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a b s t r a c t

This paper addresses the issue of how to best execute the schedule in a two-phase
scheduling decision framework by considering a two-machine flow-shop scheduling
problem in which each uncertain processing time of a job on a machine may take any value
between a lower and upper bound. The scheduling objective is to minimize the makespan.
There are two phases in the scheduling process: the off-line phase (the schedule planning
phase) and the on-line phase (the schedule execution phase). The information of the lower
and upper bound for each uncertain processing time is available at the beginning of the off-
line phase while the local information on the realization (the actual value) of each uncertain
processing time is available once the corresponding operation (of a job on a machine) is
completed. In the off-line phase, a scheduler prepares a minimal set of dominant schedules,
which is derived based on a set of sufficient conditions for schedule domination that we
develop in this paper. This set of dominant schedules enables a scheduler to quickly make
an on-line scheduling decision whenever additional local information on realization of an
uncertain processing time is available. This set of dominant schedules can also optimally
cover all feasible realizations of the uncertain processing times in the sense that for any
feasible realizations of the uncertain processing times there exists at least one schedule
in this dominant set which is optimal. Our approach enables a scheduler to best execute
a schedule and may end up with executing the schedule optimally in many instances
according to our extensive computational experiments which are based on randomly
generated data up to 1000 jobs. The algorithm for testing the set of sufficient conditions
of schedule domination is not only theoretically appealing (i.e., polynomial in the number
of jobs) but also empirically fast, as our extensive computational experiments indicate.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There are two types of stochastic flow-shop scheduling problems traditionally addressed in the OR literature [1], where
one is on stochastic job and the other is on stochastic machine. In a stochastic job problem, each job processing time is
assumed to be a random variable following a certain probability distribution. With an objective of stochastically minimizing
the makespan (i.e. minimizing the expected schedule length), the flow-shop problem was considered in articles [2–4], among
others. In a stochastic machine problem, each job processing time is a constant, while each job completion time is a random
variable due to machine breakdowns or other reasons of machine non-availability. In [5] (in [6,7], respectively), a flow-shop
problem to stochastically minimize the makespan (the total completion time) was considered.

∗ Corresponding author.
E-mail address: sotskov@newman.bas-net.by (Yu.N. Sotskov).

0895-7177/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2008.02.004

Би
бл
ио
те
ка

 БГ
УИ
Р

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:sotskov@newman.bas-net.by
http://dx.doi.org/10.1016/j.mcm.2008.02.004


992 N.M. Matsveichuk et al. / Mathematical and Computer Modelling 49 (2009) 991–1011

In this paper, we address another type of scheduling problem frequently encountered in realistic situations when it is
hard to obtain a reliable probability distribution for each random processing time. In particular, we consider the following
non-preemptive two-machine flow-shop problem with a scheduling objective to minimize the makespan. There are n ≥ 2
jobs J = {J1, J2, . . . , Jn} to be processed by two machines M = {M1,M2} with the same machine route: (M1,M2). Each job
Ji ∈ J has to be processed first by machine M1 (without preemption), and then by machine M2. All the n jobs are available
for processing at time-point t0 = 0. Each of the processing time pij of job Ji ∈ J by machine Mj ∈M may take any real value
between a given lower bound pL

ij and upper bound pU
ij . In such a case, there may not exist a single schedule that remains

optimal for all possible realizations of the processing times. For a solution to this problem, we seek a minimal set of dominant
schedules (such a solution concept was introduced in [8]).

Let Ci(π) denote the completion time of job Ji ∈ J in the schedule π, and let Cmax denote a minimization of the schedule
length Cmax(π): Cmax = minπ∈S Cmax(π) = minπ∈S{max{Ci(π) | Ji ∈ J}}, where S is the set of all feasible schedules containing
at least one optimal schedule for the makespan criterion. By adopting the three-field notation introduced in [9], we denote
the above problem as F2|pL

ij ≤ pij ≤ pU
ij |Cmax. We let T denote the set of all feasible vectors p = (p1,1, p1,2, . . . , pn1, pn2) of the

uncertain processing times:

T = {p | pL
ij ≤ pij ≤ pU

ij , Ji ∈ J,Mj ∈M}. (1)

We note that the uncertainties of the processing times in problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax are due to external forces while in
a scheduling problem with controllable processing times the objective is both to set the processing times and find an optimal
schedule (see, e.g., articles [10–13]).

Our approach was originally proposed in [8] and developed in [14,15] for the Cmax criterion, and in [16] for the total
completion time criterion,

∑
Ci. In particular, the formula for calculating the stability radius of an optimal schedule (i.e.

the largest value of simultaneous independent variations of the job processing times for the schedule to remain optimal)
has been provided in [8]. In the work of [16], the stability analysis of a schedule minimizing the total completion time
was exploited in a branch and bound method for solving the job-shop problem Jm|pL

ij ≤ pij ≤ pU
ij |

∑
Ci with m machines.

In [17], for a two-machine flow-shop problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax sufficient conditions have been identified when the
transposition of two jobs minimizes the makespan. Article [18] addresses the total completion time in a flow-shop with
the interval processing times. In particular, a geometrical algorithm has been developed for solving the flow-shop problem
Fm|pL

ij ≤ pij ≤ pU
ij , n = 2|

∑
Ci withmmachines and two jobs. For a flow-shop problem with two and three machines, sufficient

conditions have been identified when the transposition of two jobs minimizes the total completion time. Work of [19] is
devoted to the case of separate setup times with the criterion of minimizing the makespan or the total completion time.
Namely, the processing times are fixed while each setup time is relaxed to be a distribution-free random variable within
a given lower and upper bound. Local and global dominance relations have been identified for such a flow-shop problem
with two machines. In [14,20], the necessary and sufficient conditions were proven for the case when a single schedule
dominates all the others, and the necessary and sufficient conditions were proven for the case when it is possible to fix the
optimal order of two jobs for the makespan criterion with the interval processing times.

In this paper we will show how to use a minimal set of the dominant schedules obtained in the off-line scheduling
phase (before the schedule execution) to best execute the schedule in the on-line phase by taking advantage of the on-line
information on each uncertain processing time, where each uncertain processing of an operation will become realized at
the completion of the operation. To demonstrate the strength of our approach, we also conduct extensive computational
experiments for randomly generated problems F2|pL

ij ≤ pij ≤ pU
ij |Cmax with n jobs from the range [10, 1000].

This paper is organized as follows. Section 2 is on definitions, notations and preliminary results. Section 3 provides an
example to illustrate the main ideas used in the on-line scheduling phase. The definition of a dominant set of schedules is
given in Section 4. Two cases will be considered in this paper on when the realized values of the uncertain processing times
are available in the on-line scheduling phase. Sufficient conditions for schedule domination are proven in Sections 5 and
6, respectively, for the on-line scheduling phase corresponding to each of the two cases. Sufficient conditions for schedule
domination in the off-line scheduling phase are proven in Section 7. Computational results for randomly generated instances
are given in Section 8. We conclude with Section 9.

2. Preliminaries

Problem Fm|pL
ij ≤ pij ≤ pU

ij |Cmax will be called the uncertain flow-shop problem while problem Fm ‖ Cmax called the
deterministic flow-shop problem.

If equality pL
ij = pU

ij holds for each job Ji ∈ J and each machine Mj ∈ M, then uncertain problem F2|pL
ij ≤ pij ≤

pU
ij |Cmax reduces to deterministic flow-shop problem F2 ‖ Cmax, which is polynomially solvable due to Johnson [21]. Let

S = {π1,π2, . . . ,πn!} be the set of all permutations of the n jobs from set J:
πk = {Jk1 , Jk2 , . . . , Jkn }, k ∈ {1, 2, . . . , n!}, {k1, k2, . . . , kn} = {1, 2, . . . , n}.

Set S, with a cardinality of |S| = n!, defines the set of all permutation schedules. (In a permutation schedule, all jobs go through
the machines from set M in the same order defined by this permutation.) From [21], it takes O(n log2 n) time to construct a
permutation πi = (Ji1 , Ji2 , . . . , Jin) ∈ S satisfying condition

min{pik1, pim2} ≤ min{pim1, pik2} (2)
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for 1 ≤ k < m ≤ n, and this permutation defines an optimal schedule to problem F2 ‖ Cmax. Algorithm for constructing
a permutation πi ∈ S satisfying condition (2) (called Johnson’s permutation) for the problem F2 ‖ Cmax is based on the
following rule.
Johnson’s rule: Partition set J into two disjoint subsets N1 and N2 such that N1 contains the jobs with pi1 ≤ pi2 and N2 the
jobs with pi1 ≥ pi2. (The jobs with equality pi1 = pi2 may be either in set N1 or N2.) In an optimal schedule, the jobs from
set N1 are processed first and are processed in non-decreasing order of pi1. The jobs from set N2 follow the jobs in N1 in
non-increasing order of pi2. (Ties are broken arbitrarily.)

Remark 1. For the problem F2||Cmax some optimal permutation schedules may not satisfy condition (2). In other words,
inequalities (2) are sufficient for the optimality of permutation πi ∈ S but not necessary for the permutation optimality.

We note that the set S of all permutation schedules defined above is the dominant set of schedules for problem F2 ‖
Cmax [21]. Since, for each fixed vector p ∈ T of job processing times, since problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax reduces

problem F2||Cmax, it is sufficient to look for an optimal schedule among set S. Therefore, when solving uncertain problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax, it is sufficient to examine the set S.

Since preemption is not allowed in problem F2||Cmax, each permutation πk ∈ S defines a unique set of the earliest job
completion times C1(πk), C2(πk), . . . , Cn(πk) which in turn defines a unique semiactive schedule. (For a semiactive schedule,
it is not possible to start any job earlier without starting another job later or without changing the order of the jobs on a
machine.) In what follows, no distinction will be made between a permutation πk ∈ S and a semiactive schedule defined
by this permutation. Such an agreement is needed for the uncertain problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax since vector p ∈ T of job

processing times is unknown before scheduling. For the uncertain problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax we use notation Cj(πk, p)
to denote the completion time of job Jj ∈ J, and notation Cmax(πk, p) = max{Ci(πk, p) | Ji ∈ J} to denote the makespan for
each fixed vector p ∈ T. The following definition, Definition 1, defines a solution to problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

Definition 1. Set of permutations S(T) ⊆ S is defined to be a solution to problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax, if for any feasible
vector p ∈ T set S(T) contains at least one Johnson’s permutation for the problem F2||Cmax associated with the vector p of job
processing times provided that any proper subset of set S(T) has no such a property.

From Definition 1 it follows that set S(T) contains at least one optimal schedule πk ∈ S(T) ⊆ S for any given feasible
vector p ∈ T of job processing times: Cmax(πk, p) = min{Cmax(πi, p) | πi ∈ S} and set S(T) is a minimal set (with respect
to inclusion) possessing such a property. We need to adopt such a dominant set S(T) of permutations as a solution to the
uncertain problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax since for an uncertain scheduling problem a single dominant schedule typically

does not exist.
In [15], the necessary and sufficient conditions have been identified for job Ji ∈ J to precede job Jw ∈ J in S(T), i.e., there

exists at least one Johnson’s permutation of the form πk = (s1, Ji, s2, Jw, s3) ∈ S for any feasible vector p ∈ T of job processing
times, where si means a subsequent (possibly, empty) of jobs from set J. To facilitate our presentations of these conditions
(and other results proven in Sections 4–6) we construct a partition J = J0 ∪ J1 ∪ J2 ∪ J∗ of the n jobs defined as follows:

J0 = {Ji ∈ J | pU
i1 ≤ pL

i2, p
U
i2 ≤ pL

i1}; J∗ = {Ji ∈ J | pU
i1 > pL

i2, p
U
i2 > pL

i1};

J1 = {Ji ∈ J | pU
i1 ≤ pL

i2, p
U
i2 > pL

i1} = {Ji ∈ J \ J0 | p
U
i1 ≤ pL

i2};

J2 = {Ji ∈ J | pU
i1 > pL

i2, p
U
i2 ≤ pL

i1} = {Ji ∈ J \ J0 | p
U
i2 ≤ pL

i1};

where J0, J∗, J1, and J2 may be empty. Since for each job Jk ∈ J0, inequalities pU
k1 ≤ pL

k2 and pU
k2 ≤ pL

k1 imply equalities
pL
k1 = pU

k1 = pL
k2 = pU

k2, pk1 and pk2 are not only constants but equal: pk1 = pk2 := pk. Sets J1 and J2 are defined in such a way
that both inclusions J1 ⊆ N1 and J2 ⊆ N2 may hold for any vector p ∈ T of job processing times (sets N1 and N2 are those
used in Johnson’s rule). The jobs in set J0 may be either in set N1 or N2 regardless of any realization of the vector p ∈ T of
job processing times. The jobs in set J∗ may be either in set N1 or N2 depending on the realization of the vector p ∈ T of job
processing times. The following claim has been proven in [15].

