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Abstract–A single-machine scheduling problem is investigated provided that the input data are uncertain:
The processing time of a job can take any real value from the given segment. The criterion is to minimize the
total weighted completion time for the n jobs. As a solution concept to such a scheduling problem with an
uncertain input data, it is reasonable to consider a minimal dominant set of job permutations containing an
optimal permutation for each possible realization of the job processing times. To find an optimal or approximate
job permutation to be realized, we look for a permutation with the largest stability box being a subset of the
stability region. We develop a branch-and-bound algorithm to construct a permutation with the largest volume
of a stability box. If several permutations have the same volume of a stability box, we select one of them due to
one of two simple heuristics. The efficiency of the constructed permutations (how close they are to a factually
optimal permutation) and the efficiency of the developed software (average CPU-time used for an instance) are
demonstrated on a wide set of randomly generated instances with 5 ≤ n ≤ 100.

Keywords: Scheduling, Single machine problems, Total weighted completion time, Stability, Uncertainty,
Interval processing times

1 INTRODUCTION

Real-life scheduling problems may involve different forms of uncertainty and several approaches
are available in the OR literature to deal with uncertain scheduling problems. In the well-
developed stochastic approach [1], an uncertain processing time is assumed to be a random
variable with a probability distribution which is known a priori. If there is no sufficient infor-
mation to characterize a priori the probability distribution of each random processing time,
other approaches are needed [2, 3]. In particular, in a robust approach [4–6], the decision-maker
prefers a schedule that hedges against the worst-case scenario among all the possible realiza-
tions of the uncertain processing times. The stability approach developed in [7–12] combines
a stability analysis, a two-stage scheduling decision framework, and the solution concept of a
minimal dominant set of schedules. A minimal dominant set of schedules being constructed in
an off-line fashion optimally covers all the possible scenarios: For any possible scenario such a
set contains at least one schedule which is optimal [9–11]. A minimal dominant set of schedules
(which may be constructed off-line) allows a scheduler to make an on-line decision whenever
additional information on the realization of the processing times becomes available [9, 10].

In this paper, we consider a single-machine scheduling problem with interval processing times
of n jobs which have to be processed. To solve this problem optimally (or approximately), we
use the notion of a stability box of a job permutation, which is similar to the well-known
stability ball [9, 12–14] used in post-optimality analysis. We use an exact formula for char-
acterizing the stability box of any concrete job permutation in O(n log n) time and develop a
fast branch-and-bound algorithm to find a permutation with the largest volume of a stability
box. We report computational results on finding a permutation with the largest volume of a
stability box and satisfying one of two heuristic rules.

1The research of the first author was supported by Belorussian Republican Foundation for Fundamental Research.
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2 PROBLEM SETTING, NOTATIONS, STATE-OF-THE-ART

A set of n jobs J = {J1, J2, ..., Jn}, n ≥ 2, has to be processed on a single machine, a weight
wi > 0 being given for job Ji ∈ J . The processing time pi of a job Ji ∈ J can take any real
value between a lower bound pL

i > 0 and an upper bound pU
i ≥ pL

i , both bounds being known
before scheduling. The processing time pi may remain unknown until the completion of job Ji

(such a condition is realistic for most real-life scheduling problems).
Let T denote the set of all vectors p = (p1, p2, . . . , pn) of the possible processing times. The

set T is a closed rectangular box in the space Rn
+ of non-negative n-dimensional real vectors

and may be represented as the Cartesian product of the n segments [pL
i , pU

i ], i ∈ {1, 2, . . . , n}:

T = {p | p ∈ Rn
+, pL

i ≤ pi ≤ pU
i , i ∈ {1, 2, . . . , n}} = ×n

i=1[p
L
i , pU

i ]. (1)

A vector p ∈ T of the possible processing times is called a scenario.
Let S = {π1, π2, . . . , πn!} be the set of all permutations πk = (Jk1 , Jk2 , . . . , Jkn) of the jobs

J = {Jk1 , Jk2 , . . . , Jkn}. If both the permutation πk of the job set J and the scenario p ∈ T
are fixed, then Ci = Ci(πk, p) is the completion time of job Ji ∈ J in a semi-active schedule
defined by permutation πk. As usual, a schedule is called semi-active if no job Ji ∈ J can start
earlier without delaying the completion time of another job from set J and without altering
the processing permutation of the jobs J . The criterion under consideration is

∑
wiCi, which

is the minimization of the sum of the weighted job completion times:

∑
Ji∈J

wiCi(πt, p) = min
πk∈S

∑
Ji∈J

wiCi(πk, p)

 ,

where permutation πt = (Jt1 , Jt2 , . . . , Jtn) ∈ S is optimal. By adopting the three-field notation
α|β|γ introduced in [15], the above scheduling problem is denoted by 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi.
Since the scenario p ∈ T may remain unknown before the completion of the jobs J , the com-

pletion time Ci of each job Ji ∈ J cannot be calculated at the stage of scheduling. Therefore,
problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi is not mathematically correct in the sense that the values
of the objective function γ =

∑
Ji∈J wiCi(πk, p) for different permutations πk ∈ S remain

uncertain before the completion of the job set J .
If a scenario p ∈ T is fixed before scheduling (i.e., equalities pL

i = pU
i = pi hold and segment

[pL
i , pU

i ] is degenerated into one point pi = [pi, pi] for each job Ji, i ∈ {1, 2, . . . , n}), then
problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi reduces to problem 1||∑wiCi with deterministic processing
times, which is mathematically correct and can be solved in O(n log n) time due to Smith [16].

In what follows, the problem α|pL
i ≤ pi ≤ pU

i |γ with the objective function γ = f(C1, C2, . . . ,
Cn) is called uncertain in contrast to its counterpart, problem α||γ, which is called determin-
istic. While an optimal sequencing rule for the deterministic problem 1||∑wiCi has been
known since 1956 [16], its uncertain counterpart 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi continues to attract
the attention of the researchers who develop different approaches for correcting and solving
the uncertain problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi (see [4–7, 11, 17, 18] among others). Next, we
survey some recent results for scheduling problems with uncertain processing times.

2.1 Robust approach

For problem 1|pL
i ≤ pi ≤ pU

i |γ, there usually does not exist a permutation of the jobs J
that remains optimal for all scenarios from T . So, an additional criterion is often introduced
for the problem 1|pL

i ≤ pi ≤ pU
i |γ with uncertain data, e.g., a robust schedule minimizing the

worst-case deviation from optimality was introduced in [4, 5] to hedge against data uncertainty.
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In a robust approach, set T could contain a continuum of scenarios (i.e., T is the Cartesian
product of segments as defined in (1)) or set T could contain a finite number of scenarios:

T = {pj = (pj
1, p

j
2, . . . , p

j
n) | pj ∈ Rn

+, j ∈ {1, 2, . . . ,m}}.

For a scenario p ∈ T , let γt
p denote the optimal value of the objective function γ = f(C1,

C2, . . . , Cn) for problem 1||γ with the fixed scenario p. Permutation πt ∈ S is optimal, if

f(C1(πt, p), . . . , Cn(πt, p)) = γt
p = min

πk∈S
γk

p = min
πk∈S

f(C1(πk, p), . . . , Cn(πk, p)).

For any permutation πk ∈ S and any scenario p ∈ T , the difference γk
p−γt

p = r(πk, p) is called

the regret for permutation πk with the objective function value equal to γk
p under scenario p.

