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a b s t r a c t

A new discretization method is proposed for multi-input-driven nonlinear continuous
systems with time-delays, based on a combination of the Taylor series expansion and the
first-order hold (FOH) assumption. The mathematical structure of the new discretization
scheme is explored. On the basis of this structure, the sampled-data representation
of the time-delayed multi-input nonlinear system is derived. First the new approach
is applied to nonlinear systems with two inputs, and then the delayed multi-input
general equation is derived. The resulting time discretization method provides a finite-
dimensional representation for multi-input nonlinear systems with time-delays, thereby
enabling the application of existing controller design techniques to such systems. The
performance of the proposed method is evaluated using a nonlinear system with time-
delays (maneuvering an automobile). Various sampling rates, time-delay values and
control inputs are considered to evaluate the proposed method. The results demonstrate
that the proposed discretization scheme can meet the system requirements even when
using a large sampling period with precision limitations. The discretization results of the
FOH method are also compared with those of the zero order hold (ZOH) method. The
precision of the FOH method in the discretization procedure combined with the Taylor
series expansion ismuch higher than that of the ZOHmethod except in the case of constant
inputs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Developing and evolving technologies that use the Internet are creating more interest in control systems that have time-
delays. The convergence of communication and computation in control systems and the complex behavior of control systems
with non-negligible time-delays are the two main motivations for the special attention that is being given to the study of
the effects of time-delays. The presence of delays makes system analysis and control much more complicated [25]. Control
systems with time-delays exhibit complex behavior because of their infinite dimensionality. Even in the case of linear time-
invariant systems with constant time-delays in the input or in the states but has infinite dimensionality if expressed in the
continuous time domain. The time-delay factors have, by and large, counteracting effects on the system behavior and most
of the time this leads to poor performance. Therefore, the subject of Time-Delay Systems (TDS) has been investigated in the
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formof functional differential equations over the past three decades. This has occupied a separate discipline inmathematical
sciences falling between differential and difference equations [4].

The engineering literature dealing with time-delayed systems is very extensive. Most of the approaches proposed so far
deal with linear time-delay control systems and, in particular, with the stability analysis and behavior of such systems with
constant and/or uncertain time delays [8,5,9,18,23]. Quite recently and on the nonlinear front, nonlinear controllers were
systematically synthesized for multivariable nonlinear systems in the presence of sensor and actuator dead time [22]. Time-
delays are often encountered in various engineering systems, such as chemical processes, hydraulic actuators, and rolling
mill systems, and the time-delays are frequently a source of instability. Many of thesemodels are also significantly nonlinear
which motivates research into the control of nonlinear systems with time-delays. A natural direction is to try to extend the
ideas and results of nonlinear non-delay control to systems with delay. Such results include input–output linearization and
decoupling, partial feedback linearization with delay term domination, and extension of control Lyapunov functions (CLF)
to delay systems in the form of control Lyapunov–Razumikhin functions (CLRF) [10].

In practice, nonlinear control strategies are usually implemented using a microcontroller or a digital signal processor.
As a direct consequence of this, the associated control algorithms must operate using discrete time intervals. The time
discretization is based either on a continuous-time control law design assuming a continuous-time system, or on a discrete-
time control law designed for a continuous-time system that results in a discrete-time system. It is apparent that the
second approach is attractive for dealing directly with the issue of sampling. The effect of sampling on the system–theoretic
properties of a continuous-time system is very important because it strongly influences the ability to meet the design
objectives. It should be emphasized that, in both design approaches, the time discretization of either the controller or the
system model is necessary. Furthermore, in the controller design for time-delay systems, the first approach is troublesome
because of the infinite-dimensional nature of the underlying system dynamics. As a result, the second approach becomes
more desirable [16] and will be pursued in the present study. In particular, we extend the well-known procedure of time
discretization of linear time-delay systems to nonlinear input-driven systems with constant time-delay [21].

The proposed discretization scheme is based on the Taylor series and it uses a similar mathematical framework to the
previously developed one for delay-free nonlinear systems [12]–[20]. However, it should be mentioned that conventional
numerical techniques, such as the Euler and Runge–Kutta methods, have been employed in order to obtain a sampled-data
representation of the original continuous-time delay-free system [16]. All of these approaches require a ‘‘small’’ time step
in order to be deemed accurate; however, this may not be the case in control applications where large sampling periods are
inevitably introduced due to physical and technical limitations. A thorough but non-exhaustive sample of other approaches
of notable significance, yet with certain associated practical limitations, is reported in [15]–[6], and solid theoretical results
based on the direct use of discrete time approximations in the control of sampled-data nonlinear systems can be found
in [17]–[24]. The effect of this approach on the system–theoretic properties of nonlinear systems, such as their equilibrium
properties, relative order, stability, zero dynamics, and minimum-phase characteristics has also been studied and it reveals
the natural and transparentmanner inwhich Taylormethods permeate the relevant theoretical aspects of such systems [21].

Moreover, the sampling period can be selected after the analogue control system is designed; hence the continuous-time
closed-loop bandwidth is known. The performance of this method is significantly affected by the discretization method and
the sampling interval that are chosen. Standard methods such as bilinear transformation often require a high sampling rate
to achieve adequate performance and retain closed-loop stability. In certain cases, however, the sampling rate is constrained
by either the computational speed of the microprocessor for digital control or by the measurement scheme, and it must be
set to a low value [3].

In these large sample period systems, the Taylor series method was used to improve the performance of the
controller [11]. However, in previous papers, the Zero-Order Hold (ZOH) assumption was used in the discretizationmethod.
The performance of the ZOH is highly dependent on the input signal, and the sample time should be short enough for the
desired control precision.

A high-order method is one that provides increased accuracy with only a modest increase in the computational cost
[2,7,1]. Except for the square wave and unit step input signals, the ZOH assumption no longer assures good control
performance when a large sampling interval is adopted. Therefore, the First-Order Hold (FOH) assumption is introduced
in this paper to enhance the performance in situations where a large sampling interval is unavoidable.