Theorem 1 ([15]). There exists a solution S(T) to the problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax with job Ji ∈ J preceding Jw ∈ J if and only
if at least one of the following conditions holds:

pU
w2 ≤ pL

w1 and pU
i1 ≤ pL

i2; (3)

pU
i1 ≤ pL

w1 and pU
i1 ≤ pL

i2; (4)

pU
w2 ≤ pL

w1 and pU
w2 ≤ pL

i2. (5)

Note that if condition (3) holds, then job Ji belongs to set N1 and job Jw belongs to set N2 for all feasible vectors p ∈ T of
job processing times. If condition (4) holds, then job Ji belongs to set N1 for all vectors p ∈ T, while job Jw may be either in
set N1 or N2 depending on the realizations of job processing times. If condition (5) holds, then job Jw belongs to set N2 for all
vectors p ∈ T, while job Ji may be either in set N1 or N2 depending on the realizations of the vectors p ∈ T.
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Due to Theorem 1 if for a pair of jobs Ji ∈ J and Jw ∈ J at least one condition from (3) to (5) holds, then there exists a
solution S(T) to the uncertain problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax with job Ji preceding Jw. Thus, via testing pairs of inequalities

(3)–(5), one can construct a binary relation� (i.e., a subset of the Cartesian product J×J) over the set J as follows: relation
Ji � Jw holds if there exists a solution S(T) to the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax such that job Ji precedes Jw in all permutations

πk ∈ S(T). Using Theorem 1, to construct a binary relation � over the set J takes O(n2) time.
First, let us consider the case when J0 = Ø. For each pair of jobs Ji ∈ J1 and Jw ∈ J1 (or for each pair of jobs Ji ∈ J2 and

Jw ∈ J2), there may exist a solution S(T) ⊂ S with job Ji preceding Jw for all permutations πk ∈ S(T) or the other way around.
In such a case, we can further define a strict precedence relation ≺: if Ji � Jw and Jw 6� Ji, then Ji ≺ Jw. If Ji � Jw and Jw � Ji
with i < w, then Ji ≺ Jw and Jw 6≺ Ji. Since set J0 is empty, we obtain an antireflective, antisymmetric, and transitive binary
relation ≺ over set J = J∗ ∪ J1 ∪ J2, i.e., a strict order. Obviously, the strict order ≺ is uniquely defined for the problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with J0 = Ø.

Strict order ≺may be represented by an acyclic digraph G = (J, A) with vertex set J or what is simpler by a reduction
graph G∗ = (J, A∗) of this strict order. Arc set A∗ is defined as follows:

A∗ = {(Ji, Jw) | Ji ≺ Jw and there is no job Jk that Ji ≺ Jk and Jk ≺ Jw}.

Reduction digraph G∗ = (J, A∗) of strict order ≺ provides a compact representation for all permutations in solution S∗(T).
Now, let us consider the case of J0 6= Ø. The jobs Jk of set J0 6= Ø play a specific role in constructing a solution to the

problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax: if Ji � Jk and Jk � Ji, then there exist solutions Sl(T) and Sj(T) such that for each permutation of
set Sl(T) job Jk precedes Ji, while for each permutation of set Sj(T) job Jk precedes Ji. Consequently, we can construct a family
of solutions {Sj(T)} = {S1(T), S2(T), . . . , Sm(T)} to the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax via fixing job Jk ∈ J0 at the candidate

positions. Instead of using a single solution S∗(T) as in the case of J0 = Ø, using a family of solutions {Sj(T)} in the case of
J0 6= Ø offers more flexibility in the on-line scheduling phase.

Remark 2. Let Ji � Jk, Jk 6� Ji, Jk � Jw, and Jw 6� Jk. In what follows, we will consider only a family of solutions {Sj(T)} in which
for each set Sj(T) of the family {Sj(T)}, each job Jk ∈ J0 locates at some position between job Ji ∈ J1 ∪J∗ and job Jw ∈ J2 ∪J∗

for all permutations of set Sj(T).

We will consider only the family of solutions {Sj(T)}defined in Remark 2 since in Sections 5, 6 and 8 we will take advantage
of the local information to schedule the conflicting jobs that compete for the same machine at the same time.

Based on Remark 2, for each job Jk of the set J0 6= Ø, we can define the candidate area of job Jk for the solutions of the
family {Sj(T)} as follows. If Jk ∈ J0, then there exist jobs Ju and Jv such that the following equalities hold:

pL
u1 = max{pL

i1 | p
L
i1 < pk, Ji ∈ J1 ∪ J∗}, (6)

pL
v2 = max{pL

i2 | p
L
i2 < pk, Ji ∈ J2 ∪ J∗}. (7)

If job Ju locates at the r-th position and job Jv at the q-th position in a permutation πj ∈ Sj(T) (r < q − 1), then job Jk may
locate at any position between the r-th and the q-th position. The set of positions r + 1, r + 2, . . . , q− 1 between job Ju and
Jv will be called the candidate area of job Jk. There are q − r + 1 positions in the candidate area of job Jk. It is clear that the
following claim is correct.

Proposition 1. Let Jk ∈ J0, Jl ∈ J0, and inequality pk ≤ pl hold. Then the candidate area of job Jk in the family of solutions {Sj(T)}
to the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax contains the candidate area of job Jl.

If J0 6= Ø, then by using Theorem 1, one can construct a family of solutions {Sj(T)} to the problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax
(instead of a unique solution S∗j (T) defined by digraph G = (J, A), if J0 = Ø). It is interesting to note that each job Jk of set
J0 can serve as a buffer to absorb the uncertainties in the processing time of a job on a machine. To illustrate this idea, we
consider in the next section an illustrative example with eleven jobs.

3. Illustrative example

We demonstrate how to best execute a schedule and possibly construct an actually optimal schedule for the problem
F2|pL

ij ≤ pij ≤ pU
ij |Cmax with the intervals of the job processing times given in Table 1. We mean an actually optimal schedule

in the sense that even though the processing times are uncertain a priori, the scheduler ends up with executing an optimal
schedule as the scheduler has already known the realized values of all uncertain processing times beforehand.

There are two phases in the scheduling process: the off-line phase (the schedule planning phase) and the on-line phase
(the schedule execution phase). The information of the lower and upper bounds for each uncertain processing time is
available at the beginning of the off-line phase while the local information on the realization (the actual value) of each
uncertain processing time is available once the corresponding operation (of a job on a machine) is completed. In the off-line
phase, a family of solutions {Sj(T)} is constructed first, which is useful in aiding a scheduler to best execute the schedule
during the on-line phase.

For this example, subsets of set J in partition J = J0 ∪ J1 ∪ J2 ∪ J∗ are as follows:

J0 = {J1, J4},J∗ = {J8, J9, J10}, J1 = {J2, J3, J5, J6, J7},J2 = {J11}.
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Table 1
Intervals of the job processing times

i 1 2 3 4 5 6 7 8 9 10 11

pLi1 1 1 2 3 3 3 5 5 5 5 4

pUi1 1 1 2 3 4 5 5 11 7
8

4

pLi2 1 2 3 3 5 5 6 10 6
7

3

pUi2 1 3 3 3 8 8 6 11 7 9 3

Using Theorem 1, we obtain a partial strict order ≺ over the set J \ J0 as follows:

(J2 ≺ J3 ≺ {J5, J6} ≺ J7 ≺ {J8, J9, J10} ≺ J11). (8)

The partial sequence of (8) means that neither the order of jobs J5 and J6 is fixable nor the order of jobs J8, J9 and J10 is
fixable for any solution Si(T) of the family {Sj(T)}. We now demonstrate how to best execute a schedule and possibly find an
optimal schedule from set Si(T) of the family {Sj(T)}. Since the order of some jobs in set Si(T) is not fixable, there does not
exist a dominant permutation that remains optimal for all feasible realizations of the job processing times. It is interesting
that a scheduler may possibly find an actually optimal schedule by making a real-time scheduling decision at each decision-
making time-point ti of the completion time of job Ji on the first machine (machine M1) as soon as the exact processing times
are available for those operations completed before or at time-point ti > t0 = 0.

At time-point t0 = 0, either job J1 or job J2 may be started on machine M1 in an optimal way due to the above family
of solutions {Sj(T)}. (As it will be clear later, it is better to process job J2 ∈ J1 first.) Fig. 1 illustrates part of the scheduling
process, where the candidate set {J1, J2} of jobs for processing next is indicated at the top.

Let c1(i) and c2(i) denote completion time of job Ji ∈ J by machine M1 and by machine M2, respectively. We will consider
the decision-making time-point ti = c1(i) at which job Ji is completed on machine M1 and a scheduler has to decide on the
next job to be processed on machine M1. In particular at time-point t2 = c1(2) = 1, machine M1 completes the processing of
job J2 and machine M2 will start to process this job. A scheduler now has to select a job from set {J1, J3} for processing next
on machine M1. (Again, it will be clear later that it is better to select job J3 ∈ J1 as the next job.) Thus, at time-point t2 = 1,
machine M1 starts to process job J3 for p3,1 = 2 time units.

At time-point t3 = c1(3) = 3, machine M1 completes the processing of job J3 and the candidate set for processing next on
machine M1 is {J1, J4, J5, J6}. At this time-point t3 = 3, machine M2 still is processing job J2. The relations pU

5,1 = 4 > pL
3,2 = 3

and pU
6,1 = 5 > pL

3,2 = 3 hold for jobs J5 and J6, and the selection of job J5 or job J6 for processing next may cause idle time on
machine M2. In such a case, a scheduler can select job J1 from set {J1, J4, J5, J6} for processing immediately after job J2. Such a
selection of job J1 ∈ J0 will allow a scheduler to delay the decision-making of sequencing jobs J5 and J6 until the time-point
t1 = 3+ 1 = 4 and thus to collect more realized values of the uncertain job processing times.

Let the realization (actual value) p∗2,2 of the processing time p2,2 of job J2 turn out to be equal to 3 = p∗2,2. (Hereafter, we
use notation p∗ij for actual job processing time pij.) Then at time-point t1 = c1(1) = 4, machine M2 finishes the processing
of job J2, and 4 time units are needed to complete the processing of both jobs J3 and J1 on machine M2 (3 time units for
processing job J3 and 1 time unit for processing job J1). The following inequalities hold: pU

5,1 = 4 ≤ 4, pU
6,1 = 5 > 4. For job

J5 the relation pU
5,1 + pU

6,1 = 4+ 5 ≤ pL
5,2 + 4 = 5+ 4 holds. Therefore, jobs J5 and J6 can be optimally processed with job J5

preceding J6 (since such an order causes no idle time on machine M2). Then, machine M1 will process job J7 immediately after
job J6 (since job J4 ∈ J0 can be used as a buffer to absorb the uncertainties in the processing times later when necessary).

