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Abstract

Tubular neighborhoods play an important role in differential topology. We have applied these
constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of
tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold.
Further, an almost hyper Hermitian structure has been constructed on the tangent bundle TM with
help of the Riemannian connection of an almost Hermitian structure on a manifold M then, we
consider an embedding of the almost Hermitian manifold M in the corresponding normal tubular
neighborhood of the null section in the tangent bundle TM equipped with the deformed almost
hyper Hermitian structure of the special form. As a result, we have obtained that any Riemannian
manifold M of dimension n can be embedded as a totally geodesic submanifold in a Kaehlerian
manifold of dimension 2n (Theorem 6) and in a hyper Kaehlerian manifold of dimension 4n
(Theorem 7). Such embeddings are “good” from the point of view of Riemannian geometry. They
allow solving problems of Riemannian geometry by methods of Kaehlerian geometry (see Section
5 asan example). We can find similar situation in mathematical analysis (real and complex).
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1. Deformations of Tensor Structures on a Normal Tubular Neighborhood of a
Submanifold

1°. Let (M’,g’) be a k-dimensional Riemannian manifold isometrically embedded in a n-dimensional Rie-
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mannian manifold (M , g). The restrictionof gto M’ coincides with g’ and forany peM’.

T,(M)=T,(M)@T (M),
So, we obtain a vector bundle M’ —>T(M ) p—>Tp(M’)l over the submanifold M'. There exists a
neighborhood U, of the null section O,,. in T(M’)L such that the mapping

;zxexp:v—>(7r(v),exp”(v)v), vel,,

is a diffeomorphism of U, onto an open subset U cM . The subset U is called a tubular neighborhood of
the submanifold M’ in M.

For any point pe M we can consider a set 5( p)} of positive numbers such that the mapping XDy (5(p))
is defined and injective on U (5(p))<=T,(M). Let z(p )_sup{ (p)}-

Lemma [1]. The mapping M — R, p — £(p) is continuous on M.

If we take the restriction of the functlon g ( p) on U thenitis clear that there exists a continuous positive

e(p)

function g(p) on M’ such that forany pe M’ open geodesic balls B[p;TJ B(p;g(p))cU.For

compact manifolds we can choose a constant function g( p) =¢>0..We denote Up = exp(L]0 T, (M )L)

& & ~ . .
D[p; (Zp)j ( P ¢(p) pe(p))=B(pie(p))NU,. Itisobvious that
dimUp =dim D( (p) =n-k . Forany point oe M’ we can consider such an orthonormal frame
(Xyor Xy ) that Ty (M ) L[ Xy Xy | and Ty (M) = L[ X,y -+ X, ] - There exist coordinates
X,-++, %, In some neighborhood \70 c M’ of the point o that aiz X, =1k . We consider orthonormal

ilg
vector fields X,,,,---, X, which are cross-sections. of the vector bundle p—>Tp(M’)L over V, and the
neighborhood W, = (JU, . The basis {Xk+1 v X

} defines the normal coordinates x,,,,---,X, on Up
pVo

Mp

[2]. For any point x eW, there exists such unique point peV, that x=exp, (t&), ] =1 €T, (M ) A
point x W, has the coordlnates Xirt v X s Xopo o X, Where x,---, X, are coordlnates of the pomtp in v,

(o))

and x,,---, X, are normal coordinates of x in Up . We denote X = i=1n,on W,. Thus, we can con-
X

sider tubular neighborhoods Tb{M’ £(p )] U D[ L) and Th(M"2(p))= |J D(p:e(p)) of the

peM’ peM’
submanifold M". .
2°. Let K be a smooth tensor field of type (r, s) on the manifold M and for xeW,, let

K, = z _ kﬁ'J’S (X)Xilx ® --® )(irx O @ @X):,
iy e s
where {X},--, X[} is the dual basis of T;(M),x=exp,(t), [&=L1£eT,(M")". We define a tensor

field K on M in the following way.

a) Xe D(p;@j,then

Ki= Y k}ll;;jfgs(p)xilx®---®xirx®x;'1®.--®xjs;

X
[RRRR P[RR

b) xeD(p;e(p))\ D[p; g(zp)],then
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Ko= > kit (epr«Zt_g(p))‘f))xhx ®8X, OX!® - ®X});

. K i s
honle i ds
c) xeM\[JD(p;z(p)), then
v

K, =K,.