In particular, the present study aims to develop a new method for the time discretization of multi-input-driven
nonlinear dynamic systemswith time delay, based on the Taylor series and FOH assumption. This discretizationmethod can
provide a finite dimensional representation, which allows the direct application of existing nonlinear control system design
techniques. Secondly, the performance evaluation of the proposed algorithm is presented using a numerical simulation
with different sampling periods, time-delays and inputs, and the results are compared to those obtained by using the ZOH
method.

This paper is organized as follows. Section 2 contains a brief comparative analysis of ZOH and FOH assumptions and
Section 3 presents the time discretization method for delay-free nonlinear systems. Section 4 includes the main results of
this paper, in which a new time-discretization method for multi-input nonlinear systems with time-delays is introduced.
Finally, numerical simulations with varying sampling periods, time-delays, and kinds of inputs are presented in Section 5
to demonstrate the effectiveness of the proposed discretization scheme while Section 6 provides a few concluding remarks
drawn from this study.
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2. ZOH and FOH assumptions

Nonlinear continuous-time control systems with time-delayed single-input are considered with a state–space represen-
tation of the form:

dx(t)
dt

= f (x(t)) + g(x(t))u(t − D) (1)

where x ∈ X ⊂ Rn is the vector of the states representing an open and connected set, u ∈ R is the input variable and D is the
system’s constant time-delay (dead-time) that directly affects the input. It is assumed that f (x) and g(x) are real analytic
vector fields on X .

An equidistant grid on the time axis with mesh T = tk+1 − tk > 0 is considered where sampling interval is [tk, tk+1) =

[kT , (k + 1)T ) and T is the sampling period.
Furthermore, we suppose the time-delay D and mesh T are related as follows

D = qT + γ (2)

where q ∈ {0, 1, 2, . . .} and 0 ≤ γ < T . Equivalently, the time-delay D is customarily represented as an integer multiple of
the sampling period plus a fractional part of T [16]–[21].

In this paper it is also assumed that an original piecewise continuous input function is approximated by a piecewise
linear one or, in other words, we assume that system (1) is driven by an input that is piecewise linear over the sampling
interval, i.e. the FOH assumption holds true.

Remember that, for the ZOH assumption, it is assumed that the original piecewise continuous input function is
approximated by a piecewise constant one, i.e. it is assumed that system (1) is driven by an input that is piecewise constant
over the sampling interval.

Let us consider ZOH and FOH assumptions in more detail.
Under ZOH assumption, in the delay free case, while D = 0, we have

uZ (t) = v(k) = constant, for kT ≤ t < kT + T (3)

where v(k) := u(kT + 0). Based on the above notation one can deduce that for D > 0 the ‘‘delayed’’ input variable attains
the following two distinct values within the sampling interval [11]:

uZ (t − D) =


v(k − q − 1) if kT ≤ t < kT + γ ,
v(k − q) if kT + γ ≤ t < kT + T .

(4)

Here subscript Z denotes that input approximation is performed under ZOH assumption.
Under the FOH assumption, while D = 0, we have

uF (t) = v(k) + 1v(k)(t − kT ) for kT ≤ t ≤ kT + T . (5)

Here and in what follows:

v(k) := u(kT + 0),

1v(k) :=
u((k + 1)T − 0) − u(kT + 0)

T
or 1v(k) :=

du(kT + 0)
dt

, k = 0, ±1, ±2, . . . .
(6)

For D > 0, it is rather straightforward to verify that the ‘‘delayed’’ input variable attains the following values within the
sampling interval

uF (t − D) ≡


v(k − q − 1) + 1v(k − q − 1)[t − kT + (T − γ )], t ∈ [kT , kT + γ ),
v(k − q) + 1v(k − q)[t − kT − γ ], t ∈ [kT + γ , kT + T ).

(7)

Here subscript F denotes that input approximation is performed under FOH assumption.
It follows from the relations presented above that input function uF (t), t ≥ 0, obtained under the FOH assumption

approximates the original input (control) function u(t), t ≥ 0, better than the corresponding function uZ (t), t ≥ 0, obtained
under the ZOH assumption.

In fact, under the FOH assumption, for every the sampling interval, we have more parameters for approximation than
under the ZOH one: there are two parameters v(k) and1v(k) in (5) while there is only one parameter v(k) in (2). Notice that
(2) and (4) are particular cases of (5) and (7) respectively: putting 1v(k) = 0, k = 0, 1, . . . in (5) and (7), we immediately
get (2) and (4).
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Suppose that D = 0. and original control function u(t), t ≥ 0, is continuous over the sampling interval t ∈ (kT , kT + T ).
Then we have

|u(t) − uZ (t)| = |u(kT + 1t) − u(kT + 0)|

=

u(kT + 0) +
du(kT + 0)

dt
1t + o(1t) − u(kT + 0)

 = O(1t) ≤ O(T ),

|u(t) − uF (t)| = |u(kT + 1t) − u(kT + 0) − 1v(k)1t|

=

u(kT + 0) +
du(kT + 0)

dt
1t + o(1t) − u(kT + 0) − 1v(k)1t


=

du(kT + 0)
dt

1t − 1v(k)1t
 + o(1t) = o(1t) ≤ o(T ),

where 1t = t − kT and 1v(k) is defined in (6). Similar estimations can be obtained and for D > 0.
Based on these facts we can conclude that the precision of the approximation uF (t), t ≥ 0, is higher than that of the

approximation uZ (t), t ≥ 0. Hence we may expect that a discretization based on the FOH assumption will be better than a
discretization that based on the ZOH one.

3. Discretization of nonlinear systems with delay-free single input

At this point, it would be methodologically appropriate to succinctly present and delineate the time-discretization
method available for delay-free (D = 0) nonlinear control systems, that is based on the Taylor series with the ZOH
assumption and reported in [13] and the discretization method that is based on the Taylor series with the FOH assumption.
The ensuing brief description of the time discretization methods for delay-free nonlinear systems will serve as a natural
point of departure for the development of a discretization scheme for multi-input time-delay nonlinear systems.