At time-point t6 = c1(6) = 13, when machine M1 completes the processing of job J6, a scheduler already knows
all job processing times completing before and at time-point t6 = 13. Let the realized values be as follows: p∗5,1 = 4,
p∗6,1 = 5, p∗5,2 = 5.

At time-point t7 = c1(7) = 18, a scheduler has a choice for the next job to be processed on machine M1 among
the jobs J4, J8, J9 and J10. At time-point t7, machine M2 already processed job J6 for 5 time units, and a scheduler has
no sufficient information to optimally select a job from set {J8, J9, J10} for processing next due to the fact that relations
pU

8,1 = 11 > pL
7,2 = 6, pU

9,1 = 7 > pL
7,2 = 6, pU

10,1 = 8 > pL
7,2 = 6 hold (i.e., any such selection may cause idle time on machine

M2). Now it is time for a scheduler to select job J4 ∈ J0 for processing immediately after job J7 on machine M1. The role of
job J4 ∈ J0 seems like a buffer to absorb the uncertainties of some uncertain job processing times.

At time-point t4 = c1(4) = 18 + 3 = 21, a scheduler has the choice for processing the next job among the jobs of J8, J9
and J10. Assuming that p∗6,2 = 8, we know that J6 is still under processing at time-point t7 and is finished just at time-point
t4 on machine M2. Hence, we obtain equalities p∗4,2 + p∗7,2 = 3+ 6 = 9 and therefore inequalities pU

8,1 = 11 > 9, pU
9,1 = 7 <

9, pU
10,1 = 8 < 9 hold. In case a scheduler selects job J8 to be processed next, there will be idle time on machine M2. Thus, a

scheduler can select a job from set {J9, J10} to be processed next. Let us check the following relation for an order of the three
jobs (Ji, Ji+1, Ji+2):

pU
i1 + pU

i+1,1 + pU
i+2,1 ≤ 8+ pL

i2 + pL
i+1,2. (9)
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Fig. 1. Initial portion of the optimal schedule with processing times of jobs {J1, J2, . . . , J7} given in (10).

The results of the checking for the four orders {(J9, J8, J10), (J9, J10, J8), (J10, J8, J9), (J10, J9, J8)} are as follows:

pU
9,1 + pU

8,1 + pU
10,1 = 11+ 7+ 8 = 26 > 9+ pL

9,2 + pL
8,2 = 9+ 6+ 10 = 25,

pU
9,1 + pU

10,1 + pU
8,1 = 11+ 7+ 8 = 26 > 9+ pL

9,2 + pL
10,2 = 9+ 6+ 7 = 22,

pU
10,1 + pU

8,1 + pU
9,1 = 11+ 7+ 8 = 26 = 9+ pL

10,2 + pL
8,2 = 9+ 7+ 10 = 26,

pU
10,1 + pU

9,1 + pU
8,1 = 11+ 7+ 8 = 26 > 9+ pL

10,2 + pL
9,2 = 9+ 7+ 6 = 22.

Since relation (9) holds for the order (J10, J8, J9), such an order will cause no idle time on machine M2. Hence, a scheduler
can optimally adopt the order (J10, J8, J9) (since this order together with job J11 being the last one will be optimal for
any feasible realization of the processing times of the remaining jobs {J8, J9, J10, J11}). Thus, we obtain the permutation:
πu = (J2, J3, J1, J5, J6, J7, J4, J10, J8, J9, J11), which is necessarily optimal with the following partially realized values of job
processing times (i.e., those for jobs {J1, J2, . . . , J7}):

p∗1,1 = 1, p∗1,2 = 1, p∗2,1 = 1, p∗2,2 = 3, p∗3,1 = 2, p∗3,2 = 3, p∗4,1 = 3, (10)
p∗4,2 = 3, p∗5,1 = 4, p∗5,2 = 5, p∗6,1 = 5, p∗6,2 = 8, p∗7,1 = 5, p∗7,2 = 6.

The initial portion of this schedule is represented in Fig. 1. Note that the remaining portion of this schedule cannot be
shown exactly since at time-point t4 = 21 the processing times of jobs J8, J9, J10 and J11 are still unknown. But what is
important, any feasible values of the remaining four jobs will not invalidate the optimality of permutation πu. Thus, in spite
of the job processing times being uncertain, a scheduler ends up with executing an actually optimal schedule from the family
of sets {Sj(T)}.

The above two-phase scheduling process consists of the off-line planning phase with the family of sets {Si(T)} being
constructed using Theorem 1, and the on-line execution phase with the following decision-making time-points: t2 = 1,
t3 = 3, t1 = 4, t6 = 13, t7 = 18 and t4 = 21. The formal arguments of the above will be given in Sections 4–7.

4. Conditions for schedule domination

We first state the necessary and sufficient conditions for the existence of a single permutationπu ∈ S that remains optimal
for all vectors p ∈ T of job processing times, which have been proven in [20].

Theorem 2 ([20]). There exists a single-element solution S(T) = {πu} ⊂ S to the problem F2|pL
ij ≤ pij ≤ pU

ij |Cmax if and only if
(a) for any pair of jobs Ji and Jj from set J1 (from set J2, respectively), either pU

i1 ≤ pL
j1 or pU

j1 ≤ pL
i1 (either pU

i2 ≤ pL
j2 or pU

j2 ≤ pL
i2),

(b) |J∗| ≤ 1 and for job Ji∗ ∈ J∗ (if any), the following inequalities hold: pL
i∗1 ≥ max{pU

i1 | Ji ∈ J1}; p
L
i∗2 ≥ max{pU

j2 | Jj ∈ J2}

and max{pL
i∗1, p

L
i∗2} ≥ pk for each job Jk ∈ J0.

We note that condition (a)–(b) is rarely satisfied in real situations. In Sections 5–7, we provide the sufficient conditions
for an existence of a dominant set of permutations in the following sense.

Definition 2. Permutation πu ∈ S dominates permutation πk ∈ S with respect to T if inequality Cmax(πu, p) ≤ Cmax(πk, p)
holds for any vector p ∈ T of job processing times. The set of permutations S′ ⊆ S is called dominant with respect to T if for
each permutation πk ∈ S there exists permutation πu ∈ S′ that dominates permutation πk with respect to T.
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If condition (a)–(b) of Theorem 2 holds, then singleton {πu} is dominant with respect to T (we say that such permutation
πu is dominant with respect to T). It is also clear that the set of permutations S(T) used in Definition 1 is dominant with
respect to T. It should noted that Definition 2 does not exploit Johnson’s rule in contrast to Definition 1. In what follows, we
will relax (if useful) the demand for a dominant permutation πu to be a Johnson’s one (see Remark 1).

In Sections 5–8, we will describe and justify the sufficient conditions and the formal algorithms for constructing a
dominant permutation (if possible) for problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax. Section 5 will consider the case of empty set J0. In

Section 5, we will deal with first that there are two elements in solution S∗(T), then that there are six elements in solution,
and finally that the general case of S∗(T). The case with non-empty set J0 will be utilized in Section 8. As far as the on-line
scheduling phase is concerned, two cases will be distinguished:

(j) both the actual values p∗i1 and p∗i2 of job processing times pi1 and pi2 are available at time-point ti = c1(i) when job Ji is
completed by machine M1;

(jj) the actual value p∗ij of job processing time pij is available at time-point ti = cj(i) when job Ji is completed by machine
Mj.

Section 5 will address case (j), while Section 6 will address case (jj). We note that case (jj) is valid for almost all uncertain
scheduling problems. Case (j) may occur in some real-world scheduling scenarios. One example is that M1 is a diagnostic
machine andM2 is a repairing machine. During on-line scheduling phase, once a job Ji is completed on the diagnostic machine
M1, a scheduler usually knows the actual values (realized values) p∗i1 and p∗i2 of the processing times pi1 and pi2 of job Ji on
both machines M1 and M2. Another example of case (j) is that machine M1 is used for a rough processing of a part Ji ∈ J and
machine M2 is used for its perfect processing.

5. On-line scheduling in case (J)

5.1. Two conflicting jobs: |S∗(T)| = 2

Let J0 = Ø. Since there are only two permutations in S∗(T), i.e., S∗(T) = {πu,πv}, it is clear that there exist only two
non-adjacent vertices in the digraph G = (J, A) representing partial strict order ≺ defining solution S∗(T) = {πu,πv}.
Due to Definition 1 permutation πu (permutation πv) is optimal Johnson’s permutation for at least one feasible vector
of job processing times but surely it is not Johnson’s permutation for all feasible vectors p ∈ T of job processing times
(since condition (a)–(b) holds neither for permutation πu nor for permutation πv). W.l.o.g., we can assume that πu =

(J1, J2, . . . , Jk−1, Jk, Jk+1, . . . , Jn) and πv = (J1, J2, . . . , Jk−1, Jk+1, Jk, . . . , Jn), i.e., only orders of jobs Jk and Jk+1 are different in
these two permutations. In what follows, if there is no path connecting vertex Jk with vertex Jk+1 in the digraph G = (J, A),
we say that jobs Jk and Jk+1 are conflicting. Since order (J1, J2, . . . , Jk−1) is the same in both permutations πu and πv defining
solution S∗(T) = {πu,πv}, it is justified to process these jobs just in this order. Let the actual processing of jobs J1, J2, . . ., Jk−1
be started (and completed) in order J1 → J2 → · · · → Jk−1 on both machines.

Since jobs Jk and Jk+1 are conflicting, additional decision has to be used at time-point tk−1 = c1(k − 1). It is clear that at
time-point tk−1 the actual processing times of jobs from set J(tk−1, 1) = {J1, J2, . . . , Jk−1} on machine M1 are already known.
Let these actual values of processing times be as follows: p1,1 = p∗1,1, p2,1 = p∗2,1, . . . , pk−1,1 = p∗k−1,1. In case (j), the following
assumption is made.

Assumption 1. The actual processing times of jobs from set J(tk−1, 1) on machine M2 are available at time-point tk−1 =

c1(k− 1): p1,2 = p∗1,2, p2,2 = p∗2,2, . . . , pk−1,2 = p∗k−1,2.

Thus at time-point tk−1 = c1(k− 1), the following set of feasible vectors of processing times

T(k) = {p ∈ T | pij = p∗ij, Ji ∈ J(tk−1, 1),Mj ∈M} (11)

will be utilized instead of set T defined by equality (1). Next, we consider the following question. When will one of
permutations πu or πv be optimal for all vectors p ∈ T(k) of job processing times? To answer this question we have to
consider all possible orders of the non-adjacent vertices Jk and Jk+1 in the digraph G = (J,A) representing partial strict
order ≺. (Due to Theorem 1 digraph G may be constructed in O(n2) time.)

At time-point tk−1 a scheduler has a choice between job Jk and Jk+1 (which are conflicting) for processing next
(immediately after job Jk−1) on machine M1. Now a scheduler needs to test the condition in the following claim.

Proposition 2. If condition

c2(k− 1)− c1(k− 1) ≥ pU
k1, (12)

c2(k− 1)− c1(k− 1)+ pL
k2 ≥ pU

k1 + pU
k+1,1 (13)

holds, then permutation πu ∈ S∗(T) = {πu,πv} is dominant with respect to T(k).
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Proof. For permutationπu and any vector p ∈ T(k) of job processing times, we can calculate the earliest starting time s2(k+2)
of job Jk+2 on machine M2 as follows: s2(k+2) = max{c1(k+2), c2(k+1)}. As we consider only semiactive schedules, machine
M1 processes all the jobs without any idle, so we obtain

c1(k+ 2) =
k+2∑
i=1

pi1 = c1(k− 1)+ pk1 + pk+1,1 + pk+2,1.

For machine M2, we obtain

c2(k+ 1) = pk+1,2 +max{c1(k− 1)+ pk1 + pk+1,1, pk,2 +max{c1(k− 1)+ pk1, c2(k− 1)}}.