It is easy to see the independence of the tensor field K on a choice of coordinates in V\70 for every point
oeM’,

Definition 1. The tensor field K is called a deformation of the tensor field K on the normal tubular neigh-
borhood of a submanifold M’. B

Remark. The obtained tensor field K is continuous but is not smooth on the boundaries of the normal tu-

bular neighborhoods Tb[M ';@j and Th(M';£(p)); K issmooth in other points of the manifold M.

3°. We consider a deformation g of the Riemannian metric g on the normal tubular neighborhood
Tb(M';&(p)) of asubmanifold M'. For xeW,, x=exp,(t&),[&]=1&eT,(M'), we define the Rieman-
nian metric g by the following way.
a) g,=g, forany peM’;
— — — 0o . — 0 A — o € )
b) gx(xi,xj):gij(x):gij(p),where X, :&,lzl, X = j=Ln, on W,, xe D[p,—j,

i i

) 8.(XX,) =8, (x)= 0 (0, ((2t~#(p))<)). for any XGD(p;E(p))’D(p;g(zp)];

d) g, =g, foreachpoint xeM\ [ D(p;s(P))-

peM’

The independence of § on a choice of local coordinates follows and the correctly defined Riemannian me-
tric @ on M has been obtained.

It is known from [3] that every autoparallel submanifold of M is a totally geodesic submanifold and a subma-
nifold M’ is autoparallel if and only if V,Y eT(M’) forany X,Y e z(M’), where V is the Riemannian
connection of g.

Theorem 1. Let M’ be a submanifold of a Riemannian manifold (M, g) and @ be the deformation of g on
the normal tubular neighborhood Tb(M ’;g(p)) of M’ constructed above. Then M’ is a totally geodesic

submanifold of (Tb(M @J E_JJ .

_ ag.
Proof. For any point x e D[p;@} W, the functions g (x)=g;(p) and J

—%-0,I=k+1,n on
X

D p;ﬂ because the vector fields X _ 9 are tangent to D p;w . By the formula of the Rie-
2 ' ox 2

|
mannian connection V of the Riemannian metric g, [2], we obtain for i, j =1k, 1=k+Ln

zg‘p(ﬁxixj,xl)=xipg(x,—,x.)+xjpg(xi,X.)—X.pg(x-,X-)+9_p([xwxj]-xl)
3, (1%, )+8, (. [ %, X, ]) = =S=0

Here we use the fact that [ X, X; ]=[X,,X;]=[X,,X;]=0 and that g—(xj,x,)=
X, eT(M')".
Thus, V. X;€T(M') and from the remarks above the theorem follows.

11

(X;,X,)=0 because

«Q|

3 B B QED.
Corollary 1.1. Let R be the Riemannian curvature tensor field of V. Then R vanishes on every
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D[p;#j for peM’.

Proof. From the formula (1.1) it is clear that §X| X, =0 for I,m=k+1n. Therestis obvious.
QED.

2. Almost Hyper Hermitian Structures (ahHs) on Tangent Bundles

0°. We follow especially close to [4].
Let (M, g) be a n-dimensional Riemannian manifold and TM be its tangent bundle. For a Riemannian connec-
tion V we consider the connection map K of V [5], [1], defined by the formula

V. Z=KZ.X, .1)

where Z is considered as a map from M into TM and the right side means a vector field on M assigning to
peM thevector KZ.X,eM,.

If UeTM, we denote by Hy the kernel of K., ~ and this n-dimensional subspace of TM,, is called the
horizontal subspace of TM,; .