For permutation πk ∈ S, value

Z(πk) = max{r(πk, p) | p ∈ T}

is called the worst-case absolute regret. A worst-case relative regret is defined as follows:

Z ′(πk) = max

{
r(πk, p)

γt
p

| p ∈ T

}

provided that γt
p 6= 0. In [4, 6], the problem 1|pL

i ≤ pi ≤ pU
i |
∑

Ci of minimizing the total
completion time (when all weights are equal: wi = 1 for each job Ji ∈ J ) has been considered.
For a given specific scenario pj ∈ T , the deterministic problem 1||∑Ci arises which can be
solved using the shortest processing times (SPT) rule [16]: Process the jobs of set J in non-
decreasing order of their processing times pj

i , Ji ∈ J . While the deterministic problem 1||∑Ci

is solvable in O(n log n), finding a permutation πt ∈ S of minimizing either the worst-case
absolute regret Z(πt) or the worst-case relative regret Z ′(πk) for the uncertain counterpart
1|pL

i ≤ pi ≤ pU
i |
∑

Ci is binary NP-hard even for two possible scenarios (the corresponding
proofs are published in [4] and [6], respectively). Only a few very special cases are known to be
polynomially solvable for minimizing the worst-case regret for the problems α|pL

i ≤ pi ≤ pU
i |γ.

In [17], a 2-approximation algorithm has been developed to minimize the worst-case regret
for problem 1|pL

i ≤ pi ≤ pU
i |
∑

Ci. In [4, 6, 18], exact and heuristic algorithms have been
developed and tested to minimize the worst-case regret for the same problem.

2.2 Stability approach

In what follows, we adopt the stability approach [7–9] for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi

considering set T as the continuum of possible scenarios defined by (1). This stability approach
combines a stability analysis [9, 13, 14, 19, 20], a two-stage scheduling decision framework (the
off-line planning stage and the on-line scheduling stage) [9, 10], and the solution concept of
a minimal dominant set of semi-active schedules [7–9, 11, 12] (a minimal dominant set of
permutations in the case of problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi).
As a solution concept to an uncertain scheduling problem, it is reasonable to consider a

minimal dominant set of job permutations (semi-active schedules) defined as follows.

Definition 1 A set of permutations (semi-active schedules) S(T ) ⊆ S is a minimal dominant
set for problem α|pL

i ≤ pi ≤ pU
i |γ, if

(a) for any fixed scenario p ∈ T , set S(T ) contains at least one permutation (semi-active
schedule), which is optimal for the deterministic counterpart α||γ associated with scenario p,

(b) property (a) is lost for any proper subset of set S(T ).
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Due to condition (b), the above set S(T ) is a minimal dominant set with respect to inclusion.
Set S(T ) has been investigated in [7–9, 21, 22] for the makespan criterion, and in [9, 12, 22,
23] for the total completion time criterion. Article [23] addresses the total completion time
in a two-machine flow-shop problem F2|pL

i ≤ pi ≤ pU
i |
∑

Ci. A geometrical algorithm has
been developed for solving the flow-shop problem Fm|pL

i ≤ pi ≤ pU
i , n = 2|∑Ci with m

machines and two jobs. For an uncertain flow-shop scheduling problem with two or three
machines, sufficient conditions were identified when a transposition of two jobs minimizes the
total completion time. The work of [22] deals either with the criterion Cmax or with

∑
Ci, where

the processing times are fixed while the setup times belong to the given segments. Dominance
relations were identified for an uncertain flow-shop scheduling problem with two machines. In
[21], for a two-machine flow-shop problem F2|pL

i ≤ pi ≤ pU
i |Cmax sufficient conditions were

identified when a transposition of two jobs minimizes Cmax. In [12], for a job-shop problem
Jm|pL

i ≤ pi ≤ pU
i |
∑

Ci with m machines, several exact and heuristic algorithms were developed
by using the disjunctive graph model and computational results have been reported.

Before presenting heuristic algorithms for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi, we remind some
known results for the uncertain scheduling problem and for its deterministic counterpart.

In [16], it was proven that problem 1||∑wiCi can be solved in O(n log n) time due to the
following sufficient condition for the optimality of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S:

wk1

pk1

≥ wk2

pk2

≥ . . . ≥ wkn

pkn

, (2)

where inequality pki
> 0 holds for each job Jki

∈ J . Thus, problem 1||∑wiCi can be solved to
optimality by the weighted shortest processing times (WSPT) rule: Process the jobs in non-
increasing order of their weight-to-process ratio

wki

pki
. Inequalities (2) provide also a necessary

condition for the optimality of permutation πk ∈ S, see [24].

Theorem 1 [16, 24] Permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is optimal for the deterministic
problem 1||∑wiCi if and only if inequalities (2) hold.

A minimal dominant set S(T ) for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi may be determined by
using the following dominance relation on the set of jobs J .

Definition 2 Job Ju dominates job Jv with respect to T (this will be denoted by Ju 7→ Jv) if
there exists a minimal dominant set S(T ) for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi such that job Ju

precedes job Jv in every permutation of set S(T ).

Definition 2 implies that a minimal dominant set constructed for the deterministic problem
1||∑wiCi associated with a scenario p ∈ T is a singleton, S(T ) = {πk}, where T = {p}.
Hence, relations Jk1 7→ Jk2 7→ Jk3 7→ . . . 7→ Jkn−1 7→ Jkn with respect to T = {p} hold for the
deterministic problem 1||∑wiCi. The following claim has been proven in [11].

Theorem 2 [11] For problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi, job Ju dominates job Jv with respect to
T if and only if

wu

pU
u

≥ wv

pL
v

. (3)

The cardinality |S(T )| of a minimal dominant set S(T ) may be considered as a measure
of uncertainty for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi. In the least uncertain case, a minimal
dominant set for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi is a singleton, {πk} = S(T ), which is also a
solution to the deterministic counterpart 1||∑wiCi associated with any scenario p ∈ T . This
case was characterized in [11] as follows.
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Theorem 3 [11] For the existence of a dominant singleton S(T ) = {πk} = {(Jk1 , Jk2 , . . . ,
Jkn)} for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi, inequalities (4) are necessary and sufficient:

wk1

pU
k1

≥ wk2

pL
k2

;
wk2

pU
k2

≥ wk3

pL
k3

; . . . ;
wkn−1

pU
kn−1

≥ wkn

pL
kn

. (4)

The most uncertain case of problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi is that with |S(T )| = n!. This
case was also characterized in [11].

Theorem 4 [11] Let pL
i < pU

i , Ji ∈ J . For the existence of a minimal dominant set S(T )
for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi with a maximum cardinality |S(T )| = n!, inequality (5) is
necessary and sufficient:

max

{
wi

pU
i

| Ji ∈ J
}

< min

{
wi

pL
i

| Ji ∈ J
}

. (5)

In [25], the uniqueness of a minimal dominant set S(T ) was investigated. Let notation
1|p|∑wiCi be used for indicating an individual problem (an instance) of the mass problem

1||∑wiCi associated with a specific scenario p. We shall use the notation a = min
{

wi

pU
i
| Ji ∈ J

}
and the notation b = max

{
wi

pL
i
| Ji ∈ J

}
. The criterion of the uniqueness of a minimal domi-

nant set S(T ) uses the following subsets Jr, r ∈ [a, b], of the job set J :

Jr =

{
Ji ∈ J | r =

wi

pU
i

=
wi

pL
i

}
. (6)

Theorem 5 [25] For problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi, a minimal dominant set S(T ) is
uniquely determined if and only if there is no real r ∈ [a, b] such that |Jr| ≥ 2.