Inequality (12) implies equality max{c1(k−1)+pk1, c2(k−1)} = c2(k−1) for any vector p ∈ T(k) of job processing times.
Therefore we obtain

c2(k+ 1) = pk+1,2 +max{c1(k− 1)+ pk1 + pk+1,1, pk,2 + c2(k− 1)}. (14)

Equality (14) means that machine M2 has no idle time while processing jobs Jk−1 and Jk.
Inequality (13) implies equality max{c1(k− 1)+ pk1 + pk+1,1, pk,2 + c2(k− 1)} = pk,2 + c2(k− 1). Therefore c2(k+ 1) =

pk+1,2 + pk,2 + c2(k− 1). This means that machine M2 has no idle time while processing jobs Jk and Jk+1.
We obtain s2(k + 2) = max{c1(k − 1) + pk1 + pk+1,1 + pk+2,1, pk+1,2 + pk,2 + c2(k − 1)}. Due to Assumption 1, values

c1(k− 1) and c2(k− 1) are available at time-point c1(k− 1). As machine M1 has no idle time while processing jobs from set
{J1, J2, . . . , Jk+2}, it is impossible to reduce value c1(k−1)+pk1+pk+1,1+pk+2,1. Analogously, as machine M2 has no idle time
while processing jobs from set {Jk−1, Jk, Jk+1}, it is impossible to reduce value pk+1,2 + pk,2 + c2(k− 1) by alternative order of
the jobs Jk and Jk+1. Therefore, permutation πu dominates permutation πv with respect to T(k) (regardless of the exact value
s2(k+ 2)). Since S∗(T) = {πu,πv}, permutation πu is dominant with respect to T(k). �

Thus, if condition (12) –(13) of Proposition 2 holds, then the order Jk → Jk+1 of jobs Jk and Jk+1 is the optimal order of these
two jobs in the remaining part of the optimal permutation. Note that in the illustrative example of Section 3, Proposition 2
was implicitly used in sequencing the order of jobs J5 and J6 at time-point t1 = 4.

Proposition 3. If c2(k−1)− c1(k−1) ≥ pU
k1+pU

k+1,1, then each permutation from set S∗(T) = {πu,πv} is dominant with respect
to T(k).

Proof. From condition c2(k− 1)− c1(k− 1) ≥ pU
k1 + pU

k+1,1 we obtain that both inequalities c2(k− 1)− c1(k− 1) ≥ pU
k1 and

c2(k− 1)− c1(k− 1)+ pL
k2 ≥ pU

k1 + pU
k+1,1 hold. Thus, condition (12)–(13) of Proposition 2 holds for permutation πu ∈ S∗(T).

Hence, permutation πu is dominant with respect to T(k). On the other hand, condition c2(k − 1) − c1(k − 1) ≥ pU
k1 + pU

k+1,1
implies that both inequalities c2(k − 1) − c1(k − 1) ≥ pU

k+1,1 and c2(k − 1) − c1(k − 1) + pL
k+1,2 ≥ pU

k1 + pU
k+1,1 hold, i.e.,

appropriate condition of Proposition 2 holds for permutation πv ∈ S∗(T) with alternative order of jobs Jk and Jk+1. Hence,
permutation πv is dominant with respect to T(k) as well. This completes the proof. �

If condition of Proposition 3 holds, then the order of jobs Jk and Jk+1 may be arbitrary in the remaining part of the optimal
permutation. Similarly we can prove the following six sufficient conditions for domination of permutation πu with respect
to T(k).

c2(k− 1)− c1(k− 1) < pL
k1, (15)

pU
k+1,1 ≤ pL

k2, (16)

pL
k+1,1 + pL

k+2,2 ≥ pU
k2 + pU

k+1,1 (17)

c2(k− 1)− c1(k− 1)+ pU
k2 ≤ pL

k1 + pL
k+1,1, (18)

pL
k+1,1 ≥ pU

k2, (19)

pL
k+2,1 ≥ pU

k+1,2 (20)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (21)

c2(k− 1)− c1(k− 1) < pU
k1, (22)

pU
k+1,1 ≤ pL

k2, (23)

pL
k+1,1 + pL

k+2,1 ≥ pU
k2 + pU

k+1,2 (24)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (25)

c2(k− 1)− c1(k− 1) < pU
k1, (26)

c2(k− 1)− c1(k− 1)+ pU
k2 ≥ pL

k1 + pL
k+1,1, (27)
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pU
k+1,1 > pL

k2, (28)

pL
k+1,1 + pL

k+2,1 ≥ pU
k2 + pU

k+1,2 (29)

pL
k+2,1 ≥ pU

k+1,2 (30)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (31)

c2(k− 1)− c1(k− 1) < pU
k1, (32)

c2(k− 1)− c1(k− 1)+ pU
k2 ≥ pL

k1 + pL
k+1,1, (33)

pU
k+1,1 > pL

k2, (34)

pU
k+1,1 > pL

k2, (35)

pL
k+1,1 + pL

k+2,1 ≥ pU
k2 + pU

k+1,2, (36)

pL
k+2,1 ≥ pU

k+1,2 (37)

c2(k− 1)− c1(k− 1) < pL
k1, (38)

pU
k2 ≥ pL

k+1,1, (39)

pU
k+1,1 > pL

k2, (40)

pL
k+1,1 + pL

k+2,1 ≥ pU
k2 + pU

k+1,2. (41)

The above sufficient conditions may be summarized in the following claim. (We omit its proof since it is similar to the
proof of Proposition 2.)

Proposition 4. If at least one from conditions (15)–(17), (18)–(20), (21)–(24), (25)–(30), (31)–(37) or (38)–(41) holds, then
permutation πu ∈ S∗(T) = {πu,πv} is dominant with respect to T(k).

Thus, if at least one of the conditions of Propositions 2–4 holds, then a scheduler may fix the optimal order of jobs Jk and Jk+1
regardless of the fact that the actual values of the processing times of the jobs Jk, Jk+1, . . . , Jn are still unavailable. In the next
subsection, we show how to generalize Propositions 2–4 for the case when three jobs are conflicting at time-point ti > 0.

5.2. Three conflicting jobs: |S∗(T)| = 6

Let jobs from set {Jk, Jk+1, Jk+2} ⊂ J be conflicting at time-point tk−1 > 0. So, there are six (3! = 6) permutations in
solution S∗(T). We can test the following conditions similar to Propositions 2–4 and find a dominant permutation with
respect to T(k).

Proposition 5. Let partial strict order ≺ over set J = J∗ ∪J1 ∪J2 be as follows (J1 ≺ · · · ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺ Jk+3 ≺ · · · ≺

Jn). If c2(k−1)−c1(k−1) > pU
k1, c2(k−1)−c1(k−1)+pL

k2 > pU
k1+p

U
k+1,1 and c2(k−1)−c1(k−1)+pL

k2+p
L
k+1,2 > pU

k1+p
U
k+1,1+p

U
k+2,1,

then permutation (J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn) is dominant with respect to T(k).

Proof. Arguing similarly as in the proof of Proposition 2, we conclude that machine M1 has no idle time while
processing jobs from set {J1, J2, . . . , Jk+3}. Thus, it is impossible to reduce value c1(k + 3) obtained for permutation πw =

(J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn). Analogously, machine M2 has no idle time while processing jobs {Jk−1, Jk, Jk+1, Jk+2} in the order
defined by permutation πw. Thus, it is impossible to reduce value c2(k+ 2) defined for permutation πw by alternative order
of the jobs Jk, Jk+1 and Jk+2. Therefore, if condition of Proposition 5 holds, then permutation πw ∈ S∗(T) is dominant with
respect to T(k) (regardless of the unknown value s2(k+ 3) = max{c1(k+ 3), c2(k+ 2)}). �

If the condition of Proposition 5 holds, then in the remaining part of the optimal permutation, the order of jobs Jk, Jk+1
and Jk+2 is as follows: Jk → Jk+1 → Jk+2. We can test the six propositions with conditions analogous to that of Proposition 5
but for different orders of three conflicting jobs. In the illustrative example of Section 3, Proposition 5 was implicitly used
in the sequencing of the jobs J8, J9 and J10 at time-point t4 = 21.

Similar to the proof of Proposition 3 we can prove the sufficient conditions for the existence of six dominant permutations
as follows.

Proposition 6. Let partial strict order ≺ over set J = J∗ ∪ J1 ∪ J2 be as follows (J1 ≺ · · · ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺

Jk+3 ≺ · · · ≺ Jn). If c2(k − 1) − c1(k − 1) > pU
k1 + pU

k+1,1 + pU
k+2,1, then each of six permutations from set S∗(T) is dominant

with respect to T(k).
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If the condition of Proposition 6 holds, then the order of the three jobs Jk, Jk+1 and Jk+2 may be arbitrary in the remaining
part of the optimal permutation.

Proposition 4 may be also generalized, and we can obtain the following fourteen sufficient conditions for an existence of
a dominant permutation when |S∗(T)| = 6.

c2(k− 1)− c1(k− 1) < pL
k1, (42)

pL
k2 ≥ pU

k+1,1, (43)

pL
k2 + pL

k+1,2 ≥ pU
k+1,1 + pU

k+2,1, (44)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (45)

c2(k− 1)− c1(k− 1)+ pU
k2 < pL

k1 + pL
k+1,1, (46)

pL
k+1,1 > pU

k2, (47)

pU
k+2,1 ≤ pL

k+1,2, (48)

pL
k+2,1 + pL

k+3,1 ≥ pU
k+1,2 + pU

k+2,2. (49)

c2(k− 1)− c1(k− 1)+ pU
k2 + pU

k+1,2 < pL
k1 + pL

k+1,1 + pL
k+2,1, (50)

pU
k2 + pU

k+1,2 < pL
k+1,1 + pL

k+2,1, (51)

pU
k+1,2 < pL

k+2,1, (52)

pL
k+3,1 ≥ pU

k+2,2. (53)

c2(k− 1)− c1(k− 1) < pU
k1, (54)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (55)

pU
k+1,1 ≤ pL

k2, (56)

pU
k+1,1 + pU

k+2,1 ≤ pL
k2 + pL

k+1,2, (57)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (58)

c2(k− 1)− c1(k− 1)+ pL
k2 < pU

k1 + pU
k+1,1, (59)

c2(k− 1)− c1(k− 1)+ pU
k2 ≥ pL

k1 + pL
k+1,1, (60)

pL
k+1,1 > pU

k2, (61)

pU
k+2,1 ≤ pL

k+1,2, (62)

pL
k+2,1 + pL

k+3,1 ≥ pU
k+1,2 + pU

k+2,2. (63)

c2(k− 1)− c1(k− 1)+ pU
k2 + pU

k+1,2 ≥ pL
k1 + pL

k+1,1 + pL
k+2,1, (64)

c2(k− 1)− c1(k− 1)+ pL
k2 + pL

k+1,2 < pU
k1 + pU

k+1,1 + pU
k+2,1, (65)

pL
k+1,1 + pL

k+2,1 > pU
k2 + pU

k+1,2, (66)

pL
k+2,1 > pU

k+1,2, (67)

pL
k+3,1 ≥ pU

k+2,2. (68)

c2(k− 1)− c1(k− 1) < pL
k1, (69)

pL
k2 < pU

k+1,1, (70)

pL
k+1,1 ≤ pU

k2, (71)

pU
k+2,1 ≤ pL

k+1,2, (72)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (73)

c2(k− 1)− c1(k− 1) < pL
k1, (74)

pU
k2 + pU

k+1,2 ≥ pL
k+1,1 + pL

k+2,1, (75)

pL
k+2,1 > pU

k+1,2, (76)