Initially, delay-free (D = 0) nonlinear control systems are considered with a state–space representation of the form,

dx(t)
dt

= f (x(t)) + g(x(t))u(t). (8)

Within the sampling interval and under the ZOH assumption, the solution of (8) is expanded in a uniformly convergent
Taylor series [14]:

x((k + 1)T ) = x(kT ) +

∞−
l=1

T l

l!
dlx(t)
dt l


t=kT

= x(kT ) +

∞−
l=1

B[l](x(kT ), v(k))
T l

l!

where x(kT ) is the value of the state vector x at time t = kT and B[l](x, u) are determined recursively by:

B[1](x, u) = f (x) + ug(x), B[l+1](x, u) =
∂B[l](x, u)

∂x
(f (x) + ug(x)) with l = 1, 2, 3, . . . .

Based on the Taylor series with the FOH assumption and within the sampling interval, the system (8) can be discretized
in the following form

x((k + 1)T ) = x(kT ) +

∞−
ℓ=1

A[ℓ](x(kT ), v(k), 1v(k))
T ℓ

ℓ!
(9)

where A[ℓ](x, u, 1u) are determined recursively by:

A[1](x, u, 1u) = f (x) + ug(x),

A[ℓ+1](x, u, 1u) =
∂A[ℓ](x, u, 1u)

∂x
A[1](x, u, 1u) +

∂A[ℓ](x, u, 1u)
∂u

1u
(10)

where ℓ = 1, 2, 3, . . . . Notice that and the resulting coefficients A[ℓ](x(kT ), v(k), 1v(k)) can be easily computed by taking
successive partial derivatives of the right hand-side of (8).

Therefore, an exact sampled-data representation (ESDR) of (8) can be derived by retaining the full infinite series of (9),

x((k + 1)T ) = ΦT (x(kT ), v(k), 1v(k)) := x(kT ) +

∞−
ℓ=1

A[ℓ](x(kT ), v(k), 1v(k))
T ℓ

ℓ!
. (11)

Simultaneously, an approximate sampled-data representation (ASDR) of Eq. (8) is obtained froma truncation of the Taylor
series order N ,

xN((k + 1)T ) = ΦN
T (x(kT ), v(k), 1v(k)) := x(kT ) +

N−
ℓ=1

A[ℓ](x(kT ), v(k), 1v(k))
T ℓ

ℓ!
(12)

where the subscript T of the mapping ΦN
T denotes the dependence on the sampling period, and the superscript N denotes

the finite series truncation order associated with the ASDR of Eq. (12).
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It is important to observe that the ESDR of (8) (see Eq. (11)) represents the nonlinear analogue of the exact discretization
scheme available for linear systems under the FOH assumption. Indeed, consider the linear delay-free control system with
a state–space representation of the form:

dx(t)
dt

= Ax(t) + bu(t), (13)

where A and b are constantmatrices of appropriate dimensions. Applying the Cauchy formula to Eq. (13)within the sampling
interval and under the FOH assumption results in,

x((k + 1)T ) = eAT x(kT ) +

∫ kT+T

kT
eA(kT+T−τ)bu(τ )dτ = eAT x(kT ) +

∫ T

0
eA(T−t)bu(kT + t)dt

= eAT x(kT ) +

∫ T

0
eA(T−t)b(v(k) + 1v(k)t)dt (14)

where the exponential matrix is defined through the uniformly convergent power series:

eAt ≡

∞−
ℓ=0

Aℓtℓ

ℓ!
. (15)

Substituting (15) in (14), we get

x((k + 1)T ) =

∞−
ℓ=0

AℓT ℓ

ℓ!
x(kT ) +

∞−
ℓ=0

Aℓb
ℓ!

∫ T

0
(T − t)ℓ(v(k) + 1v(k)t)dt

= x(kT ) + (Ax(kT ) + bu(k))T +

∞−
ℓ=0

Aℓ(A2x(kT ) + Abv(k) + b1v(k))
T ℓ+2

(ℓ + 2)!
. (16)

It is easy to check that presentation (16) coincides with the ESDR (11) of the original linear continuous-time system (13).

4. Discretization of multi-input time-delay nonlinear systems

4.1. Discretization of single-input nonlinear time-delay nonlinear systems

Motivated by the delay-free approach described in Section 3, a similar line of thinking is adopted for the case D > 0
as well. Indeed, by applying the Taylor series discretization method for the nonlinear systems (1) over the subinterval
[Tk, Tk+γ ) and taking into account (7), one can obtain the state vector evaluated at Tk+γ as a function of x(kT ), v(k−q−1),
and 1v(k − q − 1)

x(kT + γ ) = x(kT ) +

∞−
ℓ=1

A[ℓ](x(kT ), v(k − q − 1), 1v(k − q − 1))
γ ℓ

ℓ!
(17)

where the subsequent calculation of the corresponding Taylor coefficients can be realized bymeans of the recursive Eq. (10).
Similarly, formula (7) and the application of the Taylor discretization method to the [Tk + γ , Tk + T ) subinterval yields

the state vector evaluated at (k + 1)T as a function of x(kT + γ ), v(k − q), and 1v(k − q)

x(kT + T ) = x(kT + γ ) +

∞−
ℓ=1

A[ℓ](x(kT + γ ), v(k − q), 1v(k − q))
(T − γ )ℓ

ℓ!
. (18)

The ASDR of Eqs. (17) and (18) are obtained from the truncation of the Taylor series order N , as shown below,

xN(kT + γ ) = x(kT ) +

N−
ℓ=1

A[ℓ](x(kT ), v(k − q − 1), 1v(k − q − 1))
γ ℓ

ℓ!
, (19)

xN(kT + T ) = xN(kT + γ ) +

N−
ℓ=1

A[ℓ](xN(kT + γ ), v(k − q), 1v(k − q))
(T − γ )ℓ

ℓ!
. (20)

4.2. Discretization of nonlinear time-delay systems with two inputs

The time discretization method for the single input case can be expanded to the multi-input case. The discretization
method of a general nonlinear system with multi-input delay is developed using the Taylor series expansion with the FOH
assumption. A system with only two time-delayed inputs will be considered for simplicity in this subsection, and then the
general case will be presented in next subsection.
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A time-delayed two-input nonlinear continuous system can be expressed with the following state–space form

dx(t)
dt

= f (x(t)) + u1(t − D1)g1(x(t)) + u2(t − D2)g2(x(t)). (21)

Similar to (2), we assume that the delays of the inputs in Eq. (21) can be presented as follows: D1 = q1T + γ1, D2 =

q2T + γ2, where D1 and D2 have the same meaning as D, γ1 and γ2 have the same meaning as γ , q1 and q2 have the same
meaning as q.

