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Abstract: This article addresses the job-shop problem of minimizing the schedule length (makespan) for 
processing n jobs on two machines with sequence-dependent setup and removal times. The processing of each job 
includes at most two operations that have to be non-preemptive. Machine routes may differ from job to job. If all 
setup and removal times are equal to zero, this problem is polynomially solvable via Jackson's pair of job 
permutations, otherwise it is NP-hard even if each of n jobs consists of one operation on the same machine. We 
present sufficient conditions when Jackson's pair of permutations may be used for solving the two-machine 
job-shop problem with sequence-dependent setup and removal times. For the general case of this problem, the 
results obtained provide polynomial lower and upper bounds for the objective function value which are used in a 
branch-and-bound algorithm. Computational experiments show that an exact solution for this problem may be 
obtained in a suitable time for n ≤ 280. We also develop a heuristic algorithm and present a worst case analysis for 
it.  
 
Keyword: Scheduling theory, setup, job-shop. 
 
 
1. INTRODUCTION 
 
The majority of scheduling research assumes the setup time as negligible or as a part of the job processing time. 
This assumption adversely affects the solution quality for different applications which require an explicit treatment 
of setup times. Practical situations in which machine setup times must be considered separately from the job 
processing times arise in chemical, pharmaceutical, food, printing, metal processing and semiconductor industries. 
During the last decade, these applications have motivated an increasing interest to include separate setups in the 
scheduling environment. Allahverdi, Gupta, and Aldowaisan (1999) surveyed about 190 papers on scheduling 
with separate setup times published over a period of 25 years until 1999, while Allahverdi et al. (2006) surveyed 
more than 300 such papers published in the period 1999 – 2005. Most papers surveyed deal with single machine 
scheduling, and a lot of papers address the flow-shop problem with setups. In particular, Khurana and Bagga 
(1984) and Yoshida and Hitomi (1979) addressed the two-machine flow-shop problem of minimizing Cmax, the 
schedule length (makespan), by considering setup times separately. In (Allahverdi, 2000; Bagga and Khurana, 
1986), the two-machine separate setup time problem of minimizing mean job completion time ∑Ci has been 
addressed. Allahverdi, Aldowaisan, and Sotskov (2003) addressed the two-machine flow-shop problem to 
minimize Cmax or ∑Ci when setup times are relaxed to be distribution-free random variables with only lower and 
upper bounds being given before scheduling.  

As follows from the survey papers (Allahverdi, Gupta, and Aldowaisan, 1999; Allahverdi et al, 2006; Yang 
and Liao, 1999) on scheduling problems with separate setups and from other surveys (Cheng, Gupta, and Wang, 
2000; Potts and Kovalyov, 2000), shop-scheduling problems involving sequence-independent setup times have 
been mainly treated in the OR literature so far, and there is only little research on a job-shop involving 
sequence-dependent setup times. While the assumption that setup times are sequence-independent simplifies the 
analysis of a shop-scheduling problem and reflects certain applications, it negatively affects the solution quality 
for many other applications such as those arising in semiconductor manufacturing, see (Zant, 1997), which require 
a treatment of sequence-dependent setup times.  
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To our knowledge, all papers that addressed a job-shop involving sequence-dependent setup times are 
included in the references listed at the end of this paper. In particular, using a simulation study Wilbrecht and 
Prescott (1969) have shown that sequence-dependent setup times play a critical role in the performance of a 
job-shop operating near the full capacity. Kim and Bobrowski (1994) used a simulation to study the effect of 
sequence-dependent setup times and discovered that setup times must indeed be explicitly considered while 
solving scheduling problems when they are sequence-dependent. Using also simulation, Low (1995) compared the 
performance of a heuristic algorithm for sequence-dependent setup times under various criteria against 
non-sequence-dependent setup times. O’Grady and Harrison (1988) proposed a search sequencing rule which 
prioritizes jobs using a linear combination of the due dates, processing and sequence-dependent setup times. Choi 
and Korkmaz (1997) provided a mixed integer programming to minimize the makespan in a flexible 
manufacturing system, and they developed a polynomial heuristic that yields a better performance than that 
proposed by Artigues, Belmokhtar, and Feillet (2004) and Zhou and Egbelu (1989). Gupta (1982) and Brucker and 
Thiele (1996) provided branch-and-bound algorithms for a job-shop with sequence-dependent setup times. Ovacik 
and Uzsoy (1994) developed an algorithm with myopic dispatching rules in a job-shop environment, a 
semiconductor testing facility and a reentrant flow-shop. In (Zoghby, Barnes, and Hasenbein, 2005), feasibility 
conditions were investigated in the context of metaheuristic searches (such as tabu search or simulated annealing), 
and an algorithm was proposed for obtaining an initial feasible solution using the disjunctive graph model for a 
job-shop. Cheung and Zhou (2001) developed a genetic algorithm for a job-shop problem with 
sequence-dependent setup times. Choi and Choi (2002) and Ballicu, Giua, and Seatzu (2002) derived mixed 
integer programming models for the same problem. A tabu search heuristic was proposed by Artigues and 
Buscaylet (2003). Artigues, Lopez, and Ayache (2005) obtained upper bounds by a heuristic algorithm. Sun and 
Yee (2003) addressed the job-shop with the additional characteristic of reentrant work flows. They utilized the 
disjunctive graph model and proposed heuristics including a genetic algorithm. In (Artigues and Roubellat, 2002; 
Sotskov, Tautenhahn, and Werner, 1999), polynomial insertion techniques were used for a job-shop problem with 
separate setup times. Tahar et al. (2005) proposed an ant colony algorithm and showed by computational analysis 
that it performs better than a genetic algorithm.  