Let # denote the natural projection of TM onto M, then z~ isa C”-map of TTM onto TM. If U e TM , we
denote by Vy the kernel of Taitaay and this n-dimension subspace of TM,, is called the vertical subspace of

™, (dimTMU =2dimM :2n). The following maps are isomorphisms of corresponding vector spaces
(p=7(V))

Ty -Ho =2 My, Ky Vy = M

™y p
and we have
™, =H, &V,
If Xe ;((M ) then there exists exactly one vector field on TM called the “horizontal lift” (resp. “vertical
lift”) of X and denoted by X" (X"), such that for all U eTM :

ZXG =X gy KXG =0, (2.2)
X5 =00y, KXG =X ), (2.3)
Let R be the curvature tensor field of Vv, then following [5] we write
[X*.¥"]=0, (2.4)
[)Zh,\?V]=(vXY)V (2.5)
m([ih,\?“]u):[x,v], (2.6)
K [)?“,V“]U)zR(x,Y)u . 2.7)

For vector fields X =X"®X" and Y =Y"@®Y" on TM the natural Riemannian metric § ={(,) is defined
on TM by the formula
(X.Y)=g(mX, Y )+g(KX,KY), (2.8)

It is clear that the subspaces Hy and Vy, are orthogonal with respect to ()

It is easy to verify that X', XJ,---, X", X}, X ,---, X are orthonormal vector fields on TM if X, X,,---, X
are those on Mi.e. g(X;,X;)=5;.

1°. We define a tensor field J; on TM by the equalities

Jl)?h:)?V,Jl)?":—)zh,Xe;((M). (2.9)

n

For X ex(M) we get
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and

For X.,Y e (M) we obtain
(1X37)=(-X"@ X" V" &V )= (-X", V" )+ (X7,
(XY)=(X"@ex" ¥ ey )=(X"¥")+(X". V")
and it follows that <J X,J Y>_<>? \7) (TM,J3,,(,)) is an almost Hermitian manifold.
Further, we want to analyze the second fundamental tensor field h* of the pair ( 1()) where h' is defined

by (2.11), [6].

The Riemannian connection V of the metric §= ( TM is defined by the formula (see [1])

\/\/
NI S
—
X
—<
\/
/\
N|
—
x|
=]
H
S~

1/— _
<v Y z> 2(X<Y Z>+Y<Z,X 2.10)
+(V.[Z.x])+(X[Z, \7]>) X.,Y,Z e z(M).
For orthonormal vector fields X,Y,Z on TM we obtain
ey = (MY Z):%(%Juﬁxw z)
L//n — o\ jn _—
=E(<V>?Y Z)-(VaY.9.7)) 11

Using (2.4)-(2.7) and (2.11) we consider the following cases for the tensor field h* assuming all the vector
fields to be orthonormal.

119

j

x| =
>
=<
>
N

X
(g(R(x,Y)u,z)+< z" X" ) 2.1°)

2468
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By similar arguments we obtain
1

M =—Z(g(R(Z,X)Y,U)+g(R(X,Y)Z,U)). (3.1
h e :—%(g(R(Z,Y)X,U)). (4.1°)
h e =%(g(R(Z,Y)X,U)). (5.1
h\upn =0. (6.1°)
Ling =0, (7.1
hs =0. 8.1

It is obvious that (J,,§) isa Kaehlerian structure if and only if h*=0.
2°. Now assume additionally that we have an almost Hermitian structure J on (M, g). We define a tensor field
J, on TM by the equalities

3% =(IX)', 3% =—(X)L Xez(M). 2.12)

For X ex(M) we get
3K =3,(3,(X" @ X)) = 3, (X) € +(3X ) |- ~(" @ X)X

and

For X,Y e (M) we obtain

—~
(&
IN)
x|
(&)
IN)
<]
~—
Il
—_—
—_
(&
>
~—
=
|
—_—
=]
~—
<
—_—
g
~——
=
|
—_
z|
~——
<

Further, we obtain
3,(3,%) =3, () &~(3X) | = (%) & (3]

— v

3,(3X)=3,(-X"@X*)=~(3X) @~(X)

Thus, we get J,J, =—J,J, =J; andahHs (J,,J,,J,.(,)) onTM has been constructed.