Theorem 6 [25] Let S(T ) be a minimal dominant set for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi. For
any permutation πk ∈ S(T ), there exists a scenario p ∈ T such that πk is the unique optimal
permutation for the instance 1|p|∑wiCi if and only if there is no r ∈ [a, b] such that |Jr| ≥ 2.

Theorem 4 is generalized in [25] as follows.

Theorem 7 [25] Let there exist no real r ∈ [a, b] such that |Jr| ≥ 2. For the existence of
a minimal dominant set S(T ) for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi attaining the maximum
cardinality |S(T )| = n!, inequality (5) is necessary and sufficient.

Since the cardinality of a minimal dominant set could range from 1 (Theorem 3) to n!
(Theorems 4 and 7), it is impossible to generate in polynomial time all the elements of set
S(T ) and so there is no polynomial algorithm for enumerating all permutations of a set S(T ).
Fortunately, due to Theorem 2, one can obtain a compact presentation of a minimal dominant
set S(T ) for a problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi in the form of a digraph (J ,A) with the vertex
set J and the arc set A. To this end, one can check condition (3) for each pair of jobs Ju

and Jv from set J and construct a digraph (J ,A) of the dominance relation on the set J as
follows: Arc (Ju, Jv) belongs to set A if and only if Ju 7→ Jv. To construct the digraph (J ,A)
takes O(n2) time.

Theorem 8 [25] Digraph (J ,A) constructed for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi defines a
strict order relation on the set J if and only if there is no a real r ∈ [a, b] such that |Jr| ≥ 2.
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If there exists a real r ∈ [a, b] with inequality |Jr| ≥ 2, then due to Theorem 5, there exist
at least two minimal dominant sets for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi. The whole number of
minimal dominant sets for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi was calculated in [25] as follows.

Theorem 9 [25] If inequality |Jrq | ≥ 2 holds for each real rq ∈ {r1, r2, . . . , rm}, where integer
m ≥ 1 is maximal and rq ∈ [a, b], then the number k of the minimal dominant sets existing for
problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi is equal to
∏m

q=1 |Jrq |!. If m = 0, then k = 1.

From Theorems 5 – 9, it follows that the existence of sets Jrq with |Jrq | ≥ 2, rq ∈ {r1, r2, . . . ,
rm}, implies that a minimal dominant set S(T ) loses the useful properties: If there exists at
least one set Jrq which is not a singleton, then the binary relation A ⊆ J × J is not a strict
order (Theorem 8); a minimal dominant set is not uniquely determined (Theorem 5); the
number of minimal dominant sets existing for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi may be very
large (Theorem 9). Next, we show how to overcome all these difficulties over set Jrq , |Jrq | ≥ 2,
and how to use these sets while solving a problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi (when no additional
criterion is implied by the data uncertainty). The size n of problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi

will be reduced by the quantity |Jrq |−1 for each non-singleton Jrq via identifying a set of jobs
Jrq in one job of them.

Due to Theorem 1, in any optimal permutation πl ∈ S generated by the instance 1|p|∑wiCi,
all the jobs of set Jrq ⊆ J must be located adjacently one by one: πl = (. . . , π(Jrq), . . .),
where π(Jrq) is a permutation of the jobs Jrq . Moreover, the order of the jobs {Jq(1), Jq(2), . . . ,
Jq(|Jrq |)} = Jrq in permutation π(Jrq) does not influence the value of the objective function

γ =
∑n

i=1 wiCi calculated for any permutation πk ∈ S of the form πk = (. . . , π(Jrq), . . .) (since
the processing time of each job Jq(v) ∈ Jrq is fixed and the weight-to-process ratios are the
same for all the jobs of set Jrq). Therefore, while looking for an optimal permutation for any
instance 1|p|∑wiCi generated by the uncertain problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi via fixing
a scenario p ∈ T , one can treat all the jobs {Jq(1), Jq(2), . . . , Jq(|Jrq |)} = Jrq as one job with

the numerical parameters (weight and processing time) equal to those of any job of set Jrq .
By choosing only one job from each of such sets Jrq , rq ∈ {r1, r2, . . . , rm}, |Jrq | ≥ 2, the
original instance of the uncertain problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi can be transformed into an
equivalent instance (let this instance be denoted as 1∗|pL

i ≤ pi ≤ pU
i |
∑

wiCi) with a smaller
cardinality of the set of jobs to be scheduled (let this set be denoted as J ∗):

|J ∗| = |J | −
m∑

q=1

(|Jrq | − 1) = n + m−
m∑

q=1

|Jrq |.

In the following claim, 1∗|p|∑wiCi denotes the deterministic instance generated by the
uncertain instance 1∗|pL

i ≤ pi ≤ pU
i |
∑

wiCi via fixing a scenario p ∈ T .

Theorem 10 [25] An instance 1∗|pL
i ≤ pi ≤ pU

i |
∑

wiCi is equivalent to the original instance of
the uncertain problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi in the sense that for any fixed scenario p ∈ T , an
optimal permutation πk of the instance 1∗|p|∑wiCi is obtained from the corresponding optimal
permutation πt of the instance 1|p|∑wiCi of the original uncertain problem via deleting from
permutation πt all the jobs of set J \ J ∗.

Along with a smaller size, the equivalent instance 1∗|pL
i ≤ pi ≤ pU

i |
∑

wiCi has a unique
minimal dominant set S(T ) (due to Theorem 5). Consequently, S(T ) is a minimal dominant
set with respect to both inclusion and cardinality. The next useful property of the instance
1∗|pL

i ≤ pi ≤ pU
i |
∑

wiCi is that relation A ⊆ J ×J is a strict order on the set of jobs J (due
to Theorem 8) and the corresponding digraph (J ,A) has neither a loop nor a contour. Due
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to Theorem 6, for any permutation πk ∈ S(T ), there exists a scenario p ∈ T such that πk is
the unique optimal permutation for the instance 1|p|∑wiCi.

Instead of using the digraph (J ,A), one can adopt a reduction G = (J ,A0) of digraph
(J ,A), which is obtained from the latter via deleting the transitive arcs A \ A0.

2.3 Properties of a stability box and region

In [25], the notion of a stability box of a permutation πk ∈ S has been introduced. A stability
box is a subset of the stability region [9, 12, 13, 20] and is similar to a stability ball investigated
in the papers [9, 12–14, 20] within a post-optimality analysis of the optimal permutation
constructed for the deterministic scheduling problem.

Definition 3 A maximal closed rectangular box SB(πk, T ) = ×n
i=1[li, ui] ⊆ T is called a sta-

bility box of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S with respect to T , if for each i ∈
{1, 2, . . . , n}, permutation πk remains optimal for the instance 1|p′|∑wiCi with any scenario
p′ = (p′1, p

′
2, . . . , p

′
n) ∈ {×n

j=1,j 6=i[p
L
kj

, pU
kj

]} × [lki
, uki

]. If there does not exist a scenario p ∈ T

such that permutation πk is optimal for the instance 1|p|∑wiCi, then SB(πk, T ) = ∅.