In this paper, we consider the two-machine job-shop problem of minimizing the length of a schedule 
including sequence-dependent setup times and removal times. We prove sufficient conditions when Jackson's pair 
of job permutations (Jackson, 1956) may be used for solving this problem polynomially. The results obtained 
provide a polynomial heuristic algorithm and a lower bound for the schedule length which are used in a 
branch-and-bound algorithm. Computational experiments show that an exact solution for the randomly generated 
job-shop problem with sequence-dependent setup times and removal times may be obtained in a suitable 
CPU-time for n ≤ 280. We also develop a worst case analysis for the heuristic algorithm. The paper is organized as 
follows. Notations are given in section 2. Modifications of the setup, removal, and processing times are described 
in section 3. In section 4, it is shown when these modifications allow us to obtain an optimal solution to the 
problem with sequence-dependent setup times in polynomial time. A worst case analysis of the heuristic algorithm 
based on these modifications is developed in section 5. A branch-and-bound algorithm and computational results 
are described in section 6. Finally, the paper concludes with some generalizations of the obtained results in section 
7.  

 
 

2. PROBLEM SETTING AND NOTATIONS 
 
Assume that a set of jobs J = {1, 2, …, n} has to be processed in a job-shop with two machines M = {1, 2} provided 
that each machine m ∈ M processes any job j ∈ J at most once. The subset J12 of set J is the set of jobs with the 
machine route (1, 2), the subset J21 ∈ J is the set of jobs with an opposite machine route (2, 1), and the subset Jm ∈ 
J is the set of jobs which have to be processed only on one machine m ∈ M. Thus, J = J12 U J1 U J2 U J21. Let the 
cardinality of set Jk be denoted as nk = |Jk|, where k ∈ {1, 2, 12, 21}. Ojm denotes the operation of job j ∈ J on 
machine m ∈ M. The processing time pjm of operation Ojm is known before scheduling. All n jobs are available for 
processing from time t = 0. Operation preemptions are forbidden.  

In practice, machines often have to be reconfigured before starting a job and cleaned after completing the last 
job. These processes are called setup and removal, respectively. We assume that the given setup time of a machine 
depends on the job just completed and the job to be started, i.e., the setup times are sequence-dependent. If job i ∈ 
J is directly followed by job k ∈ J on machine m ∈ M, then the setup time is equal to a non-negative real number 

. The notation  is used for the non-negative setup time needed on machine m ∈ M before starting job k, if k 

is the first job processed on machine m. Similarly,  denotes the non-negative removal time after job i provided 
that i is the last job processed on machine m ∈ M. The setup and removal times for machine 1 are given by a real 
non-negative square matrix S

m
iks m

ks0
m
ks 0

1 = || || of order r1
ijs 1 × r1, where r1 = n – n2 + 1. Hereafter, in contrast to usual matrix 
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notations when the subindex i (subindex j) of the element  of matrix S1
ijs 1 denotes the row index (column index, 

respectively), we define that the first subindex i in  denotes the job i ∈ J \ J1
ijs 2 and the second subindex j in  

denotes the job j ∈ J \ J

1
ijs

2. As usual, it is assumed that the columns (rows) in matrix S1 are ordered with respect to an 
increasing second subindex (first subindex) of their elements . In particular, each element  of the first row in 

matrix S

1
ijs 1

0is
1 defines the setup time for job i ∈ J \ J2 on machine 1, if i is the first job processed on machine 1. Each 

element  of the first column in matrix S1
0js 1 defines the removal time for job j ∈ J \ J2, if j is the last job processed 

on machine 1. The diagonal elements in matrix S1 are not used. Similarly, the setup and removal times for machine 
2 are given by a real non-negative square matrix S2 = || || of order r2

ijs 2 × r2, where r2 = n – n1 +  1. 
Since the minimization of the schedule length is a regular criterion, we can consider only the set of 

semiactive schedules, each of which is uniquely defined by a permutation of the jobs on machine 1 and by one on 
machine 2. So, the problem is to find a permutation π' = ( 1i′ , 2i′ ,…, 

1r
i′ ) of the jobs ki′  ∈ J12 U J1 U J21 on machine 

1 and a permutation π'' = ( 1i ′′ , 2i ′′ ,…, 
2ri ′′ ) of the jobs ki ′′ ∈ J12 U J2 U J21 on machine 2 which minimize the objective 

function  
Cmax(π', π'') = max{ (π', π'') + , (π', π'') + },  (1) 