Би
бл
ио
те
ка

 БГ
УИ
Р



N.M. Matsveichuk et al. / Mathematical and Computer Modelling 49 (2009) 991–1011 1001

pU
k+1,1 + pU

k+2,1 > pL
k2 + pL

k+1,2, (77)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (78)

c2(k− 1)− c1(k− 1)+ pU
k2 < pL

k1 + pL
k+1,1, (79)

pU
k+2,1 > pL

k+1,2, (80)

pL
k+2,1 ≤ pU

k+1,2, (81)

pL
k+2,1 + pL

k+3,1 ≥ pU
k+1,2 + pU

k+2,2. (82)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (83)

c2(k− 1)− c1(k− 1) < pU
k1, (84)

pL
k+1,1 ≤ pU

k2, (85)

pU
k+1,1 > pL

k2, (86)

pL
k+1,2 ≥ pU

k+2,1, (87)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (88)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (89)

c2(k− 1)− c1(k− 1) < pU
k1, (90)

pU
k+1,1 > pL

k2, (91)

pL
k+1,1 ≤ pU

k2, (92)

pL
k+2,1 > pU

k+1,2, (93)

pL
k+3,1 ≥ pU

k+2,2, (94)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (95)

c2(k− 1)− c1(k− 1)+ pL
k2 < pU

k1 + pU
k+1,1, (96)

c2(k− 1)− c1(k− 1)+ pU
k2 ≥ pL

k1 + pL
k+1,1, (97)

pU
k+2,1 > pL

k+1,2, (98)

pL
k+2,1 ≤ pU

k+1,2, (99)

pL
k+1,1 + pL

k+2,1 ≥ pU
k2 + pU

k+1,2, (100)

pL
k+2,1 + pL

k+3,1 ≥ pU
k+1,2 + pU

k+2,2. (101)

c2(k− 1)− c1(k− 1) < pL
k1, (102)

pL
k2 < pU

k+1,1, (103)

pU
k,1 ≥ pL

k+1,1, (104)

pU
k+2,1 > pL

k+1,2, (105)

pL
k+2,1 ≤ pU

k+1,2, (106)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (107)

c2(k− 1)− c1(k− 1) ≥ pL
k1, (108)

c2(k− 1)− c1(k− 1) < pU
k1, (109)

pL
k+1,1 ≤ pU

k2, (110)

pU
k+1,1 > pL

k2, (111)

pL
k+2,1 ≤ pU

k+1,2, (112)

pU
k+2,1 > pL

k+1,2, (113)

pL
k+1,1 + pL

k+2,1 + pL
k+3,1 ≥ pU

k2 + pU
k+1,2 + pU

k+2,2. (114)
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The above sufficient conditions may be summarized in the following claim.

Proposition 7. Let partial strict order ≺ over set J = J∗ ∪ J1 ∪ J2 be as follows (J1 ≺ · · · ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺ Jk+3 ≺

· · · ≺ Jn). If at least one from conditions (42)–(45), (46)–(49), (50)–(53), (54)–(58), (59)–(63), (64)–(68), (69)–(73), (74)–(78),
(79)–(82), (83)–(88), (89)–(95), (96)–(101), (102)–(107) or (108)–(114) holds, then permutation {J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn}
is dominant with respect to T(k).

Thus, if at least one from the sufficient conditions of Propositions 5–7 holds, then the order of jobs Jk, Jk+1 and Jk+2 must be
Jk → Jk+1 → Jk+2 in the remaining part of the optimal permutation. We can also test the above propositions with analogous
conditions for other five possible orders of conflicting jobs Jk, Jk+1 and Jk+2.

5.3. General case of solution S∗(T)

It is clear that Propositions 2–4 (Propositions 5–7, respectively) may be used if more than two (six) permutations are in
the set S∗(T) provided that, at each time-point of schedule execution, no more than two (three) jobs from set J are conflicting.
We demonstrate this by the following example appropriate for using Propositions 2–4.

Let |S∗(T)| = 8 and six jobs from set J = J∗ ∪ J1 ∪ J2 be conflicting in a pairwise manner, e.g., a pair of jobs Jk and
Jk+1 are conflicting, a pair of jobs Jl and Jl+1, and a pair of jobs Jm and Jm+1. Then we can use Propositions 2–4 for each pair
of jobs that are conflicting. W. l. o. g. we assume that the partial strict order ≺ over set J = J∗ ∪ J1 ∪ J2 is as follows:
(J1 ≺ · · · ≺ Jk−1 ≺ {Jk, Jk+1} ≺ Jk+2 ≺ · · · ≺ Jl−1 ≺ {Jl, Jl+1} ≺ Jl+2 ≺ · · · ≺ Jm−1 ≺ {Jm, Jm+1} ≺ Jm+2 ≺ · · · ≺ Jn).

First, we process jobs {J1, . . . , Jk−1} in the optimal order J1 → · · · → Jk−1. At time-point tk−1 = c1(k − 1), we test
Propositions 2–4 for pair of jobs {Jk, Jk+1} that are conflicting. If at least one from conditions of Propositions 2–4 holds for
order Jk → Jk+1, then we process jobs {Jk, . . . , Jl−1} in the order Jk → · · · → Jl−1. At time-point tl−1 = c1(l − 1), we test
Propositions 2–4 for pair of conflict jobs {Jl, Jl+1}. If at least one from conditions of Propositions 2–4 holds for order Jl → Jl+1,
then we process jobs {Jl, . . . , Jm−1} in the order Jl → · · · → Jm−1. At time-point tm−1 = c1(m − 1), we test Propositions 2–4
for pair of jobs {Jm, Jm+1} that are conflicting. If at least one from conditions of Propositions 2–4 holds for order Jm → Jm+1,
then we process jobs {Jm, . . . , Jn} in the order Jm → · · · → Jn.

Thus, if the condition of at least one of Propositions 2–4 holds for pairs of jobs {Jk, Jk+1}, {Jl, Jl+1}, and {Jm, Jm+1}, then
we obtain dominant permutation πg = (J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jl−1, Jl, Jl+1, Jl+2, . . . , Jm−1, Jm, Jm+1, Jm+2, . . . , Jn) with
respect to T(m) and so this permutation will be optimal for actual job processing times. Otherwise, e.g., if no condition of
Propositions 2–4 holds for at least one pair of jobs {Jm, Jm+1}, then we obtain two-element dominant set of permutations
{πh,πg}where πg = (J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jl−1, Jl, Jl+1, Jl+2, . . . , Jm−1, Jm+1, Jm, Jm+2, . . . , Jn) without proof that one of
permutation πh or πg dominates another.

Furthermore, we can generalize the above sufficient conditions for the case when an arbitrary number of jobs are
conflicting at the same on-line decision-making time-points. Let the set of r jobs be conflicting at time-point tk = c1(k) > 0.
W. l. o. g. we assume that jobs from the set {Jk1 , Jk2 , . . . , Jkr } ⊂ J = J∗ ∪J1 ∪J2 are conflicting. Then we need test r! possible
orders of conflicting jobs. Generalization of Propositions 2 and 5 looks as follows.

Proposition 8. Let partial strict order ≺ over set J = J∗ ∪ J1 ∪ J2 be as follows (J1 ≺ · · · ≺ Jk ≺ {Jk1 , Jk2 , . . . , Jkr } ≺
Jk+1 ≺ · · · ≺ Jn). If inequality

s+1∑
i=1

pL
ki1 ≤

s∑
j=0

pU
kj2

holds for each s = 0, 1, . . . , r, where pU
k02 = c2(k)− c1(k), then permutation {J1, . . . , Jk, Jk1 , Jk2 , . . . , Jkr , Jk+1, . . . , Jn} is dominant

with respect to T(k).

Generalization of Propositions 4 and 7 looks as follows.

Proposition 9. Let partial strict order ≺ over set J = J∗ ∪ J1 ∪ J2 be as follows (J1 ≺ · · · ≺ Jk ≺ {Jk1 , Jk2 , . . . , Jkr } ≺
Jk+1 ≺ · · · ≺ Jn). If the following condition

s∑
i=m

pL
ki1 >

s−1∑
j=m−1

pU
kj2, m = 1, 2, . . . , s,

m∑
i=s+1

pU
ki1 ≤

m−1∑
j=s

pL
kj2, m = s+ 1, s+ 2, . . . , r,

r+1∑
i=s+1

pL
ki1 ≥

r∑
j=s

pU
kj2

holds, where pU
k02 = c2(k)− c1(k), then permutation {J1, . . . , Jk, Jk1 , Jk2 , . . . , Jkr , Jk+1, . . . , Jn} is dominant with respect to T(k).
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Fig. 2. Initial portion of the optimal schedule for jobs from set {J1, J2, . . . , Jk−1}.

6. On-line scheduling in case (J J)

In this section let us consider the case (jj). Now, the actual values p∗j2 of processing times pj2 of jobs Jj from set J(tl−1, 2) =
{J1, J2, . . . , Jl−1} are available at time-point tk−1 = c1(k − 1) > c2(l − 1), i.e., pj2 = p∗j2, while the actual values of processing
times pk2 of jobs Jk from set {Jl, Jl+1, . . . , Jn} are unavailable at time-point tk−1 = c1(k − 1) < c2(l). Thus, at time-point
tk−1 = c1(k− 1), the following set of feasible vectors

T(k, l) = {p ∈ T | pi1 = p∗i1, pj2 = p∗j2, Ji ∈ J(tk−1, 1), Jj ∈ J(tl−1, 2)}

of job processing times will be used instead of set T(k) defined in (11).
Since Assumption 1 is not valid in case (jj), now we are forced to exploit the lower bounds pL

l2, pL
l2, . . . , p

L
k−1,2 instead of

the actual values p∗l2, p∗l2, . . . , p∗k−1,2 since the latter are unavailable at time-point tk−1 = c1(k−1). As a result we can calculate
the lower bound cL2(k− 1) for the actual value c2(k− 1) in the following way (see Fig. 2):

cL2(k− 1) = c2(l− 1)+max{pL
l2, c1(k− 1)− c2(l− 1)} +

k−1∑
j=l

pL
j2.

The analog of Proposition 2 is as follows.

Proposition 10. If cL2(k−1)−c1(k−1) ≥ pU
k1 and cL2(k−1)−c1(k−1)+pL

k2 ≥ pU
k1+p

U
k+1,1, then permutationπu ∈ S∗(T) = {πu,πv}

is dominant with respect to T(k, l).

We can calculate the following upper bound cU2(k− 1) for the actual value c2(k− 1):

cU2(k− 1) = c2(l− 1)+
k−1∑
j=l

pU
j2.

Thus, the sufficient condition (15)–(17) from Proposition 4 can be reformulated as follows.

Proposition 11. If cU2(k − 1) − c1(k − 1) < pL
k1, pU

k+1,1 ≤ pL
k2 and pL

k+1,1 + pL
k+2,2 ≥ pU

k2 + pU
k+1,1, then permutation

πu ∈ S∗(T) = {πu,πv} is dominant with respect to T(k, l).

Propositions 5–9 can be reformulated for the case (jj) similarly.

7. Dominant permutation in off-line scheduling

In this section, we show that in the off-line scheduling phase, claims similar to Propositions 2–11 can also be applied
along with Theorem 2. Recall that Theorem 2 provides the necessary and sufficient condition for an existence of Johnson’s
permutation that is dominant with respect to T. Due to a relaxation in requiring the permutationπu to be a Johnson’s one, we
can obtain another sufficient conditions for an existence of a dominant permutation. To this end, it is necessary to substitute
the exact difference c2(k− 1)− c1(k− 1) (which is unavailable before time-point t0 = 0) by its lower bound. It is clear that
for the off-line scheduling phase there is no difference between case (j) and case (jj).