In Definition 3, the maximality of a rectangular box SB(πk, T ) means that for each position
i ∈ {1, 2, . . . , n} in permutation πk, the lower bound lki

(the upper bound uki
) of the variation

of the processing time pki
of job Jki

, which is located at position i in permutation πk, preserving
the optimality of permutation πk has to be as small (as large) as possible provided that the
processing time of each other job Jkj

, j ∈ {1, 2, . . . , n} \ {i}, may vary independently and
simultaneously within the whole given segment [pL

kj
, pU

kj
]. We call the dimension of a stability

box SB(πk, T ) the cardinality |Nk| of the set {pki
| ki ∈ Nk} of the processing times in the

scenario p′ which may be modified in vector p with preserving the optimality of permutation
πk. The cardinality |Nk| of set Nk is an important characteristic of the stability box SB(πk, T ):
It defines the maximum number of the processing times in p′ which are modifiable in scenario
p without violating the optimality of permutation πk. Note that the processing times of the
remaining set {p′kj

| kj ∈ N \ Nk} have to remain the same as those in the original vector p :

p′kj
= pkj

.

In [12] and [13, 20], the stability region of an optimal semi-active schedule was investigated
for a job-shop problem with the mean flow time and the makespan criterion, respectively. Using
the notations introduced for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi, the stability region K(πk, T ) of
a permutation πk ∈ S with respect to T is defined as follows:

K(πk, T ) =

p | p ∈ T,
∑

Ji∈J
wiCi(πk, p) = min

πl∈S

∑
Ji∈J

wiCi(πl, p)


 . (7)

Definition 3 of a stability box and definition (7) of a stability region imply inclusion

SB(πk, T ) ⊆ K(πk, T ).

In our heuristic algorithms for solving problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi, we shall use the
stability box in spite of set SB(πk, T ) being often a proper subset of set K(πk, T ). We can
argue for such a choice by the simplicity of a stability box allowing us to provide a polynomial
time for calculating SB(πk, T ) for a permutation πk ∈ S(T ).

In [25], the following properties of the stability box and the stability region have been derived.

Theorem 11 [25] The stability box SB(πk, T ) (the stability region K(πk, T )) is empty, if and
only if there is no scenario p ∈ T such that permutation πk is optimal for the instance
1|p|∑wiCi.
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Theorem 12 [25] There exists a scenario p ∈ T such that permutation πk = (Jk1 , Jk2 , . . . ,
Jkn) ∈ S is optimal for the instance 1|p|∑wiCi if and only if there is no job Jki

, i ∈
{1, 2, . . . , n− 1}, such that inequality

wki

pL
ki

<
wkj

pU
kj

(8)

holds for at least one job Jkj
, where j ∈ {i + 1, i + 2, . . . , n}.

Theorem 13 [25] The stability box SB(πk, T ) (stability region K(πk, T )) is empty, if and only
if there exists job Jki

, i ∈ {1, 2, . . . , n − 1}, such that inequality (8) holds for at least one job
Jkj

, where j ∈ {i + 1, i + 2, . . . , n}.

Definitions 3 and (7) imply the following claim.

Theorem 14 [25] If there exists exactly one scenario p ∈ T such that permutation πk ∈ S is
optimal for the instance 1|p|∑wiCi, then SB(πk, T ) = {p} = K(πk, T ).

Theorem 15 characterizes another extreme case for the stability box and the stability region.

Theorem 15 [25] SB(πk, T ) = T = K(πk, T ) if and only if inequalities (4) hold.

As follows from Definition 1, one can restrict the search by the permutations of a minimal
dominant set S(T ) while solving problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi exactly. For each permutation
of set S(T ), both the stability region and the stability box are non-empty, i.e., the following
claim holds.

Theorem 16 [25] If πk ∈ S(T ), then SB(πk, T ) 6= ∅ and K(πk, T ) 6= ∅.

In the next subsection, we present an O(n log n)-algorithm STABOX for calculating the
stability box SB(πk, T ) for a permutation πk = (Jk1 , . . . , Jki−1

, Jki
, Jki+1

, . . . , Jkn) ∈ S. In
Section 3, we show how to use this algorithm for solving approximately problem 1|pL

i ≤ pi ≤
pU

i |
∑

wiCi.

2.4 Polynomial algorithm for calculating the stability box

Due to the additivity of the objective function γ =
∑

wiCi, in order to find a rectangular
box SB(πk, T ), it is sufficient to calculate the maximal range of the possible variation of each
processing time pki

, i ∈ {1, 2, . . . , n}, which preserves the optimality of permutation πk. Let a
“possible variation” [lki

, uki
] (respectively, [Lki

, Uki
]) of the processing time pki

(of the weight-
to-process ratio of job Jki

) mean the following. If πk is an optimal permutation for the instance
1|p|∑wiCi with p = (p1, p2, . . . , pn) ∈ T , then permutation πk remains optimal for any instance
1|p′|∑wiCi with p′ = (p′1, p

′
2, . . . , p

′
n) ∈ T , where p′t = pt for each t 6= ki and pki

∈ [lki
, uki

]
(respectively,

wki

pki
∈ [Lki

, Uki
]). It is easy to show that the lower bound d−ki

for the maximal

possible variation of the weight-to-process ratio is as follows:

d−ki
= max

{
wki

pU
ki

, max
i<j≤n

{
wkj

pL
kj

}}
. (9)

The upper bound d+
ki

for the maximal possible variation of the weight-to-process ratio is as
follows:

d+
ki

= min

{
wki

pL
ki

, min
1≤j<i

{
wkj

pU
kj

}}
. (10)

In [25], the following claims have been proven.
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Theorem 17 [25] If there is no job Jki
, i ∈ {1, 2, . . . , n−1}, in permutation πk = (Jk1 , Jk2 , . . . ,

Jkn) ∈ S such that inequality (8) holds for at least one job Jkj
, where j ∈ {i + 1, i + 2, . . . , n},

then

SB(πk, T ) = ×d−i ≤d+
i

[
wki

d+
ki

,
wki

d−ki

]
× {×d−j >d+

j
[pkj

, pkj
]}. (11)

Otherwise, SB(πk, T ) = ∅.

Corollary 1 [25] If SB(πk, T ) 6= ∅ for problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi with the scenario set
T , then the singleton {πk} is a minimal dominant set for problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi with
the scenario set T = SB(πk, T ).

The following O(n log n)-algorithm is based on Theorem 17.

Algorithm STABOX [25]

Input: Segments [pL
i , pU

i ], weights wi, Ji ∈ J ; permutation πk =(Jk1 , Jk2 , . . . , Jkn) ∈ S.
Output: Stability box SB(πk, T ).
Step 1: Construct the list L of fractions

wki

pL
ki

, i = 1, 2, . . . , n, in non-increasing order;

find the position ri of element
wki

pL
ki

in the list L, let Lri
=

wki

pL
ki

.

Step 2: Construct the list U of fractions
wki

pU
ki

, i = 1, 2, . . . , n, in non-decreasing order;

find the position mi of element
wki

pU
ki

in the list U , let Umi
=

wki

pU
ki

.

Step 3: Construct the list U0 of fractions
wki

pU
ki

, i = 1, 2, . . . , n, in non-increasing order;

find the position ti of element
wki

pU
ki

in the list U0, let U0
ti

=
wki

pU
ki

.

Step 4: FOR i = 1 to n DO
set U0 := U0 \ {U0

ti
}; test inequality

wki

pL
ki

< U0
1 ,

where U0
1 is the first (maximal) element in the list U0;

IF inequality
wki

pL
ki

< U0
1 holds

THEN SB(πk, T ) = ∅ STOP.
END FOR

Step 5: FOR i = 1 to n− 1 DO

set L := L \ {Lri
}; calculate d−ki

= max
{

wki

pU
ki

, L1

}
,

where L1 is the first (maximal) element in the list L.
END FOR

Step 6: FOR i = n to 2 DO

set U := U \ {Umi
}; calculate d+

ki
= max

{
wki

pU
ki

, U1

}
,

where U1 is the first (minimal) element in the list U .
END FOR

Step 7: Set d−kn
:=

wkn

pU
kn

; d+
k1

:=
wk1

pL
k1

.

