these problems is reduced to the corresponding quadratic
programming problem of small dimensionality, all these problems
are solved by standard methods. In particular, for both solution of
quadratic programming problems and integration of the systems of
differential equations we used the mathematic package MATLAB
7.0.

For the optimal control problems (18), (20)–(22) of great
importance is the value of the index i�, that is determined by the

parameters r�1 and N (see relation (17)). The value of the index i�
is equal to the index k of the performance criterion of the problem.
We recall [23,25] that the index of the performance criterion
Z b

a
f ðTsðtÞ; s ¼ 0; . . . ;N � 1;UðtÞÞdt

is the smallest integer number k, at which

@

@U
dk

dtk
f ðTsðtÞ; s ¼ 0; . . . ;N � 1;UðtÞÞ– 0:

Here the derivatives

dk

dtk
TsðtÞ; s ¼ 0; . . . ;N � 1;

are calculated with account for the specified system of differential
equations. In the case under consideration this is system (21).

The value of the index k characterizes the degree of direct influ-
ence of control U(t), t 2 [t0, t�], on the performance criterion. The
higher the value of k the weaker the influence of U(t), t 2 [t0, t�],
on the performance criterion (more exactly on the first term of it
which is responsible for the quality of recovery) and the more
‘irregular’ the recovery problems become. Therefore, in what fol-
lows we call the quantity i� = k the order of ill-posedness of the
lumped model (18)–(20) of the problem of recovery of the coeffi-
cient. We note that i� ¼ r�1 � r0

� �
=h.

An analysis of problem (18), (20)–(22) shows that the weakest
influence on the first term

Xðjþ1ÞL

i¼jLþ1

ðTi� ðtiÞ � y1ðtiÞÞ2

in criterion (18) is exerted by the values of the control U(t) = U(j)(t),
t 2 [sj,sj+1], that are the closest to the end of the interval [sj,sj+1]
(the closer to the end of the interval, the weakest the influence).
These control values are selected mainly in order to minimize the
regularization term
Z sjþ1

sj

dUðtÞ
dt

� �2

dt

in criterion (18). It is obvious that values of these control values will
be ‘regular’, but far from those under recovery.

In order to overcome the difficulties that arise at a large value of
the index i�, the above-described algorithm should be altered as
follows.

One more parameter Lb, 0 6 Lb 6 L, is selected. It is assumed that
the integer Lb is such that the number (t� � t0)/Lb is integer. The
parameter Lb defines that part of the interval (the confidence inter-
val) [sj,sj + LbDt], where the obtained control values

UðjÞðtÞ; t 2 ½sj; sj þ LbDt� � ½sj; sjþ1 ¼ sj þ LDt�;

are taken to be recovered. Only this part U(j)(t), t 2 [sj,sj + LbDt], of
the obtained control U(j)(t), t 2 [sj,sj + LDt], is used at subsequent
calculations.

With account for the alterations made the algorithm takes the
following form:

Step 0. We have the initial data j ¼ 0; �s0 ¼ t0; Tð�1Þðr; �s0Þ
¼ TðrÞ; r 2 ½r0; r��; x0

i ðtÞ; t 2 ½t0; t��; i ¼ 1;2.
Step 1. We assume T0

0ð�sjÞ ¼ Tðj�1Þðr0; �sjÞ; T0
1ð�sjÞ ¼ T ðj�1Þðr1; �sjÞ;

. . . ; T0
N�1ð�sjÞ ¼ Tðj�1ÞðrN�1; �sjÞ. We solve the optimal control prob-

lem (18), (20)–(22) on the interval ½�sj; s�jþ1�, where s�jþ1 ¼min
f�sj þ LDt; t�g. We obtain optimal control UðjÞðtÞ; t 2 ½�sj; s�jþ1�.
Step 2. We assume �sjþ1 :¼ �sj þ LbDt and on the interval
½�sj; �sjþ1� � ½�sj; s�jþ1� we integrate the nonlinear system of partial
differential Eqs. (13)–(15) with the found control
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UðjÞðtÞ; t 2 ½�sj; �sjþ1�, and obtain the trajectory TðjÞðr; tÞ; r 2
½r0; r�2�; t 2 ½�sj; �sjþ1�.
Step 3. We find the coefficient a�1ðtÞ; t 2 ½�sj; �sjþ1�, from relations
(16).
Step 4. If �sjþ1 ¼ t�, we go to Step 6, otherwise to Step 5.
Step 5. We set j :¼ j + 1 and go to Step 1.
Step 6. Stop of the algorithm. The constructed function a�1ðtÞ;
t 2 ½t0; t��, is taken as the recovered coefficient of heat transfer.