Under the FOH assumption, the inputs over interval [kT , kT + T ) are as follows

ui(t − Di) =


vi(k − qi − 1) + 1vi(k − qi − 1) (t − kT + (T − γi)) , t ∈ [kT , kT + γi) ,
vi(k − qi) + 1vi(k − qi) (t − kT − γi) , t ∈ [kT + γi, kT + T ) ,

i = 1, 2, (22)

where

vi(k) = ui(Tk + 0), 1vi(k) =
ui(Tk + T − 0) − ui(Tk + 0)

T
, i = 1, 2.

It is convenient to assume that γ1 < γ2, case γ1 ≥ γ2 is similar to this case.
Taking into account (22), we have

(i) For t ∈ [kT , kT + γ1)
ESDR:

x(kT + γ1) = x(kT ) +

∞−
l=1

Al(x(kT ), V1(k), 1V1(k))
γ l
1

l!
.

ASDR:

xN(kT + γ1) = x(kT ) +

N−
l=1

Al(x(kT ), V1(k), 1V1(k))
γ l
1

l!
,

where

V1(k) = (v1 (k − q1 − 1) , v2 (k − q2 − 1)), 1V1(k) = (1v1 (k − q1 − 1) , 1v2 (k − q2 − 1)).
(ii) For t ∈ [kT + γ1, kT + γ2).

ESDR:

x(kT + γ2) = x(kT + γ1) +

∞−
l=1

Al(x(kT + γ1), V2(k), 1V2(k))
(γ2 − γ1)

l

l!
.

ASDR:

xN(kT + γ2) = xN(kT + γ1) +

N−
l=1

Al(xN(kT + γ1), V2(k), 1V2(k))
(γ2 − γ1)

l

l!

where

V2(k) = (v1 (k − q1) , v2 (k − q2 − 1)), 1V2(k) = (1v1 (k − q1) , 1v2 (k − q2 − 1)),
(iii) for t ∈ [kT + γ2, kT + T ).

ESDR:

x(kT + T ) = x(kT + γ2) +

∞−
l=1

Al(x(kT + γ2), V3(k), 1V3(k))
(T − γ2)

l

l!
.

ASDR:

xN(kT + T ) = xN(kT + γ2) +

N−
l=1

Al(xN(kT + γ2), V3(k), 1V3(k))
(T − γ2)

l

l!

where

V3(k) = (v1 (k − q1) , v2 (k − q2)), 1V2(k) = (1v1 (k − q1) , 1v2 (k − q2)).

Here k = 0, 1, 2, 3, . . . and the parameters A[l](x, V , 1V ) with V = (v1, . . . , vm), 1V = (1v1, . . . , 1vm) can be
obtained similar to Eq. (10):

A[1](x, V , 1V ) = f (x) +

m−
i=1

gi(x)vi,

A[ℓ+1](x, V , 1V ) =
∂A[ℓ](x, V , 1V )

∂x
A[1](x, V , 1V ) +

m−
i=1

∂A[ℓ](x, V , 1V )

∂vi
1vi, ℓ = 1, 2, . . . .

(23)
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4.3. Discretization of multi-input time-delay nonlinear systems

The general multi-input nonlinear system in state space form with time delays can be represented as follows.

dx(t)
dt

= f (x(t)) +

m−
i=1

gi(x(t))ui(t − Di). (24)

From the last subsection, the general time-discretization equation of nonlinear systems with multi-input time-delays
can be derived as follows.

Similar to (2) the delays of the inputs as in Eq. (24) can be presented as follows

Di = qiT + γi, i = 1, . . . ,m,

where Di, i = 1, . . . ,m, have the same meaning as D and γi, i = 1, . . . ,m, have the same meaning as γ , qi, i = 1, . . . ,m,
have the same meaning as q.

Due to the FOH assumption, the inputs are as follows;

ui(t − Di) =


vi (k − qi − 1) + 1vi (k − qi − 1) [t − kT + (T − γi)] , t ∈ [kT , kT + γi) ,
vi (k − qi) + 1vi (k − qi) [t − kT − γi] , t ∈ [kT + γi, kT + T ) ,

i = 1, . . . ,m, (25)

where

vi(k) = ui(Tk + 0), 1vi(k) =
ui(Tk + T − 0) − ui(Tk + 0)

T
, i = 1, . . . ,m. (26)

Without lost of generality one may consider that γ1 ≤ γ2 ≤ · · · ≤ γm.
Assuming γ1 < γ2 < · · · < γm and taking into account (25), (26) we get

• for t ∈ [kT , kT + γ1)
ESDR:

x(kT + γ1) = x(kT ) +

∞−
l=1

Al(x(kT ), V1(k), 1V1(k))
γ l
1

l!
. (27)

ASDR:

xN(kT + γ1) = x(kT ) +

N−
l=1

Al(x(kT ), V1(k), 1V1(k))
γ l
1

l!
(28)

where

V1(k) = (vj(k − qj − 1), j = 1, . . . ,m), 1V1(k) = (1vj(k − qj − 1), j = 1, . . . ,m). (29)

• for t ∈ [kT + γi−1, kT + γi) where 2 ≤ i ≤ m + 1 and γm+1 = T
ESDR:

x(kT + γi) = x(kT + γi−1) +

∞−
l=1

Al(x(kT + γi−1), Vi(k), 1Vi(k))
(γi − γi−1)

l

l!
. (30)

ASDR:

xN(kT + γi) = xN(kT + γi−1) +

N−
l=1

Al(xN(kT + γi−1), Vi(k), 1Vi(k))
(γi − γi−1)

l

l!
(31)

where

Vi(k) = (vj(k − qj), j = 1, . . . , i − 1, vj(k − qj − 1), j = i, . . . ,m),

1Vi(k) = (1vj(k − qj), j = 1, . . . , i − 1, 1vj(k − qj − 1), j = i, . . . ,m), i = 2, . . . ,m;

Vm+1(k) = (vj(k − qj), j = 1, . . . ,m), 1Vm+1(k) = (1vj(k − qj), j = 1, . . . ,m).