For orthonormal vector fields X,Y,Z on TM we obtain

2, =(n2¥.2)=2(v \7+Jﬁi‘]2\7,z_>:%(<@XV,Z>—<@XJZ\7,JZZ_>)

Xz~ \''X

:%(<[>?,V],z‘>+<[z‘, %],\7>+<[z_,\7],X>—<[>?,J2\7],JZZ_> (2.13)
; o

Using (2.4)-(2.7) and (2.13) we consider the following cases for the tensor field h* assuming all the vector

fields to be orthonormal.
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=%(g([X,Y],Z)+g<[Z,X],Y)+g([Z,Y],X) (1.2%)
~g([X,9¥],92)-g([9Z,X],3Y)-g([9Z,3Y], X))
:% g(vavZ)_g(vx‘]Yﬂ]Z)):hxvz

% (X070 ).20)+ ([Z0, X" )7 (20 70 X1

1 (2.2°)
= g(R(X,Y)U,Z)+g(R(X,JIY)U,3Z))
1
:—Z(g(R(X,Y)Z,U)+g(R(X,JY)JZ,U)).
By similar arguments we obtain
1
2 regh =—Z(g(R(X,Z)Y,U)+g(R(X,JZ)JY,U)). (3.2°)
1
2 gt :—Z(g(R(Z,Y)X,U)+g(R(JZ,JY)X,U)). 4.2
hZ, vy =0. (5.2°)
hZ,vn =0. (6.2°)
hZns =0. (7.2
1
b2 o =E(g(VXY,Z)—g(VXJY,JZ)):hXYZ. (8.2°)

Here h is the second fundamental tensor field of the pair (J, g) on M.

3. Embeddings of Almest Hermitian Manifolds in Almost Hyper Hermitian Those

For an almost' Hermitian manifold (M, J, g) we have constructed in Section 2 ahHs (Jl,Jz,Js, Q) on TM. The
manifold M can be considered as the null section Oy in TM (p <> 0, €0, cTM) and it is clear from (2.8)
that g,, =g . All the results of 1 can be applied to a submanifold M in (TM , (j), see [7]. So, we can consider

the normal tubular neighborhoods Tb(M,@Jch(M,g(p))cTM and the deformations J,,J,,J;,@ of

the tensor fields J,,J,,J;,G respectively.
Theorem 2. Let (M, J, g) be an almost Hermitian manifold and Tb(M & p)) be the corresponding normal
tubular neighborhood with respectto § = () on TM. Then M(Oy) is a totally geodesic submanifold of the al-

most hyper Hermitian manifold [Tb[M ,@J,I,J},Lg‘j, where the ahHs (\1_1,52,\]_3,9_) is the deforma-

tion of the structure (J_1 35,5 g") obtained in 2°, Section 1. The structure (J,,g) is Kaehlerian one.
Proof. It follows from Theorem 1 that M is a totally geodesic submanifold of the Riemannian manifold

i



A. A. Ermolitski

Let W, be a coordinate neighborhood in TM considered in 1°, Section 1. A point x W, has the coordi-

nates X,,---,X,, X1, X, Where x,---,x, are coordinates of the point p in V,cM and X, X, are
normal coordinates of x in D[ p@}
0 . = ¢ " s = = ¥
We denote X; =—-,i=12n, vxiszzk:rgxk, inXj=;F§Xk, ijngjkxk, JxJ.:;ijxk,

G; =8(X,.X;). @ =9(X;.X;) where V and V are Riemannian connections of metrics § and g, J
is any tensor field from J,,J,,J;.

0"

Using the construction in 2°, Section 1 we have g, (x)=d;(p).J;(x)=J}(p) on Tb(M,@Jﬂ V

According to [2] we can write

_ = _1(d3¢ og, OO
== =242k _ 21 3.1
Z.:g'k ! 2[axi X, % =1

]

It follows from (3.1) that Tj (x)=T}(p) and Tj(x)=0 ie. V,X,=0 for i=n+12n. Further, we
get

It follows that V, J =0 for i=n+12n.
For i=1n (Xijﬁ)(x):(xi\];‘)(p) and we obtain

(75, 3) X)) = 2 (3505 =T 3{ + X, 31 )(P) X

k1
From the other side we can write
((6Xi J) xj)( p)= ;(J;fh ~F3E X 3E)(P) X

According to [6] we have (?XIJ)Xj :(ZhXi ij)(p) where the second fundamental tensor field h is de-
fined by (2.11). From (1.1°)-(8.1°) it follows that h; =0 forany peM (U =0, €0, ). Thus, we have ob-

tained VJ, =0 and the structure (\Tl g‘) is Kaehlerian one on Tb[M , g(zp))_

QED.
As a corollary we have got the following:

Theorem 3 [8]. Let (M, g) be a smooth Riemannian manifold and Th(M,&(p)) be the corresponding nor-
mal tubular neighborhood with respectto g = () on TM. Then M(Oy,) is a totally geodesic submanifold of the

Kaghlerian manifold (Tb[M @j J., Q_J :

The classification given in [9] can be rewritten in terms of the second fundamental tensor field h (Table 1),
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Table 1. Classification of almost Hermitian structures.