Step 8: FOR Ji ∈ J DO
IF d+

ki
< d−ki

THEN processing time pki
has to be fixed in SB(πk, T )

ELSE
[

wki

d+
ki

,
wki

d−
ki

]
is the maximal range of the possible variation of pki

.

END FOR

Step 9: Set SB(πk, T ) := ×d−i ≤d+
i

[
wki

d+
ki

,
wki

d−
ki

]
× {×d−j >d+

j
[pkj

, pkj
]} STOP.
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Table 1: Data for the example
1 2 3 4 5 6 7 8 9 10
i pL

i pU
i wi

wi

pL
i

wi

pU
i

d−i d+
i

wi

d+
i

wi

d−
i

1 4 5 400 100 80 90 100 4 4 4
9

2 6 9 540 90 60 60 80 6 3
4 9

3 4 8 200 50 25 40 50 4 5
4 6 6 240 40 40 40 25 - -
5 3 4 120 40 30 40 25 - -
6 4 32 160 40 5 20 25 6 2

5 8

Formula (11) is valid for any permutation πk ∈ S with a non-empty stability box, e.g., for
each permutation in the set S(T ), since the following claim holds.

Theorem 18 [25] If πk ∈ S(T ), then SB(πk, T ) 6= ∅ and K(πk, T ) 6= ∅.

In Section 3, we show how to solve problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi approximately using a
minimal dominant set S(T ) and a permutation πk ∈ S(T ) with the stability box SB(πk, T )
of maximal relative volume. The permutation, which has the largest relative volume of the
stability box, seems to be the most attractive one among the permutations of a minimal
dominant set.

3 A PERMUTATION WITH THE LARGEST STABILITY BOX

The above results motivate us for developing a branch-and-bound algorithm for solving problem
1|pL

i ≤ pi ≤ pU
i |
∑

wiCi approximately. Intuitively, a permutation with a larger volume of the
stability box is better than that with a smaller volume of the stability box. For simplicity, the
presentation of the algorithm will be based on the following example.

3.1 Example

The input data for the example of problem 1|pL
i ≤ pi ≤ pU

i |
∑

wiCi are given in columns 1–4
of Table 1.

For each pair of jobs Ju ∈ J ∗ and Jv ∈ J ∗, we check condition (3) as follows:

w1

pU
1

=80≥50=
w3

pL
3

;
w1

pU
1

= 80 ≥ 40 =
w4

pL
4

;
w2

pU
2

= 60 ≥ 50 =
w3

pL
3

;

w2

pU
2

= 60 ≥ 40 =
w4

pL
4

;
w4

pU
4

=40≥40=
w5

pL
5

;
w4

pU
4

= 40 ≥ 40 =
w6

pL
6

.

Thus, condition (3) is satisfied for the following pairs of ordered jobs: (J1, J3), (J1, J4),
(J2, J3), (J2, J4), (J4, J5), (J4, J6). Due to Theorem 2, the following relations hold: J1 7→ J3,
J1 7→ J4, J2 7→ J3, J2 7→ J4, J4 7→ J5, J4 7→ J6. A minimal dominant set S(T ) is defined by
the digraph G = (J ,A) (the reduction of this digraph is represented in Figure 1). Due to
Theorem 5, a minimal dominant set is unique for this example.

3.2 Branch-and-bound algorithm

For finding a permutation with the largest relative volume of a stability box, we develop a
tree-like algorithm called MAXSTABOX.
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Figure 1: The reduction of digraph G = (J ,A) defining a unique minimal dominant set S(T ).

Let T = (V, E) denote the solution tree, where V is the set of vertices and E is the set of
edges. The solution tree T = (V, E) constructed for the above example is represented in Figure
2. Each vertex of the solution tree T = (V, E) is a permutation πk,m = (Jk1 , Jk1 , . . . , Jkm) ∈ V ,
m ≤ n, of some jobs from set J . Edge [πk,m, πl,m+1] belongs to set E, if permutation πl,m+1 =
(Jl1 , Jl1 , . . . , Jlm+1), m ≤ n− 1, was obtained from permutation πk,m = (Jk1 , Jk1 , . . . , Jkm), i.e.,
equality Jki

= Jli holds for each index i ∈ {1, 2, . . . ,m}.
The root of the solution tree T = (V, E) is the empty permutation (we denote the empty

permutation by π∗,0). The search process is started with the solution tree defined as follows:

T := ({π∗,0}, ∅).

The set of vertices of rank h = 1 in the solution tree is defined by the set of jobs X(h),
which have no predecessors in the digraph G = (J ,A). In the above example, we obtain
X(h) = {J1, J2} since both jobs J1 and J2 have no predecessors in the digraph G = (J ,A)
(see Figure 1).

In the first iteration, the solution tree T = (V, E) for the example is constructed as follows:

V := {π∗,0, π1,1 = (J1), π2,1 = (J2)}, E := {[π∗,0, (J1)], [π∗,0, (J2)]}.

This means that either job J1 or job J2 may be located at the first position in the desired job
permutation.

The set of vertices of rank h = 2 in the solution tree is defined by the set of jobs X(h), which
have no predecessors in the digraph obtained from G = (J ,A) after deleting the vertex of set
X(h− 1) = X(1).

In the second iteration, the solution tree T = (V, E) for the example is constructed as follows:

V := {π∗,0, π1,1 = (J1), π
2,1 = (J2), π

3,2 = (J1, J2), π
4,2 = (J2, J1)},

E := {[π∗,0, (J1]), (π∗,0, (J2)), ((J1), (J1, J2)), ((J2), (J2, J1))}.
The whole solution tree is constructed similarly until a subset of the complete job permu-

tations πk,n = (Jk1 , Jk1 , . . . , Jkn) ∈ V will be obtained. This subset of set S has to contain at
least one permutation of the set S(T ) with the largest relative volume of the stability box.

The rule for cutting a branch in the solution tree T = (V, E) is based on Theorem 19, where
V olSB(πk,m, T ) denotes the relative volume of the stability box SB(πk,m, T ).

Theorem 19 Let for vertices πk,m ∈ V and πl,m ∈ V , m < n, the following conditions hold:

{Jk1 , Jk1 , . . . , Jkm} = {Jl1 , Jl1 , . . . , Jlm}, (12)

V olSB(πk,m, T ) ≥ V olSB(πl,m, T ). (13)

Then vertex πl,m ∈ V can be eliminated from further branching in the solution tree.
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Figure 2: Solution tree T = (V,E) constructed for the example.

Proof. For each partial permutation πk,m = (Jk1 , Jk1 , . . . , Jkm) ∈ V with m < n, one can
calculate the stability box SB(πk,m, T ) using equality (11) and calculate the relative volume
V olSB(πk,m, T ) as the product of the relative maximal possible variation of the weight-to-
process ratio for all jobs Jki

, k ∈ {1, , 2, . . . ,m}.
Assigning a job Jkm to position m in the permutation πk,m partitions the set of jobs J into

two subsets with respect to the complete permutation πu = (Jk1 , Jk1 , . . . , Jkm−1 , Jkm , Jkm+1 . . . ,
Jrm) ∈ S. One set is the set of jobs {Jk1 , Jk1 , . . . , Jkm−1} located before job Jkm , and the other
set is the set of jobs {Jkm+1 . . . , Jrm} located after job Jkm in the permutation πu. The maximal
possible variation of the weight-to-process ratio for job Jkm may be calculated using equalities
(9) and (10). It is clear that the result of this calculation does not depend on the order of the
jobs within the set {Jk1 , Jk1 , . . . , Jkm−1} and within the set {Jkm+1 . . . , Jrm}.