(32)

Here k = 0, 1, 2, 3, . . . and the parameters A[l](x, V , 1V ) are obtained using Eq. (23).
It follows from the above calculations (27)–(32) that the ESDR:

x((k + 1)T ) = Ψm+1(x(kT ), V (k), 1V (k)) (33)

and the ASDR:

xN((k + 1)T ) = Ψ N
m+1(x(kT ), V (k), 1V (k)) (34)
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takes place with

V (k) = (vj(k − qj), vj(k − qj − 1), j = 1, . . . ,m),

1V (k) = (1vj(k − qj), 1vj(k − qj − 1), 1 = i, . . . ,m).

Here

Ψ1(x,W , 1W ) = x +

∞−
l=1

Al(x,W1, 1W1)
γ l
1

l!
, Ψ N

1 (x,W , 1W ) = x +

N−
l=1

Al(x,W1, 1W1)
γ l
1

l!

Ψi(x,W , 1W ) = Ψi−1(x,W , 1W ) +

∞−
l=1

Al(Ψi−1(x,W , 1W ),Wi, 1Wi)
(γi − γi−1)

l

l!
,

Ψ N
i (x,W , 1W ) = Ψ N

i−1(x,W , 1W ) +

N−
l=1

Al(Ψ N
i−1(x,W , 1W ),Wi, 1Wi)

(γi − γi−1)
l

l!
,

i = 2, . . . ,m + 1, γm+1 := T

(35)

with

W = (wj, w̄j, j = 1, . . . ,m), 1W = (1wj, 1w̄j, j = 1, . . . ,m),

W1 = (w̄j, j = 1, . . . ,m), 1W1 = (1w̄j, j = 1, . . . ,m)

Wi = (wj, j = 1, . . . , i − 1, w̄j, j = i, . . . ,m), 1Wi = (1wj, j = 1, . . . , i − 1, 1w̄j, j = i, . . . ,m),

i = 2, . . . ,m + 1.

(36)

Remark 1. It is evident that the vectors V (k), 1V (k), Vi(k), 1Vi(k), i = 1, . . . ,m+ 1, depends on qi, i = 1, . . . ,m. As it is
also evident that the functions Ψ1(x,W , 1W ), Ψ N

1 (x,W , 1W ) depends on γ1, functions Ψi(x,W , 1W ), Ψ N
i (x,W , 1W )

depend on γ1, . . . , γi+1, i = 2, . . . ,m, functions Ψm+1(x,W , 1W ), Ψ N
m+1(x,W , 1W ) depend on γ1, . . . , γm, T . These

dependences are not shown explicitly to simplify the notations.

Remark 2. We assumed above that γ1 < γ2 < · · · < γn. Notice that in a case with γi−1 = γi for some i, 2 ≤

i ≤ m, calculations presented above are simplified. In fact it follows from (35) that if γi−1 = γi then Ψi(x,W , 1W ) =

Ψi−1(x,W , 1W ). In the more simple case when γi = 0, i = 1, . . . ,m, we have

Ψi(x,W , 1W ) = x, i = 1, . . . ,m, Ψm+1(x,W , 1W ) = x +

∞−
l=1

Al(x,Wm+1, 1Wm+1)
T l

l!
.

For nonlinear continuous systemswith time-delayedmule-inputs, we have described above a newdiscretizationmethod
based on the combination of the Taylor series expansion and the FOH assumption. The advantage of the use of FOH was
motivated in Section 2. Properties, numerical aspects (simplicity, convergence, stability) and advantages of the discretization
methods based on the Taylor series expansion are described and justified in [14]. The same analysis can be carried out for the
method proposed in this paper to justify the corresponding properties. For example, the following theorem shows us that
equilibrium properties of the original continuous-time system (24) are invariant under the proposed time-discretization
method.

Theorem 1. Let x0 be an equilibrium point of the original nonlinear continuous time system (24) that belongs to the equilibrium
manifold

Ec
=


x ∈ Rn

|∃U = (ui, i = 1, . . . ,m) : f (x) +

m−
i=1

gi(x)ui = 0


and U0

= (u0
i , i = 1, . . . ,m) be the corresponding equilibrium input value:

f (x0) +

m−
i=1

gi(x)u0
i = 0. (37)

Then x0 belongs to equilibrium manifolds

Ed
= {x ∈ Rn

|∃W = (wj, w̄j, j = 1, . . . ,m), 1W = (1wj, 1w̄j, j = 1, . . . ,m) : Ψm+1(x,W , 1W ) = 0},

EdN
= {x ∈ Rn

|∃W = (wj, w̄jj = 1, . . . ,m), 1W = (1wj, 1w̄j, j = 1, . . . ,m) : Ψ N
m+1(x,W , 1W ) = 0}

Би
бл
ио
те
ка

 БГ
УИ
Р



932 Y. Zhang et al. / Discrete Applied Mathematics 159 (2011) 924–938

x2
x3

x1

The front axis of a car.

Fig. 1. The front axis of an automobile.

of ESDR (34) and ASDR (35) obtained under the proposed discretization method and FOH assumption, with

W 0
= (w0

j = u0
j , w̄

0
j = u0

j , j = 1, . . . ,m), 1W 0
= (1w0

j = 0, 1w̄0
j = 0, j = 1, . . . ,m) (38)

being the corresponding equilibrium input values:

Ψm+1(x0,W 0, 1W 0) = x0 and Ψ N
m+1(x

0,W 0, 1W 0) = x0.