The procedure mentioned is in agreement with the approach of
successive regularization [1,14].

4. Numerical simulation

Since application of regularizing algorithms (see Appendix)
allows obtaining physically admissible, stable to disturbances of
input data, solutions of inverse problems, it is important to prove
the regularizability property of the SSO algorithm. However, in
the general case, a mathematically rigorous proof of this property
has not been obtained as yet. Therefore, numerical simulation of
the SSO approach is of importance.

We denote

urðtiÞ ¼ a�1ðtiÞ; yrðtiÞ ¼ y1ðtiÞ; i ¼ 0;1; . . . ;M;

where the subscript r indicates, according to (6) the dependence of
data a�1ðtiÞ; y1ðtiÞ on the random variable w1. We present the depen-
dence of the vector of output data

uM
r ¼ ½urðt1Þ; . . . ; urðtMÞ� ð24Þ

of the SSO algorithm on the vector of input data

yM
r ¼ ½yrðt1Þ; . . . ; yrðtMÞ� ð25Þ

in the form

uM
r ¼ Rb yM

r
� �

; ð26Þ

where

b ¼ 1
i�
þ Dt þ max

j¼0;...;p�1
fgjg þ max

j¼0;...;p�1
fcjg

is the aggregate regularization parameter, i� is the order of ill-
posedness of the lumped model (18)–(20) of the initial boundary-
value problem (13)–(15) with the performance criterion (12), gj is
the weighting coefficient of the Tikhonov regularizer in (12), cj is
the penalty coefficient for the term in (12) which is responsible
for junction, and Dt is the step of the time grid. The parameter Dt
determines the so-called step regularization [1,5] of the algorithm.

With account for the definition of the regularizing algorithm
(see Appendix A), the hypothetical assertion on the presence of
the regularizability property of the SSO algorithm can be formu-
lated as follows.

Assertion 1. There exists a dependence b(r) such that if the
time step of measurements and the value of measurement error
deviation r tend to zero, then the output data (24) of the algorithm
tend to exact values of the heat transfer coefficient.

Here we do not specify in which sense one should consider the
convergence of data (24) to exact values (point-by-point conver-
gence, mean convergence, etc.), since this is a subject of additional
investigations.

Two series of numerical simulation of the problem of recovery
of the coefficient a1, assuming that thermophysical parameters
are constant, were conducted. In this case, we considered two clas-
ses of problems: ‘good’ problems for which the thermal depth
A ¼ r�1 � r0

� � ffiffiffiffiffiffiffiffiffiffiffi
qC=k

p
of thermocouple location satisfies the condi-

tion A < 2 and ‘bad’ problems when A	 2. The numerical experi-

ment results presented in what follows indicate that the SSO
algorithm possesses the regularizability property.

4.1. Numerical experiment. Recovery by the noised data

To verify the efficiency of the method suggested we conducted
two series of numerical experiments.

First, we considered system (9)–(11) with the following values
of the parameters (‘good’ problem)

C ¼ 1085 J=ðkg KÞ; q ¼ 2500 kg=m3; k ¼ 104 W=ðm KÞ; ð27Þ
t0 ¼ 5 s; t� ¼ 100 s; r0 ¼ 0:0375 m; r� ¼ r�2 ¼ 0:0475 m: ð28Þ

The functions y2(t) and Tin(t), t 2 [t0, t�], are presented in Figs. 1
and 2, respectively, TðrÞ ¼ �3910r þ 285:065; r 2 ½r0; r��.

0 20 40 60 80 100
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Fig. 1. Function y2(t), t 2 [t0, t�] in the first series of the experiments.
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Fig. 2. Function Tin(t), t 2 [t0, t�].
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Fig. 3. Example of implementation of the function w1(t), t 2 [t0, t�].
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Thermophysical parameters (27) correspond to the material of
the casing of a jet crystallizer for solidification of ingots [24].