Class Defining condition
K h=0
U; =NK hxX=0
U, = AK Uhxvz =0
U,=SKnH hxvz_hJXJVJZ:ﬂ(Z):O
1
u e = gL (XY VAE)={X.2) B~} (32) +(X,32) ()]
Ul ®UZ =QK hxv_|z :hJXVZ
u,eu,=H N(J):O or Ny =—hy
U, eu, Pe = Ny =ﬁ(Z)=O
1
U2®U4 O-[hxwz (n_l)<JX’Y>ﬂ(Z):|_O
1
U1®U4 hxxv :72(n71)|:<X|Y>ﬁ(X)*HXH2ﬂ(Y)*(X,JY>ﬂ(JX):|
U,ou, O-[hxwz +thvz]=ﬂ(Z):O
U,®U,®U, =SK p=0
1
u,eu,eu, Yeuz = Nz :7(n71)[<x,Y>ﬂ(JZ)—(X,Z)ﬂ(JY)+(X,JY>ﬂ(Z)—(X,JZ>ﬂ(Y)]
u,eu,eu, Py + My =0
U2 @Ua ®U4 G[hxvaz+thvz]:0
U No condition

see chapter 5 of monograph [6].
LetdimM>6and 28(X)=d0(JX), where @(X,Y)=g(JIX,Y), then we have Table 1.
Proposition 4. Let (J, g) be from some class from the Table 1. Then the structure (Jz, g) has the analogous

class on Tb(M #j .

Proof. From (1.2°)-(8.2°) it follows that h2_ = 2h,, . The rest is obvious from the table.

XYz

QED.

4. Complex.and'Hypercomplex Numbers in Differential Geometry

For the manifold M we consider the products M* =M xM ={(x;y)|x;yeM},
M*=M?xM*={(xy;u;v)|x y,u;ve M} and the diagonals A(M?)={(x;x)eM?},
A(M 4) = {(x; X% X) e M 4} . It is obvious that the manifold A(M 2) and A(M 4) are diffeomorphic to M
A(M?)zA(M*) = MgA.
Theorem 5 [1]. Let (M, V) be a manifold with a connection V and z: TM — M be the canonical projec-
tion. Then there exists such a neighborhood N, of the null section Oy in TM that the mapping
@ Txexp: X —>(7r(x),exp”(x) X)

is the diffeomorphic of Ny on a neighborhood N, of the diagonal A(M 22 .
Further, V is a Riemannian connection of the Riemannian metric g. Combining the Theorems 3 and 5 we
have obtained the following.
Theorem 6. The diffeomorphism ¢ induces the Kaehlerian structure J_lgg on the neighborhood N, of
the diagonal A(M?) and A(M?)=M isa totally geodesic submanifold of the Kaehlerian manifold

(N,.3,,9)-
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Remark. Generally speaking, the complex structure of the Kaehlerian manifold (NA, J, g) is not compati-
ble with the product structure of M2 It means that if z,1=1n are the complex coordinates of a point
(x,y)e N, , then, generally speaking, we can not find such real coordinates x,y,,I=1n of the points
X,y €M respectively that z, = x +iy, where i*>=-1.

Combining the Theorems 2, 3, 4, 5 and 6 we have obtained the following.