Let partial strict order ≺ defining solution S∗(T) look as follows

(J1 ≺ · · · ≺ Jk−1 ≺ {Jk, Jk+1} ≺ · · ·). (115)

Then jobs Jk and Jk+1 can be started on machine M1 at time-point tk−1 = c1(k − 1), and machine M2 is available to process
one of the jobs Jk or Jk+1 from time-point c2(k− 1). If at time-point t ≤ t0 = 0 a scheduler can calculate a lower bound 1k−1
for the exact difference c2(k − 1) − c1(k − 1), then before beginning the execution of a schedule a scheduler can test the
conditions of Propositions 2–11 using value 1k−1 instead of the difference c2(k− 1)− c1(k− 1) unavailable at time-point t.
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Next, we show how to calculate a tight lower bound 1k−1. If inclusion Ji ∈ J1 holds for i = 1, 2, . . . , k− 1, then for each
index i ∈ {1, 2, . . . , k− 1} the inequality pU

i1 ≤ pL
i2 must hold and so pi2 − pi1 ≥ pL

i2 − pU
i1 ≥ 0. Thus, the following inequalities

give a tight lower bound 1k−1 for the difference c2(k− 1)− c1(k− 1):

c2(k− 1)− c1(k− 1) ≥ p11 +
k−1∑
i=1

pi2 −
k−1∑
i=1

pi1 =
k−1∑
i=1

(pi2 − pi1)+ p11 ≥
k−1∑
i=1

(pL
i2 − pU

i1)+ pL
11 = 1k−1. (116)

In the opposite case (if Ji 6∈ J1), a lower bound 1k−1 for the difference c2(k− 1)− c1(k− 1) may be calculated recursively as
follows. If |J1| = m, we obtain

1m =

m∑
i=1

(pL
i2 − pU

i1)+ pL
11

due to the last equality in (116) with k−1 = m. Further, for each index l ∈ {m+1,m+1, . . . , k−1} one can use the following
recursive formula 1l = max{0, 1l−1 − pU

l,1} + pL
l,2. As a result we obtain the following claim similar to Proposition 2.

Proposition 12. If 1k−1 ≥ pU
k1 and 1k−1+ pL

k2 ≥ pU
k1+ pU

k+1,1, then permutation πu ∈ S∗(T) = {πu,πv} is dominant with respect
to T.

Furthermore, all the propositions presented in Sections 5 and 6 can be reformulated for the case of off-line scheduling
provided that the exact difference c2(k− 1)− c1(k− 1) is substituted by the lower bound 1k−1. Note that Propositions 2–10
may be only used if k > 1 in the partial strict order (115). Let k = 1 and jobs J1 and J2 be conflicting, i.e., partial strict order
(115) be as follows ({J1, J2} ≺ J3 ≺ · · ·). We will try to sequence two conflicting jobs in an optimal way before time-point
t0 = 0. Let us consider the case when machine M2 has an idle time before processing job J3. In this case, machine M2 can
process job J3 from the time when machine M1 completes the processing of this job (i.e., from time-point t3 = c1(3)). It is
easy to prove the following sufficient condition.

Proposition 13. If pL
3,1 ≥ pU

2,2 +max{0, pU
1,2 − pL

2,1}, then the order of jobs J1 and J2 in the optimal permutation is J1 → J2.

Obviously, c2(2) − c1(2) ≤ pU
2,2 + max{0, pU

1,2 − pL
2,1}. In the latter inequality, the difference pU

1,2 − pL
2,1 is equal to the

maximal addition for the case where machine M2 cannot finish job J1 before machine M1 has finished job J2. Hence, we
obtain inequality c1(3) > c2(2), and machine M2 has an idle time before processing job J3. Therefore, in the opposite case
(where the optimal order of jobs J1 and J2 cannot be defined by Proposition 13), we cannot decrease value Cmax. Of course,
if pL

3,1 > pU
2,2 + pU

1,2, then both permutations πu = (J1, J2, J3, . . .) and πv = (J2, J1, J3, . . .) are dominant and the optimal
order of jobs J1 and J2 may be arbitrary. More precisely, if pL

3,1 > max{pU
1,2+ pU

2,2−min{pL
1,1, p

L
1,2}, max{pU

1,2; p
U
2,2}}, then both

permutations πu and πv are dominant. In other words, if pL
3,1 > max{0, pU

1,2 − pL
2,1, p

U
2,2 − pL

1,1} +max{pU
1,2, p

U
2,2}, then both

permutations πu and πv are dominant (arbitrary order of jobs J1 and J2 is optimal).
It is easy to see that the above propositions can be generalized for the case when more than two jobs are conflicting at

time-point t0 = 0. Next, we demonstrate such a generalization with two examples. E.g., for three conflicting jobs, we obtain
the following claim.

Proposition 14. Let partial strict order≺ look as ({J1, J2, J3} ≺ J4 ≺ · · ·). If pL
4,1 ≥ pU

3,2+max{0, pU
2,2−pL

3,1+max{0, pU
1,2−pL

2,1}},
then the order of jobs J1, J2 and J3 in the optimal permutation is J1 → J2 → J3.

Let δm be defined recursively as follows: δm = max{0, pU
m,2 − pL

m+1,1 + δm−1}, where δ1 = max{0, pU
1,2 − pL

2,1}. Using this
notation, we can generalize the above Propositions 13 and 14 for the case of r conflicting jobs at time-point t0 = 0.

Proposition 15. Let partial strict order ≺ look as ({J1, J2, . . . , Jr} ≺ Jr+1 ≺ · · ·). If pL
r+1,1 ≥ pU

r,2 + δr−1, then the order of jobs J1,
J2, . . . , Jr in the optimal permutation is J1 → J2 → · · · → Jr.

8. Algorithms and computational results

Our computational study of the two-phase scheduling was performed on a large number of randomly generated problems
F2|pL

ij ≤ pij ≤ pU
ij |Cmax. The following algorithms were coded in C+: Algorithm 1 for the off-line scheduling and Algorithm 2

(Algorigthm 3, respectively) for the on-line scheduling provided that set J0 is empty (nonempty).

Algorithm 1 (For Off-Line Scheduling).

Input: lower and upper bounds pL
ij and pU

ij for processing times pij

of jobs Ji ∈ J on machines Mj ∈M.
Output: solution S(T) to the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax;

binary relation � defining solution S(T), if |S(T)| > 1.
Step1: test condition (a)–(b) of Theorem 2.
Step2: IF condition (a)–(b) holds GOTO step 8.
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Table 2
Percentage of solved instances with empty set J0

n L (%) Number of
decision points

Percentage of
proved decisions

Off-line
optimal (%)

On-line
optimal (%)

Optimal
without
proof (%)

Max error of
Cmax (%)

Average error of
Cmax (%)

1 19 73.68 82 13 3 6.230213 0.092163
2 39 69.23 65 24 7 14.894381 0.302439
3 54 64.81 52 31 15 7.330572 0.129230
4 71 73.24 41 43 10 11.425118 0.186663

10 5 71 71.83 42 39 14 18.172153 0.332733
6 93 70.97 27 49 18 12.438417 0.275810
7 100 74.00 29 47 15 17.770338 0.274215
8 121 66.94 19 51 21 24.294342 0.379896
9 125 56.80 10 44 32 16.657515 0.952808

10 130 67.69 16 50 24 18.044373 0.673897

1 71 85.92 47 43 9 1.857141 0.018571
2 126 91.27 17 72 9 14.779399 0.163159
3 155 87.74 14 70 15 0.022465 0.000225
4 211 90.05 4 76 18 7.927369 0.079337

20 5 238 84.87 1 70 22 10.647840 0.370658
6 237 81.43 1 65 25 7.414827 0.277665
7 288 84.03 0 66 28 7.479012 0.114603
8 250 78.80 0 64 32 12.671661 0.314745
9 294 82.31 0 60 25 10.750363 0.537575

10 303 81.85 0 59 28 8.804494 0.366674

1 134 97.76 26 71 3 0.000000 0.000000
2 241 89.63 10 71 18 0.004085 0.000041
3 319 93.73 0 83 13 3.760090 0.067121
4 347 95.10 0 86 13 1.603097 0.016031

30 5 413 94.43 0 80 19 11.283378 0.112834
6 390 88.46 0 69 23 6.422380 0.222811
7 448 90.18 0 70 27 10.415929 0.198046
8 450 90.67 0 69 26 0.192515 0.002738
9 440 87.73 0 64 25 15.253723 0.399358

10 446 89.01 0 67 26 11.338615 0.119900

1 236 96.19 4 88 8 0.000000 0.000000
2 421 94.54 0 84 14 0.269543 0.002735

40 3 484 96.69 0 88 11 9.348538 0.093485
4 559 93.74 0 72 23 6.632380 0.101148
5 581 95.87 0 83 16 1.854262 0.018543

10 526 90.68 0 68 30 7.492048 0.074967

50 5 764 94.24 0 74 23 4.768900 0.047914
10 616 89.29 0 60 31 3.341783 0.125370

60 5 889 93.70 0 63 32 8.621157 0.136614
10 704 92.33 0 64 29 8.556119 0.250279

70 5 954 96.02 0 76 21 1.219268 0.012251
10 716 92.18 0 63 31 14.920141 0.230028

80 5 1086 95.67 0 68 32 0.000000 0.000000
10 784 91.20 0 63 30 6.311226 0.078879

90 5 1201 95.50 0 66 29 3.027027 0.048897
10 776 90.08 0 51 37 15.321626 0.302109

100 5 1259 96.43 0 74 25 0.001865 0.000019
10 750 89.73 0 50 37 5.903523 0.169706

Step3: using Theorem 1 construct digraph G = (J′, A) with vertex set J′ = J \ J0.
Step4: construct binary relation � by adding set J0 to digraph G = (J′, A).
Step5: test conditions of Propositions 12–15.
Step6: IF there are no conflicting jobs GOTO step 8.
Step7: STOP
Step8: STOP: there exists dominant permutation with respect to T.

In Algorithm 2, integer k, 1 ≤ k ≤ n, denotes the number of decision-making time-points ti = c1(i), Ji ∈ J, in on-line
scheduling phase. Integer m, 1 ≤ m ≤ k, denotes the number of decision-making time-points for which the optimal orders
of the conflicting jobs were found using the sufficient conditions from Propositions 2–10.
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Table 3
Percentage of solved instances with 10% of jobs from set J0

n L (%) Number of
decision points

Percentage of
proved decisions

Off-line
optimal (%)

On-line
optimal (%)

Optimal
without
proof (%)

Max error of
Cmax (%)

Average error of
Cmax (%)

1 18 72.22 79 18 2 17.966948 0.179669
2 26 61.54 65 25 1 21.889175 1.026670
3 49 69.39 49 37 8 12.544724 0.411497
4 50 68.00 49 35 7 17.959299 0.656619

10 5 54 55.56 49 30 10 14.644439 0.911094
6 73 64.38 26 49 14 14.280224 0.763463
7 82 57.32 20 47 18 23.059456 1.461247
8 92 59.78 21 46 17 16.038074 1.009285
9 96 57.29 20 45 15 17.468323 1.431748

10 114 56.14 10 49 19 19.623438 1.667662

1 52 88.46 49 46 4 5.821766 0.058218
2 99 92.93 18 75 3 6.804946 0.165536
3 150 86.67 5 78 11 7.669424 0.257041
4 154 85.71 5 77 6 8.306249 0.544108

20 5 190 85.26 6 71 12 15.721927 0.588305
6 202 89.60 0 83 6 8.690571 0.590736
7 233 86.70 1 75 13 9.809823 0.518078
8 269 81.78 0 71 16 19.979408 0.823335
9 247 79.76 0 64 10 10.719061 1.378448

10 286 83.92 0 68 14 11.104570 1.122154

1 133 93.98 14 80 5 3.743102 0.037431
2 214 92.06 7 81 7 9.082943 0.171559
3 275 93.82 2 84 11 6.714648 0.129161
4 328 91.46 1 76 12 10.427673 0.408122

30 5 346 92.20 0 78 10 4.925068 0.523251
6 340 88.53 0 68 15 13.092766 0.667315
7 365 89.59 0 71 12 20.051733 0.891334
8 424 90.80 0 71 10 13.626771 0.935853
9 388 88.14 0 70 12 16.552177 0.836974

10 416 88.70 0 68 19 9.795372 0.620623

1 202 94.06 5 83 10 4.489825 0.085888
2 354 94.35 0 85 13 6.027034 0.093683

40 3 428 95.33 0 87 8 4.454952 0.138229
4 475 93.26 0 77 9 14.140268 0.689480
5 513 96.69 0 88 6 17.602324 0.317764

10 519 90.17 0 62 15 6.950419 0.735055

50 5 652 96.63 0 83 11 3.451158 0.161636
10 580 89.83 0 58 12 6.377758 0.672041

60 5 739 95.81 0 75 12 3.175847 0.337660
10 634 91.01 0 62 7 9.123387 0.838601

70 5 933 95.71 0 73 11 2.618088 0.303773
10 729 93.14 0 66 13 8.430060 0.540960

80 5 992 94.76 0 72 8 9.327187 0.501414
10 735 90.88 0 62 6 8.642805 0.703802

90 5 1113 96.14 0 76 10 11.927623 0.440951
10 761 93.04 0 66 9 14.317971 0.661120

100 5 1083 95.57 0 68 7 4.340650 0.430289
10 829 93.97 0 64 4 3.391186 0.517160

Algorithm 2 (For On-Line Scheduling (J0 = ∅)).