Proof. It follows from (36) and (38) that

W 0
1 = (w0

j = u0
j , j = 1, . . . ,m), 1W 0

1 = (1w0
j = 0, j = 1, . . . ,m),

W 0
i = (w0

j = u0
j , j = 1, . . . , i − 1, w̄0

j = u0
j , j = i, . . . ,m) = W 0

1 ,

1W 0
i = (1w0

j = 0, j = 1, . . . , i − 1, 1w̄0
j = 0, j = i, . . . ,m) = 1W 0

1 , i = 2, . . . ,m + 1. �

(39)

Taking into account (23), (37) and (39) we get

A[ℓ](x0,W 0
i , 1W 0

i ) = 0, i = 1, . . . ,m, ℓ = 1, 2, 3, . . .

and relating it with (35) takes the form

Ψ1(x0,W 0, 1W 0) = x0, Ψi(x0,W 0, 1W 0) = Ψi−1(x0,W 0, 1W 0), i = 2, . . . ,m + 1.

The last equalities imply that Ψm+1(x0,W 0, 1W 0) = x0.
The equality Ψ N

m+1(x
0,W 0, 1W 0) = x0 can be proved in a similar way. The theorem is proved.

5. Case studies

One example is considered in a computer simulation and the example is a simplified model of maneuvering an
automobile [19]. Different sampling periods, time delays and control inputs are introduced in the simulation. The partial
derivative terms involved in the Taylor series expansion are determined recursively by MAPLE. The truncation order of the
Taylor series is chosen as ‘‘3’’ since it can provide accurate enough discretization results and enlarging the truncation order
to more than 3 does not improve accuracy. Exact solutions for the systems are required in order to validate the proposed
discretization method of nonlinear systems with the delayed multi-input. The continuous Matlab ODE solver is used as an
exact solution in this paper. The discrete values obtained using the Taylor series expansionwith the FOH assumptionmethod
are compared to the values obtained through the continuous Matlab ODE solver at the moments t = 1, 2, . . . , 5.

The front axle of a simplified automobile maneuvering system is shown in Fig. 1. Themiddle of the axles linking the front
wheels has position (x1, x2) ∈ R2, while the rotation of this axis is given by the angle x3. The states x1, x2 related to rolling are
directly controlled by input u1 and the state x3 related to rotation is directly controlled by u2, thus the governing nonlinear
differential equation can be obtained as follows;

d
dt

x1
x2
x3


=

sin x3
cos x3
0


u1(t − D1) +

0
0
1


u2(t − D2). (40)

We first choose constant inputs to drive this nonlinear system. In this case the initial conditions are x1(0) = 0, x2(0) = 0,
and x3(0) = π/6, the sampling period is T = 0.001 s, the time delay values are D1 = 0.0122 s and D2 = 0.0166 s, and the
control inputs are u1 = 2.5 and u2 = 2.0. The simulation results are shown in Table 1. The differences in the responses of
the Taylor method with the FOH and ZOH assumptions and the Matlab solver are shown in Fig. 2.

Then we choose slope inputs to drive this nonlinear system. In Case 1, the sampling period is T = 0.001 s, the time delay
values are D1 = 0.0143 s and D2 = 0.0187 s, and the control inputs are u1 = 0.5t and u2 = 0.5t . The simulation results are
shown in Table 2. The differences in the responses of the Taylor method with the FOH and ZOH assumptions and the Matlab
solver are shown in Fig. 3.
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Table 1
Simulation results using the constant inputs.

MATLAB (x1) ZOH (x1) FOH (x1)

1 2.0823 2.0822 2.0822
2 1.3628 1.3632 1.3632
3 −0.1353 −0.1352 −0.1352
4 1.8311 1.8309 1.8309
5 1.6926 1.6930 1.6930

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.1417 0.1422 0.1422
2 −1.8351 −1.8348 −1.8348
3 −0.3582 −0.3583 −0.3583
4 0.3894 0.3898 0.3898
5 −1.7097 −1.7093 −1.7093

Fig. 2. State errors using the constant inputs.

Table 2
Simulation results using the slope inputs (Case 1).

MATLAB (x1) ZOH (x1) FOH (x1)

1 0.1501 0.1499 0.1501
2 0.8173 0.8168 0.8173
3 1.7986 1.7983 1.7986
4 1.0577 1.0588 1.0578
5 −0.0181 −0.0186 −0.0180

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.1982 0.1980 0.1982
2 0.4991 0.4990 0.4991
3 −0.1376 −0.1368 −0.1375
4 −1.4815 −1.4813 −1.4815
5 −0.0329 −0.0341 −0.0330

In Case 2, the sampling period is T = 0.005 s, the time delay values areD1 = 0.0617 s andD2 = 0.0435 s, and the control
inputs are u1 = 0.5t and u2 = 0.4t . The simulation results are shown in Table 3. The differences in the responses of the
Taylor method with the FOH and ZOH assumptions and the Matlab solver are shown in Fig. 4.

In Case 3 the sampling period is T = 0.01 s, the time delay values are D1 = 0.073 s and D2 = 0.057 s, and the control
inputs are u1 = 0.5t and u2 = 0.4t . The simulation results are shown in Table 4. The differences in the responses of the
Taylor method with the FOH and ZOH assumptions and the Matlab solver are shown in Fig. 5.

Finally we choose sinusoidal inputs to drive this nonlinear system. In Case 1, the sampling period is T = 0.001 s, the time
delay values are D1 = 0.0203 s and D2 = 0.0157 s, and the control inputs are u1 = 1.8 sin(0.8π t) and u2 = 1.5 sin(0.8π t).
The simulation results are shown in Table 5. The differences in the responses of the Taylor method with the FOH and ZOH
assumptions and the Matlab solver are shown in Fig. 6.
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Fig. 3. State errors using the slope inputs for Case 1.

Table 3
Simulation results using the slope inputs (Case 2).