Theorem 7. There exists the hyper Kaehlerian structure (;Tl,TZ,QTs,g_) on a neighborhood N, of the di-
agonal A(M*‘) and A(M‘)=M isa totally geodesic submanifold of the hyper Kaehlerian manifold
(N, 3.,3,.35,9). o

Remark. Generally speaking, the hypercomplex structure of the hyper Kaehlerian manifold (NA, J,,J3,,35.0

is not compatible with the product structure of M*. It means that if g, =Ln are the hypercomplex coordi-
nates of a point (X;y;u;v)e N, , then, generally speaking we can not find such real coordinates

X, Y,,U,V,, | =1,n of the points x; y; u; ve M respectively that g, = x, +iy, + ju, + kv, where i’ =j* =k’ =
-1, ij=—ji=k.
5. A Local Construction of Kaehlerian and Riemannian Metrics

1°. We consider a Riemannian manifold (M, g) as a totally geodesic subanifold of the Kaehlerian manifold

Tb[M,@,J_;Jl,g_J (see Theorem 3) then G, =9

Let x,---,x, be coordinates in some coordinate neighborhood U @M and aii be the corres-

X OX,

ponding vector fields. We can choose a neighborhood U =U xD = UD(p;g)ch(M,@j where

peU

< g(zp) for every point peU . Itis clear from 3°, 1 that U xD is a Riemannian product with respect the

metric §. For every point xeU where 7(x)=p we denote Y, =J j=1n and the vector fields

2
e,

Y; define the coordinates y,,---,y, on D(p;g) hence Y, =i is tangent to D(W) for j=l,_n.
i

So, U is an coordinate neighborhood of the Kaehlerian manifold (Tb[M'@}ng' with complex

coordinates  z; :x].Jriyj,jzl,_n,i2 =-1, and the vector fields o1 i—ii :
oz, 2\ox, oy,

o 1( 0 .0 — . . L - .
— == —+i— |, a, f=1n. It is known [3] that the Kaehlerian metric g has on U the following
az, 2\6x, 0y,
decomposition

ds? = 2" g dzedz?, gty =0
a.p o/ 7 o/ dzadfﬂ l

where u is a real-valued functionon U .
We have

u 1] 2u P . ou . ou _o
02,02, A|0X,0%, 0,0, |\ OY,0K, OX,0Y, ’
u 1] 2 P N o’u . ou

07,0z, 4|ox,0x, 0y,0y, |0y,0%, Ox,0Y,
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It follows that
ou o ’u P

Further, we obtain
g - Pu _1) &u  du f Qu u [ _1f du . 2
P 01,07, 4|0X,0%, 0Y,0y, | OX,0y; OY,0X, || 2| Ox,0x, X0y, )
go - Ou 1] &u  du [ ou  du |[_1f du . du
PaT,or, A|ox,0x, Oy,0y, (0X,0¥, OY,0%, )| 2\ &x,0x, Xy, )

Finally, we get
[ o 0 1_ . 0 © 1_ .| © 0o 0 0
g —,— |==Reg’| —,— |==Reg"| —+—,—+—
OX, Xz ) 2 OX, X, ) 2 or, 01, @z, @I,

(o]

s
- Re(g{iﬂ + g(;ﬁ ++g_;ﬁ + 9_25)2 Re(g_;[; +g_z;,5)= ax(a;l;ﬂ'

We can consider the restriction of § and the function u on the neighborhood U. So, we have obtained.
Theorem 8. Let (M, g) be a Riemannian manifold and x;,---,x, be coordinates is some coordinate neigh-

2
borhood U < M . There exists a smooth functionu: U — R that g, =g ﬂ,i __ou onU.
' % OX; | Ox0x,
2°. Let (M, J, g) be a Kaehlerian manifold x,,---,X., V¥,,---,¥,, be coordinates is some coordinate neighbor-
hood U < M , where o J ai a =1,n. We-consider a function u: U — R from Theorem 5. Then, we
a Xd

have the following conditions on this function.
o%u 0 0 o 0 u
g D] ‘] - |= _g ‘] - 1 = il
OX,0Y 4 oX, . OX, . OXg oY, 0y,
0

OoX

2
AT R N B
6yaayﬂ oX, 6xﬁ OX,

We consider such mappings in the category of Riemannian manifolds that metrics are invariant with respect to
them. It follows that only totally geodesic submanifolds are “naturally good”. Theorems 6 and 7 allow consider-
ing any Riemannian manifold as a totally geodesic submanifold of a Kaehlerian (hyper Kaehlerian) one i.e. to
apply the results of Kaehlerian (hyper Kaehlerian) geometry to Riemannian metrics. We remark that Whitnies
embeddings are not suitable in this context.

2 —
R
OXg | OX,0Xg

6. Conclusion
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