Thus, if inequality (13) and equality (12) hold for permutations πk,m ∈ V and πl,m ∈ V , then
permutation πl,m ∈ V can be eliminated from further branching in the solution tree.

Returning to the example, we can construct the solution tree presented in Figure 2, where
π5,3 = {J1, J2, J3}, π6,3 = {J1, J2, J4}, π7,3 = {J2, J1, J3}, π8,3 = {J2, J1, J4}, π9,4 = {J1, J2, J3,
J4}, π10,4 = {J1, J2, J4, J3}, π11,4 = {J1, J2, J4, J5}, π12,4 = {J1, J2, J4, J6}, π13,5 = {J1, J2, J3, J4,
J5}, π14,5 = {J1, J2, J3, J4, J6}, π15,6 = {J1, J2, J3, J4, J5, J6}, π16,6 = {J1, J2, J3, J4, J6, J5}.

It is easy to convince that for the vertices π5,3 = {J1, J2, J3} and π7,3 = {J2, J1, J3} of the
solution tree, condition (13) holds:

V olSB(π5,3, T ) ≥ V olSB(π7,3, T ),

Moreover, permutation π5,3 and permutation π7,3 include the same set of jobs {J1, J2, J3},
i.e., condition (12) also holds. Due to Theorem (12), it is not necessary to branch vertex
π7,3. Due to a similar reason, there is no need to branch vertices π8,3 = {J2, J1, J4} and
π10,4 = {J1, J2, J4, J3} (see Figure 2).

Next, we present the scheme of the branch-and-bound algorithm, where initially set X(h) is
the set of vertices of digraph G = (J ,A) without predecessors, and V (h) is the set of vertices
of the solution tree which have to be branched.

Algorithm MAXSTABOX

Input: Segments [pL
i , pU

i ], weights wi, Ji ∈ J .
Output: Permutation πk =(Jk1 , Jk2 , . . . , Jkn) ∈ S with the largest

relative volume of a stability box SB(πk, T ).
Step 1: Construct the digraph G = (J ,A).
Step 2: Define the search tree T := ({π∗,0}, ∅).
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Step 3: Set h = 1 and V (h) = X(h). Include the vertex set X(h) into the tree T .
Step 4: IF the rank of the tree T is less than n THEN GOTO step 7 ELSE
Step 5: FOR πk,m ∈ V (h) DO

restore the path µ(πk,m) from the root of tree T to vertex πk,m;
delete all vertices of path µ(πk,m) from digraph G = (J ,A);
each vertex of the obtained digraph defines a new vertex in the tree T ;
using (11) calculate the stability box for the partial job permutation;
set h := h + 1.

END FOR
Step 6: Set V (h) = ∅.

Test condition (13) for all leaves of the tree T
for each pair for which condition (12) holds.
If both conditions of Theorem 19 hold, then delete
all such leaves from the tree T except one with the
largest volume of the stability box and include
this vertex into set V (h).
GOTO step 4.

Step 7: Using Algorithm STABOX, select the permutation with
the largest relative volume of the stability box STOP.

The algorithm MAXSTABOX allows us to find a permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S
with the largest relative volume of a stability box SB(πk, T ). However, there might be several
permutations with the largest relative volume of a stability box SB(πk, T ). In particular, if
several adjacent jobs within permutation πk have a zero possible variation of their weight-to-
process ratio. To order such a set of jobs, we use one of the following two heuristics:

A lower-point scenario heuristic, which solves to optimality the deterministic problem 1|pL|∑wiCi

with the processing times pL = (pL
1 , pL

2 , . . . , pL
n), and

an upper-point scenario heuristic, which solves to optimality the deterministic problem
1|pU |∑wiCi with the processing times pU = (pU

1 , pU
2 , . . . , pU

n ).
Combining algorithm MAXSTABOX with the lower-point scenario heuristic is called Al-

gorithm SL, and that combined with the upper-point scenario heuristic is called Algorithm
UL.

4 COMPUTATIONAL RESULTS

Table 2 presents some computational results for testing randomly generated instances of prob-
lem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi with n ∈ {5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}. We answer
(by experiments on a Laptop) the question of how large the relative error ∆ of the value γk

p∗

of the objective function γ =
∑n

i=1 wiCi is, obtained for the permutation πk with the largest
relative volume of the stability box SB(π1, T ) with respect to the actually optimal objective
function value γt

p∗ calculated for the actual processing times p∗ = (p∗1, p
∗
2, . . . , p

∗
n) ∈ T :

∆ =
γk

p∗ − γt
p∗

γt
p∗

.

Remind that the actual processing times are assumed to be unknown before scheduling. Algo-
rithms SL and UL were coded in C++ and were used to find a permutation πk ∈ S(T ) with
the largest relative volume of the stability box.

An integer lower bound pL
i and an integer upper bound pU

i for the possible real values pi ∈ R1
+

of the job processing times, pi ∈ [pL
i , pU

i ], were generated as follows.
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First, an integer center C of the closed interval [pL
i , pU

i ] was generated using a uniform
distribution in the given range [L, U ]: L ≤ C ≤ U . Then the lower bound pL

i for the possible
processing time was defined using the equality

pL
i = C ·

(
1− δ

100

)
.

An upper bound pU
i was defined using the equality

pU
i = C ·

(
1 +

δ

100

)
.

As a result, the maximum possible relative error of the uncertain processing time was
equal to δ%. In the experiments, we tested instances of problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi

with the relative errors δ% of the random processing times defined by the values of δ ∈
{0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 25.0, 50.0}. The same range [L, U ] for the varying center C of the
closed interval [pL

i , pU
i ] was used, namely: L = 10 and U = 1000. For each job Ji ∈ J ,

the weight wi ∈ R1
+ was uniformly distributed in the range [1, 50]. In contrast to the actual

processing time p∗i , the weight wi is known before scheduling.
For the experiments, we used a Laptop with Intel Pentium Dual Core with CPU 1.86 GHz and

RAM 2 GB. Table 1 represents the computational results for 85 series of randomly generated
instances of problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi. Each series contains 10 instances with the same
combination of n and δ. The number n of jobs in an instance is given in column 1. The
maximum possible error δ of the random processing times (in percentages) is given in column
2. Column 3 represents the average relative number |A| of the arcs in the digraph G = (J ,A)
constructed using the condition (3) of Theorem 2 (in percentages of the arc number in a
complete circuit-free digraph of order n):

|A| : n(n− 1)

2
· 100%.

Column 4 represents the average number |Nk| of the processing times which may vary in
the stability box SB(πk, T ) of the permutation πk with the largest relative volume of the
stability box. In other words, |Nk| denotes the number of jobs with a non-zero relative maximal
possible variation of the weight-to-process. Column 5 represents the average relative volume
V olSB(πk, T ) of the permutations with the largest V olSB(πl,m, T ). If SB(πl,m, T ) = T for all
the instances in the series, then columnn 5 contains number one.