MATLAB (x1) ZOH (x1) FOH (x1)

1 0.1270 0.1263 0.1270
2 0.7230 0.7207 0.7230
3 1.8681 1.8652 1.8680
4 2.1492 2.1517 2.1493
5 0.2391 0.2439 0.2393

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.1794 0.1785 0.1794
2 0.5635 0.5628 0.5635
3 0.3194 0.3219 0.3195
4 −1.2409 −1.2365 −1.2408
5 −1.5619 −1.5660 −1.5619

Table 4
Simulation results using the slope inputs (Case 3).

MATLAB (x1) ZOH (x1) FOH (x1)

1 0.1235 0.1220 0.1235
2 0.7120 0.7074 0.7119
3 1.8553 1.8496 1.8553
4 2.1647 2.1693 2.1648
5 0.2662 0.2758 0.2663

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.1754 0.1737 0.1754
2 0.5613 0.5599 0.5612
3 0.3334 0.3381 0.3335
4 −1.2174 −1.2086 −1.2172
5 −1.5835 −1.5914 −1.5836

In Case 2 the sampling period is T = 0.005 s, the time delay values are D1 = 0.0817 s and D2 = 0.0635 s, and the control
inputs are u1 = 1.8 sin(0.7π t) and u2 = 1.5 sin(0.7π t). The simulation results are shown in Table 6. The differences in the
responses of the Taylor method with the FOH and ZOH assumptions and the Matlab solver are shown in Fig. 7.

In Case 3 the sampling period is T = 0.01 s, the time delay values are D1 = 0.043 s and D2 = 0.087 s, and the control
inputs are u1 = 1.8 sin(0.7π t) and u2 = 1.5 sin(0.7π t). The simulation results are shown in Table 7. The differences in the
responses of the Taylor method with the FOH and ZOH assumptions and the Matlab solver are shown in Fig. 8.

The difference between the proposed time discretization method and the MATLAB ODE solvers is small enough to
demonstrate that the proposed time discretization method using Taylor series with the FOH assumption can be used
to discretize multi-input time-delay nonlinear systems and provide satisfactory results. The errors become larger as the
sampling period is increased and in this case, the Taylor series order can be enlarged to improve the performance. The
Taylor series order should be chosen appropriately because the calculation burden improves quickly as the Taylor series
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Fig. 4. State errors using the slope inputs for Case 2.

Fig. 5. State errors using the slope inputs for Case 3.

Table 5
Simulation results using the sinusoidal inputs (Case 1).

MATLAB (x1) ZOH (x1) FOH (x1)

1 1.0592 1.0587 1.0592
2 0.3607 0.3615 0.3607
3 0.3082 0.3075 0.3082
4 1.1084 1.1090 1.1086
5 0.0134 0.0134 0.0134

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.5936 0.5937 0.5937
2 0.3747 0.3755 0.3750
3 0.3303 0.3301 0.3301
4 0.5779 0.5781 0.5782
5 0.0266 −0.0259 −0.0259

order is increased. From the simulation results, we can also see that the proposed method with the FOH assumption can
provide much better performance than with the ZOH assumption except in the case where the inputs are constant.

The computational costs are considered at the end of this sectionwhere Table 8 shows the computing time used to get the
discretization results of the proceeding simulations using Taylor series with the FOH assumption and the ZOH assumption
respectively. The computing time is calculated on a computational process with 5000 steps. It can be seen from Table 8 that
the computing time using the Taylor series with the FOH assumption is moderately longer compared to when we used ZOH
assumption but the accuracy is much better for the process with FOH assumption.
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Fig. 6. State errors under the sinusoidal inputs for Case 1.

Table 6
Simulation results using the sinusoidal inputs (Case 2).

MATLAB (x1) ZOH (x1) FOH (x1)

1 0.9686 0.9645 0.9686
2 0.9999 1.0039 1.0000
3 0.0274 0.0271 0.0273
4 1.2023 1.1991 1.2024
5 0.7856 0.7900 0.7858

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.5740 0.5739 0.5741
2 0.5604 0.5608 0.5605
3 −0.0557 −0.0559 −0.0555
4 0.5034 0.5041 0.5037
5 0.4578 0.4594 0.4582

Fig. 7. State errors using the sinusoidal inputs for Case 2.

6. Conclusion

A method based on the Taylor series combined with the FOH assumption is proposed for the derivation of a discrete-
time representation of a nonlinear control system with time delayed multi-input. The mathematical structure of the
new discretization scheme is explored and characterized as useful for establishing the concrete connections between
the numerical and system–theoretic properties. The derived time-discretization method provides a finite-dimensional
representation for nonlinear control systems with time-delays, thereby enabling the application of existing nonlinear
controller design techniques for such systems.
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Table 7
Simulation results using the sinusoidal inputs (Case 3).

MATLAB (x1) ZOH (x1) FOH (x1)

1 0.9862 0.9785 0.9863
2 0.8987 0.9071 0.8989
3 −0.0472 −0.0482 −0.0473
4 1.1262 1.1203 1.1264
5 0.5962 0.6052 0.5965

MATLAB (x2) ZOH (x2) FOH (x2)

1 0.6571 0.6564 0.6571
2 0.6890 0.6894 0.6892
3 0.1659 0.1646 0.1661
4 0.8039 0.8047 0.8042
5 0.8047 0.8072 0.8053

Fig. 8. State errors using the sinusoidal inputs for Case 3.

Table 8
The computing time using to do the proceeding simulations.

Computing time (5000 steps) (s)

FOH ZOH FOH ZOH FOH ZOH

Constant inputs (Case 1) Constant inputs Case 2 Constant inputs Case 3

7.61 5.43 7.58 5.56 7.50 5.39

Slope inputs (Case 1) Slope inputs (Case 2) Slope inputs (Case 3)

8.79 6.03 9.09 6.09 9.18 6.08

Sinusoidal inputs (Case 1) Sinusoidal inputs (Case 2) Sinusoidal inputs (Case 3)

14.89 9.61 14.98 9.88 14.96 9.45

The performance of the proposed time-discretization procedure is evaluated using themulti-input system of a simplified
model of maneuvering an automobile where various sampling rates, time-delay values and control inputs are considered in
the example studies. The simulation results are compared with those produced by MATLAB in order to verify the accuracy
of the proposed method. The examples demonstrate how to use the proposed method to solve a real system. In cases even
when the sampling time is large with input time-delay, the Taylor series combined with the FOH assumption can satisfy the
accuracy requirement of the systems.