Input: lower and upper bounds pL
ij and pU

ij for processing times pij

of jobs Ji ∈ J on machines Mj ∈M;
solution S∗(T), |S∗(T)| > 1, to the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax

defined by partial strict order ≺.
Output: either dominant permutation πu ∈ S∗(T) with respect to T(i), Ji ∈ J,

or permutation from solution S∗(T) without its optimality proof.
Step1: set k := 0, m := 0.
Step2: IF first jobs in partial strict order ≺ are conflicting THEN

BEGIN
check conditions of Proposition 15 for all orders of conflicting jobs

Би
бл
ио
те
ка

 БГ
УИ
Р



N.M. Matsveichuk et al. / Mathematical and Computer Modelling 49 (2009) 991–1011 1007

IF conditions of Proposition 15 holds for at least one order of conflicting jobs
THEN k := k+ 1, m := m+ 1, choose optimal order of conflicting jobs
ELSE k := k+ 1, choose arbitrary order of conflicting jobs
and process conflicting jobs in the chosen order.
END

Step3: UNTIL finishing the last job in the actual schedule.
Step4: process linear part of partial strict order ≺.
Step5: check conditions of Propositions 8 and 9 for all orders of conflicting jobs.

IF there are two conflict jobs THEN check conditions of Proposition 4.
Step6: IF at least one sufficient condition from Propositions 2–11 holds

for at least one order of conflicting jobs
THEN k := k+ 1, m := m+ 1, choose optimal order of conflicting jobs,
ELSE k := k+ 1, choose arbitrary order of conflicting jobs,

Step7: process conflicting jobs in the chosen order.
Step8: RETURN
Step9: IF k = m THEN GOTO step 14.

Step10: calculate length Cmax of the schedule that was constructed via steps 1 – 9 and
length C∗max of the optimal schedule constructed for actual processing times.

Step11: IF Cmax = C∗max THEN GOTO step 13.
Step12: STOP: constructed schedule is not optimal for actual processing times.
Step13: STOP: optimality of actual permutation is defined after schedule execution.
Step14: STOP: optimality of actual permutation is proven before schedule execution.

If J0 6= Ø, then Algorithm 3 has to be used instead of Algorithm 2 at on-line scheduling phase. The former differs from
the latter by the following part which has to be used instead of the above Steps 5–7. Moreover in Algorigthm 3, set S∗(T) will
be substituted by S(T). Let Nj denote subset of set J0 of the jobs that can be processed at time-point tj = c1(j).

Part of Algorithm 3 (For On-Line Scheduling).

Step5: check conditions of Propositions 8 and 9 for all orders of conflicting jobs.
IF there are only two conflict jobs at time point ti
THEN check conditions of Proposition 4.

Step5a: IF no sufficient condition holds THEN calculate the corresponding
subset Nj.

Step5b: UNTIL Nj = Ø OR at least one sufficient condition from
Propositions 2–11 holds for at least one order of conflicting jobs,

Step5c: process job Ji ∈ Nj with the largest pi and delete job Ji from set Nj.
Step6: IF at least one sufficient condition holds for at least one order

of conflicting jobs
THEN k := k+ 1, m := m+ 1, choose optimal order of conflicting jobs,
ELSE k := k+ 1, choose arbitrary order of conflicting jobs.

Step7: process conflicting jobs in the chosen order.
Step7a: RETURN

For the computational experiments, we used a Celeron 1200 MHz processor with 384 MB main memory. We made 100
tests in each series, i.e. for each combination of n and L where L defines the percentage of relative error of input data (job
processing times) known before scheduling. The lower bound pL

ij and upper bound pU
ij of job processing times are uniformly

distributed in the range [10, 1000] in such a way that the following equality holds:

L = ((pU
ij − pL

ij) : (p
U
ij + pL

ij)/2) · 100.

The bounds pL
ij and pU

ij and the actual processing times pij were decimal fractions with two digits after decimal point. Generater
from [22] has been used for (pseudo) random generating instances of the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax.

It is easy to see that all sufficient conditions proven in Sections 5–7 may be tested in polynomial time of the number n
of jobs. Moreover, to minimize running time of the Algorithms 1–3 these sufficient conditions were tested in an increasing
order of their complexity up to the first positive answer (if any) to the following question. Does a dominant permutation
exist at time-point ti = c1(i)?

In the experiments, the CPU-time was small: even for 1000 jobs both Algorithms 1 and 2 (Algorigthm 3) take less than
0.05 s for solving one instance of the problem F2|pL

ij ≤ pij ≤ pU
ij |Cmax. Therefore, we do not present the CPU-time in Tables 2–6.

Note that the results presented in Tables 2–6 have been only obtained for the case (jj) of on-line scheduling, i.e.,
Assumption 1 was not used and so the actual value of processing time pij became only known at time point ti = cj(i) when
job Ji was completed by machine Mj.
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Table 4
Percentage of solved instances with 30% of jobs from set J0

n L (%) Number of
decision points

Percentage of
proved decisions

Off-line
optimal (%)

On-line
optimal (%)

Optimal
without
proof (%)

Max error of
Cmax (%)

Average error of
Cmax (%)

1 9 66.67 85 12 0 12.769878 0.191195
2 14 78.57 70 27 0 13.634037 0.347974
3 31 61.29 59 31 2 13.529054 0.735699
4 40 32.50 44 37 5 23.480253 1.282487

10 5 43 37.21 42 35 6 21.291142 1.924775
6 47 53.19 36 42 8 17.709812 1.613568
7 62 48.39 27 44 7 18.857832 2.174505
8 54 46.30 38 35 5 26.330475 2.890409
9 71 42.25 24 40 9 26.084694 2.628773

10 67 50.75 26 47 5 21.843046 2.253550

1 26 80.77 54 41 2 9.495034 0.189950
2 66 72.73 25 59 6 9.860765 0.496118
3 92 78.26 19 65 7 8.274606 0.526225
4 126 79.37 8 73 10 8.872502 0.651189

20 5 123 82.11 4 76 6 9.250347 0.918365
6 145 83.45 1 77 5 8.582347 1.017275
7 172 74.42 1 67 9 13.947658 1.272475
8 169 78.11 0 72 8 22.539068 1.723347
9 203 78.33 0 73 12 10.772242 1.085768

10 190 81.05 0 73 5 11.410321 1.304585

1 74 97.30 26 72 1 5.184722 0.051847
2 132 92.42 6 84 4 5.993108 0.310904
3 195 92.31 1 87 8 5.672687 0.189419
4 223 89.24 0 78 10 7.023677 0.547064

30 5 260 91.54 0 81 3 7.348124 0.853035
6 274 87.96 0 75 5 8.557904 0.987270
7 281 92.53 0 83 8 13.237219 0.531717
8 310 87.42 0 71 10 6.351249 0.769261
9 320 81.88 0 67 10 14.983966 1.227586

10 330 85.45 0 62 14 15.381570 1.045122

1 133 93.23 7 86 2 4.371631 0.119839
2 209 91.87 0 84 11 4.267471 0.200966

40 3 264 93.94 0 87 8 6.235053 0.216928
4 324 91.36 0 81 8 4.509482 0.434682
5 389 93.83 0 84 5 4.814591 0.373192

10 413 83.29 0 51 7 12.213601 1.728035

50 5 490 93.06 0 78 9 3.951199 0.374512
10 461 87.42 0 65 5 20.524624 1.057270

60 5 569 95.61 0 79 5 7.773736 0.510159
10 554 91.34 0 66 6 10.940594 0.846808

70 5 715 95.66 0 77 4 3.125759 0.413271
10 650 94.00 0 73 3 2.815311 0.485601

80 5 806 97.15 0 81 8 9.777588 0.338340
10 654 91.44 0 61 5 5.004590 0.742792

90 5 821 96.22 0 79 4 4.352552 0.338179
10 771 92.74 0 64 3 3.976014 0.647212

100 5 984 96.24 0 73 6 2.246622 0.350034
10 714 92.86 0 63 7 3.588353 0.444596

Tables 2–4 present the percentage of small problem instances which were solved exactly or approximately in off-
line phase (by Algorithm 1) and in on-line phase (by Algorithm 2 or 3) in spite of the uncertain numerical input data.
Column 1 (column 2) presents number of jobs n, 10 ≤ n ≤ 100 (relative error of the input data L, 1 ≤ L ≤ 10, in
percentage).

Column 3 presents the number of sets of conflicting jobs in the strict order≺ for Algorithm 2 with J0 = Ø (in the binary
relation � for Algorigthm 3 with J0 6= Ø) for which decisions were made in decision-making time-points ti = c1(i). (In the
above description of Algorithms 2 and 3 this number is denoted as k.) The percentage of the correct decisions made due to
Theorem 2 and Propositions 10–15 in the off-line scheduling phase and the correct decisions made due to Propositions 2–11
in the on-line scheduling phase is given in column 4. This number is equal to m/k · 100% where m and k are those used in
Algorithms 2 and 3.
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Table 5
Percentage of solved instances with empty set J0

n L (%) Number of decision
points

Percentage of proved
decisions

On-line
optimal (%)

Optimal without
proof (%)

Max error of
Cmax (%)

Average error of
Cmax (%)

5 1665 96.04 66 28 0.000819 0.000032
200 10 909 88.67 42 45 1.687293 0.019191

15 563 77.09 12 60 1.810943 0.054092
20 424 64.62 0 66 5.189355 0.219553

5 1617 96.23 65 29 0.403977 0.004053
300 10 891 85.52 25 59 13.129663 0.131382

15 548 69.16 1 65 2.639358 0.096203
20 419 56.09 0 59 5.012075 0.096354

5 1605 93.21 47 45 0.000692 0.000014
400 10 840 80.48 10 62 3.807984 0.064929

15 484 65.70 0 68 1.623536 0.025619
20 361 48.20 0 55 2.821229 0.079312

5 1834 95.58 57 31 0.000462 0.000024
500 10 840 79.29 4 73 11.960889 0.123434

15 468 63.03 0 58 5.103044 0.069323
20 309 33.98 0 44 1.205535 0.025511

5 1659 93.31 45 45 2.989783 0.054760
600 10 783 77.01 1 60 1.114273 0.026779

15 417 57.31 0 55 0.212790 0.003442
20 273 28.21 0 54 0.607854 0.011057

5 1766 94.11 48 35 1.544116 0.024961
700 10 706 77.48 1 61 1.575914 0.028462

15 392 51.79 0 55 1.496273 0.027993
20 244 24.59 0 30 1.170049 0.020081

5 1665 92.19 45 39 1.034108 0.011902
800 10 691 75.69 0 59 3.810499 0.050601

15 333 40.24 0 42 2.311629 0.088997
20 209 20.10 0 36 0.263040 0.002976

5 1599 90.43 35 46 6.364723 0.075417
900 10 628 67.83 0 54 4.828169 0.068645

15 323 42.41 0 40 0.438542 0.005272
20 193 11.92 0 27 2.273839 0.067102

5 1621 92.23 32 49 0.000402 0.000020
1000 10 593 66.78 1 57 0.000558 0.000062

15 297 33.33 0 42 3.157275 0.031717
20 171 14.04 0 27 0.889870 0.023861

The percentage of problem instances which were optimally solved in off-line scheduling phase is given in column 5. For
such instances, Algorithm 1 terminates at step 8. The percentage of the problem instances which were optimally solved in
on-line scheduling phase (and optimality of the adopted permutation became only known after schedule execution) is given
in column 6. For such instances, Algorithm 2 (Algorigthm 3) terminates at step 14. Note that both columns 5 and 6 define the
percentage of problem instances for which optimal permutations were defined before execution of the whole schedule, i.e.,
each decision in on-line phase (resolution of the conflicting jobs) was made correctly due to one of the sufficient conditions
proven in Sections 4–7.