Column 6 and 7 represent the number of instances (from 10 ones in a series) for which
a permutation πk with the largest relative volume of the stability box provides an optimal
solution of an instance due to algorithm SL and UL, respectively.

The average (maximum) relative error ∆ of the objective function value γk
p∗ calculated for

permutation πk constructed by the branch-and-bound algorithm MAXSTABOX with respect
to the optimal objective function value γt

p∗ defined for the actual job processing times is given
in columns 8 and 9 for algorithm SL (in columns 10 and 11 for algorithm SU, respectively).
The CPU-time is given in Column 12 for each of the algorithms SL and SU (since there is no
difference in their running times).

From the experiments, it follows that condition (4) of Theorem 3 holds only for instances
with a small relative error δ%, δ ∈ {0.1, 0.5}, of the job processing times (see column 3 for the
series with numbers 1–10) and for the series with number 11. For each instance of these series,
the permutation πk with the largest relative volume of a stability box provides an optimal
solution (columns 6, 7 and 8). If one algorithm outperforms the other one, the corresponding
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number is presented in Table 2 in bold face. The permutation πk with the largest relative
volume of a stability box provides an optimal solution for each instance of a series for which
there is no single dominant permutation for at least one instance.

5 CONCLUDING REMARKS

In today’s innovative, dynamic and very competitive marketplace, an enterprise needs to use
optimal scheduling decisions (a scheduling policy) as much as possible in spite of data un-
certainty. A schedule minimizing the worst-case regret (such a schedule may be constructed
due to robust scheduling [4, 5]) is generally useful for the worst-case scenario. However, the
worst-case scenario may be practically realized rather seldom. Indeed, it is unlikely that all
the processing times assume their worst values just for the factual schedule. Consequently, a
schedule which is optimal for the worst-case regret criterion may be not competitive for the
actually realized scenario being often very far from the worst-case one. Moreover, to find a
schedule minimizing the worst-case regret for the total flow time criterion

∑
Ci is an NP-hard

problem even for two possible scenarios. It should be noted that a lot of real-world scheduling
problems deal with a large number of jobs to be scheduled and the number of possible scenarios
may be very large.

A stochastically optimal schedule for the E(
∑

wiCi) criterion (see [1]) in the class of non-
preemptive static list policies (i.e., a schedule minimizing the expected sum of the weighted
completion times provided that the jobs are ordered at time zero according to a chosen priority
list) may be constructed by the weighted shortest processing time (WSEPT) rule: Process the
jobs in non-increasing order of the ratio wi

E(pi)
, where E(pi) denotes the expected value of the

random processing time pi (see page 232 in [1]). However, a stochastically optimal schedule
is factually efficient, if the probability distribution of each random processing time is known
before scheduling and, moreover, if a sufficiently large number of scenarios will be realized in
a rather closed scheduling environment. Again, a stochastically optimal schedule may appear
not competitive for the unique scenario which is factually realized. Furthermore, an enterprise
may have no enough chances to compensate its loss caused by using a stochastically optimal
schedule which is not optimal for the factually realized scenario. Using stochastically optimal
schedules for a sufficiently long time (and for a large number of similar scenarios) may be
practically impossible for an enterprise since other competitors may be more productive via
achieving better results on the market due to their better scheduling policies.

Using the results of paper [25], we pick out in the scenario set T a subset of scenarios
SB(πk, T ) for which permutation πk is definitely optimal. Due to assuming a reasonable
restriction on the job set J , set S(T ) turns out to be the unique minimal dominant set
for an instance of problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi. Consequently, a dominant set S(T )
being minimal with respect to inclusion (see condition (b) of Definition 1) becomes minimal
with respect to cardinality. A restriction on the set J providing a singularity of set S(T )
implies the identification of appropriate jobs without a loss of potentially optimal schedules
and with decreasing the size n = |J | of the original problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi under
consideration. A minimal dominant set of permutations S(T ) ⊆ S is uniquely determined for
problem 1|pL

i ≤ pi ≤ pU
i |
∑

wiCi if we choose only one job among a subset of jobs with the
same fixed weight-to-process ratio. In case there are several jobs with the same fixed weight-
to-process ratio, we can even decrease the number of jobs for a consideration in the minimal
dominant set. Thus, the condition for the uniqueness of S(T ) is not restrictive and even useful.

We used the notion of a stability box of permutation πk ∈ S, which is similar to a stability
ball [12–14, 20]. The stability box plays a similar role for the uncertain optimization problem
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as the stability ball [13, 14, 19, 20, 26, 27, 28] plays for a post-optimality analysis when the
input data and the optimal solution for them are already known and one has to know the
credibility of the solution at hand to the possible variation of the input data within a maximal
ball.

We used an exact formula for characterizing the stability box of any fixed permutation πk ∈ S
which runs in O(n log n) time without using a special data structure. We developed a tree-like
algorithm for finding a permutation with the largest relative volume of a stability box and we
presented computational results for two combinations of a stability heuristic with a lower-point
scenario heuristic and an upper-point scenario heuristic. Further research on using a stability
box for other uncertain scheduling problems seems to be promising.
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Table 2: Randomly generated instances with [L,U ] = [10, 1000] and wi ∈ [1, 50]
n δ |A| Average Relative Exact solutions Average error Maximal error CPU