At the same time, some comparisons aremade between the ZOH and FOHmethodswhen combinedwith the Taylor series
for the discretization procedure. Results show that although the computational cost is moderately bigger, the FOH method
is much better than the ZOH method in achieving high precision for the input signals such as sinusoidal and unit slope.

More detailed comparisons of the FOH and ZOH methods will be the subject of future publications.

Acknowledgement

This work was supported by the grant of the Second stage of Brain Korea 21.

Би
бл
ио
те
ка

 БГ
УИ
Р



938 Y. Zhang et al. / Discrete Applied Mathematics 159 (2011) 924–938

References

[1] Lozano Albert, Rosell Javier, R. Pallas-Areny, On the zero- and first-order interpolation in synthesized sine waves for testing purposes, IEEE Trans.
Instrum. Meas. 41 (6) (1992) 820–823.

[2] Stephen D. Gedney, Ottusch John, Petre Peter, J. Visher, S. Wandzura, Efficient high-order discretization schemes for integral equation methods,
in: Antennas and Propagation Society International Symposium, in: 1997 Digest, vol. 3, IEEE, 1997, pp. 1814–1817.

[3] Yuping Gu, Masayoshi Tomizuka, Digital redesign of continuous time controller by multirate sampling and high order holds, in: Proceedings of the
38th Conference on Decision & Control Phoenix, Arizona USA, December 1999, pp. 3422–3427.

[4] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[5] Y. Halevi, A. Ray, Integrated communication and control systems: part I—analysis, J. Dyn. Syst. Meas. Contr., ASME 110 (1988) 367–373.
[6] K.R. Harris, A. Palazoglu, Studies on the analysis of nonlinear processes via functional expansions: I—solution of nonlinear ODEs, Chem. Eng. Sci. 52

(1997) 3195.
[7] Jesse B. Hoagg, Seth L. Lacyt, R. Scott Erwint, Dennis S. Bemstein, First-order-hold sampling of positive real systems and subspace identification of

positive real models, in: Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 30–July 2, 2004, pp. 861–866.
[8] N. Insperger, N. Stépán, Semi-discretization method for delayed-systems, Internat. J. Numer. Methods Engrg. 55 (2002) 503–518.
[9] N. Jalili, N. Olgac, A sensitivity study on optimum delayed feedback vibration absorber, J. Dyn. Syst. Meas. Contr., ASME 122 (2000) 314–321.

[10] M. Jankovic, Control Lyapunov–Razumikhin functions and robust stabilization of time delay systems, IEEE Trans. Automat. Control 46 (7) (2001)
1048–1060.

[11] Nikolaos Kazantzis, K.T. Chong, J.H. Park, Alexander G. Parlos, Control-relevant discretization of nonlinear systems with time-delay using Taylor-Lie
series, J. Dyn. Syst. Meas. Contr. 127 (3) (2005) 153–159.

[12] N. Kazantzis, C. Kravaris, Time-discretization of nonlinear control systems via Taylor methods, Comput. Chem. Eng. 23 (1999) 763–784.
[13] N. Kazantzis, C. Kravaris, System-theoretic properties of sampled-data representations of nonlinear systems obtained via Taylor-Lie series, Internat.

J. Control 67 (1997) 997–1020.
[14] N. Kazantzis, C. Kravaris, Time-discretization of nonlinear control systems via Taylor methods, Comput. Chem. Eng. 23 (1999) 763–784.
[15] S. Monaco, D. Normand-Cyrot, On the sampling of a linear analytic control system, in: Proc. of 24th IEEE Conference on Decision and Control, Ft.

Lauderdale, FL, 1985, pp. 1457–1462.
[16] D. Nesic, A.R. Teel, Sampled-data control of nonlinear systems: an overview of recent results, in: R.S.O. Moheimani (Ed.), Perspectives on Robust

Control, Springer-Verlag, New York, 2001, pp. 221–239.
[17] D. Nešiæ, A.R. Teel, P.V. Kokotoviæ, Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations, Syst.

Control Lett. 38 (1999) 259–270.
[18] J. Nilsson, Real-time control systems with delays, Ph.D. Dissertation, Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998.
[19] Ji Hyang Park, Kil To Chong, Nikolaos Kazantzis, Alexander G. Parlos, Time-discretization of nonlinear systems with delayed multi-input using Taylor

series, KSME Int. J. 18 (7) (2004) 1107–1120.
[20] S.A. Svoronos, D. Papageorgiou, C. Tsiligiannis, Discretization of nonlinear control systems via the carleman linearization, Chem. Eng. Sci. 49 (1994)

3263–3267.
[21] R.J. Vaccaro, Digital Control, McGraw-Hill, New York, 1995.
[22] R.A. Wright, C. Kravaris, Nonlinear decoupling in the presence of sensor and actuator deadtimes, in: Proc. Amer. Control Conf., San Diego, CA, 1999,

pp. 1503–1507.
[23] Shengyuan Xu, James Lam, Chengwu Yang, Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay, Systems

Control Lett. 43 (2001) 77–84.
[24] L. Zaccarian, A.R. Teel, D. Nešiæ, On finite gain Lp-stability of nonlinear sampled-data systems, Syst. Control Lett. 49 (2003) 201–212.
[25] Qing-Chang Zhong, Robust Control of Time-Delay Systems, Springer-Verlag, London, 2006.

Би
бл
ио
те
ка

 БГ
УИ
Р


	A new time-discretization for delay multiple-input nonlinear systems using the Taylor method and first order hold
	Introduction
	ZOH and FOH assumptions
	Discretization of nonlinear systems with delay-free single input
	Discretization of multi-input time-delay nonlinear systems
	Discretization of single-input nonlinear time-delay nonlinear systems
	Discretization of nonlinear time-delay systems with two inputs
	Discretization of multi-input time-delay nonlinear systems

	Case studies
	Conclusion
	Acknowledgement
	References