As the model coefficient under recovery a1(t), t 2 [t0, t�], we took
the function

a1ðtÞ ¼ 140ð5� tÞ=19þ 800þ 200sinðt=10Þ; t 2 ½t0; t��: ð29Þ

To obtain the noised measurement data (6) at a given point
r�1 2 ½r0; r��, we integrated system (9)–(11) with the above-
indicated data and assumed

y1ðtÞ :¼ T r�1; t
� �

þw1ðtÞr; t 2 ½t0; t��; ð30Þ

where r is the standard quantity of measurement error deviation,
w1(t) is a random variable with normal distribution, zero, mean,
and unitary standard deviation. An example of implementation of
the function w1(t), t 2 [t0, t�], is given in Fig. 3.

Then we solved the problem of recovery of the heat transfer
coefficient a1(t), t 2 [t0, t�], by data (30) and system (9) and (10)
with the known functions TinðtÞ; y2ðtÞ; t 2 ½t0; t��; TðrÞ; r 2 ½r0; r��,
and parameters (27) and (28).

For the considered series of ‘good’ problems we have
A ¼

ffiffiffiffiffiffiffiffiffiffi
2:61
p

¼ 1:615 < 2. Results of the numerical experiment are
presented in Figs. 4–6 for N = 21, the value of the point
r�1 ¼ 0:047 2 ½r0; r�� (i.e., value i� = 20) where measurements are
made, and different values of r that characterize the level of noise,
and also different values of the regularization parameters M, L, Lb,
gj, cj. We note that for N = 21, i� = 20 we have A = 1.53 < 2.

In Figs. 4–6, graph (a) illustrates the model heat transfer coeffi-
cient a1(t), t 2 [t0, t�], (see (29)) and the recovered coefficient
a�1ðtÞ; t 2 ½t0; t��. Graph (b) shows the deviation function
DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 4. Results of the numerical experiment at N = 21, M = 312, i� = 20, L = 20,
Lb = 10, gj = 0.000167, cj = 0.000067, r = 0: (a) solid line denotes the model heat
transfer coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer
coefficient a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 5. Results of the numerical experiment at N = 21, M = 155, i� = 20, L = 30, Lb = 3,
gj = cj = 0.00033, r = 0.3: (a) solid line denotes the model heat transfer coefficient
a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 6. Results of the numerical experiment at N = 21, M = 235, i� = 20, L = 30, Lb = 3,
gj = cj = 0.00167, r = 1: (a) solid line denotes the model heat transfer coefficient
a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 7. Function y2(t), t 2 [t0, t�] in the second series of the experiments.
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We conducted the second series of experiments for the case of a
thermally thick tube in a similar manner. The length of the interval
[r0,r�] was 10 times longer, i.e., parameters (28) were replaced by
the following parameters:

r0 ¼ 0:375; r� ¼ 0:475: ð31Þ

Values of parameters (27) and the function Tin(t), t 2 [t0, t�], were
conserved. As the function y2(t), t 2 [t0, t�], we took the function gi-
ven in Fig. 7. The function TðrÞ; r 2 ½r0; r��, was assumed equal to
TðrÞ ¼ �1676:7r þ 1031:022; r 2 ½r0; r��.

As the model recovered coefficient a1(t), t 2 [t0, t�], as previ-
ously, we took function (29).

Substitution of data (28) by (31) substantially complicates the
problem of recovery of the heat transfer coefficient since now
A ¼

ffiffiffiffiffiffiffiffiffi
261
p

	 2.
The results of the second series of the numerical experiment are

presented in Figs. 8–13 for N = 21, M = 105, L = 30, Lb = 2 and
different values of points r�1 2 ½r0; r�� (i.e., for different values of
i� 2 {1, . . . ,N}), different values of r, and different values of the
parameters gj, cj. We note that at N = 21, i� = 5 we have
A = 3.23 > 2 and at N = 21, i� = 18 we have A = 13.7 > 2.