(%) (%) |Nk| Vk SL SU SL SU SL SU time

1 2 3 4 5 6 7 8 9 10 11 12

5 0.1 100 5 1 10 10 0 0 0 0 0.0

5 0.5 100 5 1 10 10 0 0 0 0 0.0

5 1 97.00 4.9 0,741 10 10 0 0 0 0 0.0

5 5 93.00 5 0.509 10 10 0 0 0 0 0.0

5 10 92.00 5 0.441 7 7 0.000931 0.000931 0.005934 0.005934 0.0

5 15 88.00 4.9 0.518 9 9 0.000381 0.000381 0.003811 0.003811 0.0

5 25 82.00 4.7 0.295 6 6 0.004766 0.004766 0.0326 0.0326 0.0

5 50 53.0 3.8 0.0441 5 5 0.010454 0.010454 0.058311 0.058311 0.0

10 0.1 100 10 1 10 10 0 0 0 0 0.0

10 0.5 99.33 9.9 0.757 10 10 0 0 0 0 0.0

10 1 98.89 10 0.677 9 9 0.000003 0.000003 0.000029 0.000029 0.0

10 5 95.78 9.8 0.258 9 9 0.000065 0.000065 0.000651 0.000651 0.0

10 10 93.11 9.7 0.0521 7 7 0.000158 0.000158 0.000961 0.000961 0.0

10 15 87.56 9.0 0.0254 3 3 0.002768 0.002768 0.00882 0.00882 0.0

10 25 71.11 6.5 0.0120 0 0 0.006057 0.006057 0.018855 0.018855 0.0

10 50 52.00 4.0 0.0139 0 0 0.02628 0.02628 0.05833 0.05833 0.0

15 0.1 99.90 15 0.982 10 10 0 0 0 0 0.0

15 0.5 99.62 15 0.806 10 10 0 0 0 0 0.0

15 1 98.48 14.9 0.337 7 7 0.000041 0.000041 0.000203 0.000203 0.0

15 5 96.10 14.5 0.0701 4 4 0.000273 0.000273 0.001192 0.001192 0.0

15 10 88.00 11.7 0.00690 2 2 0.001158 0.001158 0.004991 0.004991 0.0

15 15 84.29 10.5 0.00225 2 2 0.002474 0.002474 0.005859 0.005859 0.0

15 25 78.57 7.8 0.00371 1 1 0.006385 0.006385 0.017376 0.017376 0.0

15 50 54.38 3.8 0.0469 0 0 0.025886 0.026099 0.050611 0.050611 0.0

20 0.1 99.95 20 0.901 10 10 0 0 0 0 0.0

20 0.5 99.63 20 0.553 8 8 0.000003 0.000003 0.000029 0.000029 0.0

20 1 99.05 19.8 0.250 6 6 0.000019 0.000019 0.000112 0.000112 0.0

20 5 94.58 17.7 0.000272 1 1 0.000479 0.000479 0.001646 0.001646 0.0

20 10 88.26 13.6 0.000806 0 0 0.001955 0.001955 0.006086 0.006086 0.0

20 15 87.11 13.2 0.000130 1 1 0.002976 0.002976 0.008585 0.008544 0.0

20 25 70.89 6.8 0.0285 0 0 0.009162 0.009162 0.015119 0.015119 0.0

20 50 47.95 3.5 0.0437 0 0 0.049569 0.04958 0.135189 0.135295 3.3

30 0.1 99.89 29.9 0.699 8 8 0.000002 0.000002 0.000008 0.000008 0.0

30 0.5 99.53 29.3 0.255 6 6 0.000005 0.000005 0.000023 0.000023 0.0

30 1 98.78 29.3 0.00608 5 5 0.000021 0.000021 0.000097 0.000097 0.0

30 5 94.76 24.0 0.000001 0 0 0.000409 0.000412 0.00143 0.001469 0.0

30 10 89.17 16.5 0.00003 0 0 0.001823 0.001823 0.004153 0.004153 0.0

30 15 85.15 14.0 0.000298 0 0 0.00396 0.003976 0.007035 0.007035 0.1

30 25 75.17 6.5 0.0114 0 0 0.0069 0.006895 0.011764 0.011716 0.3

30 50 63.45 3.0 0.00031 0 0 0.041807 0.041807 0.041807 0.041807 1.0

40 0.1 99.92 39.9 0.699 10 10 0 0 0 0 0.0

40 0.5 99.38 39.0 0.0818 5 5 0.000009 0.000009 0.00003 0.00003 0.0

40 1 98.90 38.7 0.00206 1 1 0.000017 0.000019 0.00005 0.000064 0.0

40 5 94.73 28.1 ≈ 0 0 0 0.000438 0.000427 0.001186 0.0001186 0.0

40 10 90.08 19.0 ≈ 0 0 0 0.001663 0.00173 0.003472 0.003472 0.1

40 15 84.56 13.8 ≈ 0 0 0 0.004143 0.004315 0.006127 0.006651 0.4

40 25 77.18 4.5 0.01076 0 0 0.009055 0.009055 0.012444 0.012444 1.0
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Table 2 (continuation): Randomly generated instances with [L, U ] = [10, 1000] and wi ∈ [1, 50]

n δ |A| Average Relative Exact solutions Average error Maximal error CPU

(%) (%) |Nk| Vk SL SU SL SU SL SU time

1 2 3 4 5 6 7 8 9 10 11 12

50 0.1 99.92 49.4 0.612 7 7 0.000001 0.000001 0.000006 0.000006 0.1

50 0.5 99.46 48.9 0.00918 5 5 0.000005 0.000005 0.000031 0.000031 0.0

50 1 98.99 48.0 0.00029 1 1 0.000016 0.000016 0.000046 0.000046 0.0

50 5 94.75 31.8 ≈ 0 0 0 0.000455 0.00046 0.00073 0.00073 0.2

50 10 89.81 18.6 ≈ 0 0 0 0.001859 0.001856 0.002762 0.002741 0.6

50 15 85.42 13.7 ≈ 0 0 0 0.003332 0.00329 0.005219 0.005219 6.0

50 25 76.33 7.0 0.03944 0 0 0.007341 0.007546 0.007953 0.007953 10.0

60 0.1 99.92 59.3 0.583 8 8 ≈ 0 ≈ 0 0.000001 0.000001 0.1

60 0.5 99.58 59.0 0.00394 3 3 0.000004 0.000004 0.000023 0.000023 0.1

60 1 98.95 56.3 ≈ 0 0 0 0.000027 0.000028 0.000086 0.000086 0.1

60 5 94.69 33.7 ≈ 0 0 0 0.000385 0.000395 0.000978 0.000973 0.4

60 10 89.03 17.6 0.00117 0 0 0.001624 0.001608 0.002507 0.002507 5.5

60 15 84.60 10.9 0.00025 0 0 0.003656 0.003645 0.004973 0.004973 13.2

60 25 78.59 10.0 ≈ 0 0 0 0.012855 0.012783 0.012856 0.012784 29.0

70 0.1 99.93 69.4 0.307 8 7 ≈ 0 0.000001 0.000002 0.000002 0.1

70 0.5 99.42 66.4 ≈ 0 0 0 0.000008 0.000009 0.000018 0.000018 0.2

70 1 98.90 65.1 ≈ 0 0 0 0.000023 0.000023 0.000053 0.000053 0.3

70 5 95.10 35.7 ≈ 0 0 0 0.000402 0.000401 0.000652 0.000647 0.9

70 10 89.87 17.4 0.000009 0 0 0.001888 0.001893 0.002908 0.002904 10.7

70 15 84.72 12.0 ≈ 0 0 0 0.002139 0.002234 0.002139 0.002234 34.8

70 25 76.89 5.0 0.000003 0 0 0.008478 0.008449 0.008479 0.00845 361.0

80 0.1 99.95 79.4 0.467 7 7 ≈ 0 ≈ 0 0.000002 0.000002 0.3

80 0.5 99.44 76.4 ≈ 0 1 1 0.000006 0.000006 0.000017 0.000017 0.4

80 1 98.87 71.2 ≈ 0 0 0 0.000017 0.000017 0.00003 0.00003 0.5

80 5 94.43 34.1 ≈ 0 0 0 0.000471 0.000472 0.000756 0.000777 6.7

80 10 89.32 16.0 ≈ 0 0 0 0.00179 0.001771 0.002297 0.002304 106.5

80 15 85.38 11.0 0.00002 0 0 0.004137 0.004123 0.004137 0.004123 63.9

90 0.1 99.92 88.4 0.245 6 5 ≈ 0 ≈ 0 0.000001 0.000001 0.6

90 0.5 99.50 85.4 ≈ 0 0 0 0.000003 0.000003 0.000007 0.000007 0.7

90 1 98.99 81.6 ≈ 0 0 0 0.000021 0.000021 0.000038 0.000038 0.9

90 5 94.69 34.2 ≈ 0 0 0 0.00047 0.000469 0.00067 0.00067 8.2

90 10 87.57 15.0 ≈ 0 0 0 0.001945 0.001898 0.001945 0.001898 206.0

90 15 82.85 8.0 ≈ 0 0 0 0.003454 0.003328 0.003454 0.003328 2842.0

100 0.1 99.93 98.1 0.0888 4 5 ≈ 0 ≈ 0 0.000002 0.000001 1.0

100 0.5 99.49 94.8 ≈ 0 0 0 0.000006 0.000006 0.00001 0.00001 1.2

100 1 98.89 85.7 ≈ 0 0 0 0.000018 0.00002 0.000029 0.000029 1.6

100 5 94.98 37.2 ≈ 0 0 0 0.000465 0.000471 0.00067 0.000634 19.2

100 10 91.92 21.0 ≈ 0 0 0 0.001067 0.001063 0.001068 0.001064 46.0
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