On the contrary, column 7 presents the percentage of problem instances which were optimally solved occasionally
(without a preliminary proof of permutation optimality). Namely, the value Cmax obtained for the actual schedule turns
out to be equal to the optimal value C∗max calculated for optimal schedule with the actual job processing times. (Remind that
value C∗max can be calculated after completing the last job from set J when all actual job processing times p∗ij, Ji ∈ J,Mj ∈M,
and all actual job completion times become known.) For such instances, Algorithm 2 (Algorigthm 3) terminates at step 13.
Subtracting the sum of the numbers given in columns 5, 6 and 7 from 100% gives the percentage of instances for which
optimal permutations were not found both in off-line scheduling phase and in on-line scheduling phase (for such instances,
Algorithms 2 and 3 terminate at step 12). Maximal (average) relative error of the makespan [(Cmax − C∗max)/C

∗

max] · 100%
obtained for the actual schedule constructed by Algorithms 1 and 2 (Algorigthm 3) is given in column 8 (column 9).

Table 2 presents computational results for the case J0 = Ø obtained by Algorithms 1 and 2. Table 3 (Table 4) presents
computational results for instances with 10% (30%) of the jobs from set J0 obtained by Algorithms 1 and 3.

Table 5 (Table 6) presents the percentage of large instances (200 ≤ n ≤ 1000) solved exactly or approximately in off-line
phase by Algorithm 1 and in on-line phase by Algorithm 2 for J0 = Ø (by Algorigthm 3 for J0 6= Ø). In Tables 5 and 6, we
use the same columns as in Tables 2–4 except column 5 since no large instance with n > 100 has been optimally solved at
off-line phase of scheduling.
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Table 6
Percentage of solved instances with 30% of jobs from set J0

n L (%) Number of decision
points

Percentage of proved
decisions

On-line
optimal (%)

Optimal without
proof (%)

Max error of
Cmax (%)

Average error of
Cmax (%)

5 1307 95.87 68 7 1.493803 0.228527
200 10 836 92.94 59 10 4.797616 0.268801

15 592 81.25 23 14 3.531275 0.550724
20 424 69.58 1 32 8.917567 0.603160

5 1636 96.45 67 1 6.174240 0.230672
300 10 880 89.20 40 11 2.548966 0.272686

15 578 77.34 5 27 0.684393 0.327328
20 448 66.74 0 23 2.098592 0.402790

5 1612 96.09 60 4 4.655282 0.200383
400 10 873 87.06 28 13 2.560096 0.274370

15 550 76.18 3 28 3.529257 0.306747
20 411 61.07 0 21 4.233299 0.330161

5 1742 95.24 58 2 1.803466 0.155213
500 10 797 84.32 17 27 5.349672 0.271104

15 526 70.53 0 26 4.218193 0.215071
20 384 63.28 0 24 3.550418 0.235060

5 1710 95.50 60 5 1.594194 0.115055
600 10 861 85.25 13 20 1.047556 0.172209

15 479 68.68 0 32 1.667378 0.192229
20 335 55.22 0 23 2.664976 0.199377

5 1787 96.59 62 3 0.283844 0.085372
700 10 821 82.58 8 25 0.974754 0.136061

15 458 68.12 0 21 3.935263 0.207185
20 294 46.26 0 30 1.589900 0.154975

5 1789 95.03 52 8 0.251936 0.081683
800 10 832 83.17 5 24 0.247568 0.125456

15 443 64.79 0 22 0.766673 0.121888
20 293 49.49 0 15 1.834536 0.151659

5 1737 95.28 57 7 0.934157 0.074773
900 10 744 77.42 2 30 0.522401 0.117334

15 397 59.19 0 28 1.861207 0.141729
20 263 49.43 0 20 3.329657 0.142571

5 1724 95.01 53 7 1.111841 0.072543
1000 10 728 80.91 2 28 0.266260 0.098637

15 404 61.39 0 27 2.376391 0.107110
20 229 43.23 0 21 1.266256 0.124885

9. Conclusions

We would like to mention that there is another scheduling research line dealing with uncertain processing times, e.g.,
in [23–25] with a decision criterion of achieving a specified level or even worst-case level and in [26,27] with a decision
criterion of minimizing the worst-case regret. Basically, this scheduling research line deals with the off-line phase only. In
this research line, one aims to seek one schedule that is optimal from a decision criterion and no attempts are made to take
advantage of the local on-line information to best execute the schedule as the scheduled process goes on.

As a new scheme dealing with uncertainty, our scheme must be tested on a representative class of uncertain scheduling
problems. To this end in Section 8, two-phase scheduling was tested on a large number of randomly generated problems
F2|pL

ij ≤ pij ≤ pU
ij |Cmax. And the computational results seems to be rather promising, especially for on-line scheduling phase.

Tables 2–4 show that the off-line scheduling allowed us to find optimal schedules only for small numbers of jobs and
small errors of input data, e.g., for n = 40 and L = 1% dominant permutations have been only obtained for 4% of randomly
generated instances. For n > 40 there were no such instances at all. Fortunately, on-line scheduling allowed us to find
optimal schedules (with optimality proofs before schedule execution) for most instances with n ≤ 100 (Tables 2–4) and for
many instances with 200 ≤ n ≤ 1000 (Tables 5 and 6).

The following computational results are even more impressive. The average relative error of the makespan [(Cmax −

C∗max)/C
∗

max] · 100% obtained for all actual schedules is less than 2.9% for all randomly generated instances with n = 10 jobs
(column 9 in Tables 2–4). The average relative error of the makespan obtained for all actual schedules is less than 1.67%
for all randomly generated instances with n jobs with 20 ≤ n ≤ 1000 (column 9 in Tables 2–4, column 8 in Tables 5 and
6). These results are obtained since the percentage of the correct decisions made in on-line scheduling phase is rather high
(column 4). Thus, the sufficient conditions for the existence of a dominant permutation given in Propositions 2–12 may be
very effective for on-line scheduling.
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It also should be noted that the number of decision-making time-points ti = c1(i) when the order of conflicting jobs has
to be decided is rather high for some instances with n ≥ 50 (column 3). However, these decisions made in Algorithm 2
(Algorigthm 3) are very fast: there was no randomly generated instance which takes a running time more than 0.05 s for a
processor with 1200 MHz.

Acknowledgments

The research of the first and second authors was supported by INTAS (project 03-51-5501) and ISTC (project B-986).

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice-Hall, Englewood Cliffs, USA, 1995.
[2] S. Elmaghraby, K.A. Thoney, Two-machine flowshop problem with arbitrary processing time distributions, IIE Transactions 31 (2000) 467–477.
[3] J. Kamburowski, Stochastically minimizing the makespan in two-machine flow shops without blocking, European Journal of Operational Research

112 (1999) 304–309.
[4] P.S. Ku, S.C. Niu, On Johnson’s two-machine flow-shop with random processing times, Operations Research 34 (1986) 130–136.
[5] V. Portougal, D. Trietsch, Johnson’s problem with stochastic processing times and optimal service level, European Journal of Operational Research 169

(2006) 751–760.
[6] A. Allahverdi, Stochastically minimizing total flowtime in flowshops with no waiting space, European Journal of Operational Research 113 (1999)

101–112.
[7] A. Allahverdi, J. Mittenthal, Two-machine ordered flowshop scheduling under random breakdowns, Mathematical and Computer Modelling 20 (1994)

9–17.
[8] T.-C. Lai, Yu.N. Sotskov, N. Sotskova, F. Werner, Optimal makespan scheduling with given bounds of processing times, Mathematical and Computer

Modelling 26 (1997) 67–86.
[9] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling. A survey,

Annals of Discrete Mathematics 5 (1979) 287–326.
[10] K. Jansen, V. Mastrolilli, R. Solis-Oba, Approximation schemes for job shop scheduling problems with controllable processing times, European Journal

of Operational Research 167 (2005) 297–319.
[11] A. Janiak, General flow-shop scheduling with resource constraints, International Journal of Production Research 26 (1988) 125–138.
[12] C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, Single machine batch scheduling with jointly compressible setup and processing times, European Journal of

Operational Research 153 (2004) 211–219.
[13] T.C.E. Cheng, M.Y. Kovalyov, N.V. Shakhlevich, Scheduling with controllable release dates and processing times: Makespan minimization, European

Journal of Operational Research 175 (2006) 751–768.
[14] T.-C. Lai, Yu.N. Sotskov, Sequencing with uncertain numerical data for makespan minimization, Journal of the Operational Research Society 50 (1999)

230–243.
[15] N.M. Leshchenko, Yu.N. Sotskov, Two-machine minimum-length shop-scheduling problems with uncertain processing times, in: Proceedings of XI-th

International Conference “Knowledge-Dialogue-Solution”, vol. 2, Varna, Bulgaria, June 20–0, 2005 pp. 375–381.
[16] T.-C. Lai, Yu.N. Sotskov, N. Sotskova, F. Werner, Mean flow time minimization with given bounds of processing times, European Journal of Operational

Research 159 (2004) 558–573.
[17] A. Allahverdi, Yu.N. Sotskov, Two-machine flowshop minimum-length scheduling problem with random and bounded processing times, International

Transactions in Operational Research 10 (2003) 65–76.
[18] Yu.N. Sotskov, A. Allahverdi, T.-C. Lai, Flowshop scheduling problem to minimize total completion time with random and bounded processing times,

Journal of the Operational Research Society 55 (2004) 277–286.
[19] A. Allahverdi, T. Aldowaisan, Yu.N. Sotskov, Two-machine flowshop scheduling problem to minimize makespan or total completion time with random

and bounded setup times, International Journal of Mathematical Sciences 39 (2003) 2475–2486.
[20] N.M. Leshchenko, Yu.N. Sotskov, Realization of an optimal schedule for the two-machine flow-shop with interval job processing times, International

Journal “Information Theories and Applications” 14 (2) (2007) 182–189.
[21] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68.
[22] E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Research 64 (1993) 278–285.
[23] R.L. Daniels, P. Kouvelis, Robust scheduling to hedge against processing time uncertainty in single-stage production, Management Science 41 (2)

(1995) 363–376.
[24] S.D. Wu, E.-S. Byeon, R. Storer, A graph-theoretical decomposition of the job-shop scheduling problem to achieve scheduling robustness, Operations

Research 47 (1) (1999) 113–124.
[25] P. Kouvelis, R.L. Daniels, G. Vairaktarakis, Robust scheduling of a two-machine flow shop with uncertain processing times, IIE Transactions 32 (2000)

421–432.
[26] I. Averbakh, Minmax regret solutions for minmax optimization problems with uncertainty, Operations Research Letters 27 (2000) 57–65.
[27] V. Lebedev, I. Averbakh, Complexity of minimizing the total flow time with interval data and minmax regret criterion, Discrete Applied Mathematics

154 (2006) 2167–2177.

Би
бл
ио
те
ка

 БГ
УИ
Р