Fig. 11. Results of the numerical experiment at N = 21, M = 105, i� = 18, L = 30,
Lb = 2, gj = 0.00001, cj = 0.0001, r = 0: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 10. Results of the numerical experiment at N = 21, M = 105, i� = 5, L = 30, Lb = 2,
gj = 0.005/3, cj = 0.05/3, r = 1: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 8. Results of the numerical experiment at N = 21, M = 105, i� = 5, L = 30, Lb = 2,
gj = 0.0005/3, cj = 0.005/3, r = 0: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 9. Results of the numerical experiment at N = 21, M = 105, i� = 5, L = 30, Lb = 2,
gj = 0.001/3, cj = 0.01/3, r = 0.5: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.
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As in the previous series, in Figs. 8–13 graph (a) illustrates the
model heat transfer coefficient a1(t), t 2 [t0, t�], (see (29)) and the
recovered coefficient a�1ðtÞ; t 2 ½t0; t��. Graph (b) shows the differ-
encing function DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

5. Conclusions

We suggested a modified SSO approach to recovery of time-
dependent heat transfer coefficients in the initial boundary-value
problem for a nonlinear heat conduction equation in the cylindrical
system of coordinates. The SSO approach develops the method of
Tikhonov regularization of ill-posed problems with account for
the requirement of data processing in a real time scale.

It follows from the numerical experiment that the SSO algo-
rithm possesses regularizing properties. In particular, with the
aid of the SSO algorithm, depending on the level of noise, the heat
transfer coefficient is recovered for a wide range of thermal depths
of thermocouple location.

Appendix A

We consider the problem

Az ¼ f ; z 2 Z; f 2 F; ð32Þ

where f is a vector of exact input data, z is a sought-for solution of
the problem, Z and F are metric spaces, and A is continuous, in the
general case, nonlinear operator. In practice, the input data are
specified inaccurately, therefore, instead of (32) one should con-
sider the problem of search of an approximate solution zd from
the equation

Azd ¼ fd;

where the vector fd of disturbed input data satisfies the condition
q(f, fd) 6 d, d is an estimate of input data error, and q is a metric
in the space F.

Problem (32) is well-posed according to Hadamard if in some
d0- neighbourhood Qf = {gjq(f,g) < d0}(d0 P d) of the vector f there
exists continuous inverse operator A�1. If the inverse operator is
not determined on Qf or is discontinuous, then problem (32) is
ill-posed.

Solution of the well-posed problem (32) in the case of inaccu-
rately specified input data can be presented in the form

zd ¼ A�1fd: ð33Þ

We can also take, as an approximate solution zd, an arbitrary
vector from the set

Zd ¼ fgjqðAg; fdÞ 6 dg:

In this case, by virtue of A�1 continuity, the stability (well-
posedness) requirement

lim
d!0

qðzd; zÞ ¼ 0 ð34Þ

of the problem will be met.
For ill-posed problem the solution of the form (33) does not any

more satisfy condition (34) with an appropriate choice of a set of
the vectors fd. From the physical point of view this indicates the ab-
sence of the reasonable interpretation of solution (33). On the
other hand, for a large class of ill-posed problems there exists
the possibility of selection of admissible solutions [4]. Namely,
approximate solutions of the type zb = Rb(fd), where Rb is a regular-
izing operator, satisfy the stability property (34). In this case, the
operator Rb is called regularizing [4,26] if:

(1) it is determined on the set {gjq(f,g) 6 d} for any b(the regu-
larization parameter) from the semi-interval (0,b0], where b0

is some positive number;
(2) there exists the dependence b(d) such that the stability con-

dition (34) is met when zd is selected in the form zd = Rb(fd).

Physically, the interpreted solutions of ill-posed problems can
be obtained by numerical algorithms that approximate the regular-
izing operator. Extensive physical and mathematical literature
(see, e.g., review [26]) is devoted to a proof of this assertion for dif-
ferent schemes of approximation. The thus-obtained algorithms
are also called regularizing.

Fig. 12. Results of the numerical experiment at N = 21, M = 105, i� = 18, L = 30,
Lb = 2, gj = 0.0001, cj = 0.001, r = 0.5: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.

Fig. 13. Results of the numerical experiment at N = 21, M = 105, i� = 18, L = 30,
Lb = 2, gj = 0.0005/3, cj = 0.001/3, r = 1: (a) solid line denotes the model heat transfer
coefficient a1(t), t 2 [t0, t�]; bold line denotes the recovered heat transfer coefficient
a�1ðtÞ; t 2 ½t0; t��; (b) deviation DðtÞ ¼ a1ðtÞ � a�1ðtÞ; t 2 ½t0; t��.
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