1ri
C ′

1
01ri

s ′ 2ri
C ′′

2
02ri

s ′′

where Ci(π', π'') denotes the completion time of job i ∈ J in the semiactive schedule s(π', π'') defined by the pair of 
permutations (π', π''). Objective function (1) is equal to the schedule length including the removal time of a 
machine after processing the last jobs. This problem is denoted as .  maxjk|C|sJ 2
 
 
3. MODIFICATION OF SETUP, REMOVAL AND PROCESSING TIMES 
 
The value of objective function (1) depends on two essentially different parts of the numerical input data. The first 
part includes the processing times pij of the jobs i ∈ J on the machines j ∈ M, while the second part includes the 
setup and removal times given by the matrices S1 and S2. Generally speaking, the former part is easier to treat 
optimally than the latter part. Indeed, if all setup times and removal times are equal to zero, then problem 

 turns into the classical job-shop problem J2||Cmaxjk|C|sJ 2 max which is polynomially solvable by Jackson's pair of 
job permutations (Jackson, 1956). Otherwise, problem  is NP-hard even if each of the n jobs consists of 
only one operation on the same machine (e.g., if n = n

maxjk|C|sJ 2

1) since of the latter problem turns into the NP-hard traveling 
salesman problem.  

If there exist non-zero setup or removal times, then the schedule length Cmax(π', π'') depends on the choice of 
r1 + r2 setup and removal times (from the set of  possible setup and removal times given by the matrices S2

2
2

1 rr + 1 
and S2) which have to be involved into the schedule. In this section, we show how it is possible to transfer at least 
a part of the “hard” numerical input data to the “easy” numerical input data.  

Let job i belong to set J1 U J12. We calculate the non-negative value  
s1(→ i) = min{  | k ∈ {0} U J \ J1

kis 2, k ≠ i}. (2) 
Since each setup time before processing operation Oi1 includes a part equal to s1(→ i), we can add the value s1(→ 
i) to the processing time pi1 of operation Oi1 provided that the same value s1(→ i) will be subtracted from each 
setup time  with i ≠ k ∈ {0} U J \ J1

kis 2. Thus for each job i ∈ J1 U J12, we obtain the following modified processing 
time: 

1ip′  = s1(→ i) + pi1 (3) 
and the modified setup and removal times: 

)1(
kis  =  – s1

kis 1(→ i), (4) 

where k ∈ {0} U J \ J2, k ≠ i. Due to (2) and (4), we obtain inequality  ≥ 0 for each job i∈ J)1(
kis 1 U J12 and each job 

k ∈ {0} U J \ J2 with k ≠ i. Next, we prove that the original instance of problem  and the modified 

instance that differs from the original instance only by the setup and processing times of the jobs i ∈ J
maxjk|C|sJ 2

1 U J12 
modified due to equalities (3) and (4) are equivalent in the following sense. 
 
Definition 3.1 Two instances of a scheduling problem are equivalent if there exists a one-to-one correspondence 
between their semiactive schedules such that the corresponding two schedules have the same schedule length. 
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Indeed, the desired correspondence of the semiactive schedules is defined by the same pair (π', π'') of permutation 
π' = ( , , … ,1i′ 2i′ 1r

i′ ) of the jobs ki′  ∈ J12 U J1 U J21 on machine 1 and permutation π'' = ( , , … ,1i ′′ 2i ′′ 2ri ′′ ) of the jobs 

ki ′′ ∈ J12 U J2 U J21 on machine 2. It is easy to convince that for both instances of problem , machines 1 
and 2 are occupied (either by processing jobs or by setups or by removals) during the same time intervals since in 
each semiactive schedule constructed for the modified instance each non-negative value s

maxjk|C|sJ 2

1(→ i) is added exactly 
once to the processing time pi1 and subtracted exactly once from the setup time (or removal time) which is involved 
in the schedule. Moreover, the processing time pi1 of each job i ∈ J12 may be increased only “from the left-hand 
side” by the value s1(→ i) of the setup time. Hence, the processing of job i ∈ J12 on machine 2 may be started just 
from the same time as in the corresponding semiactive schedule constructed for the original instance of problem 

.  maxjk|C|sJ 2
Due to machine symmetry, one can also obtain an equivalent modified instance of problem ia 

modifying the setup and processing times of the jobs i ∈ J
maxjk|C|sJ 2  v

2  U J21 on machine 2: 
2ip′  = s2(→ i) + pi2, (5) 

)2(
kis  =  – s2

kis 2(→ i), (6) 

where k ∈ {0} U J \ J1, k ≠ i, and the above value s2(→ i) is defined as follows: 
s2(→ i) = min{  | k ∈ {0} U J \ J2

kis 1, k ≠ i}. (7) 
Similarly, one can increase the processing times of the jobs of the set J21 on machine 1 “from the right-hand 

side” due to the decrease of the corresponding setup and removal times as follows. Let job j belong to set J1 U J21. 
We calculate the non-negative value 

s1(j →) = min{  | k ∈ {0} U J \ J1
jks 2, k ≠ j}. (8) 

Since the removal time and each possible setup time before operation Oj1 includes a part equal to s1(j →), we can 
add the value s1(j →) to the processing time pj1 of operation Oj1 provided that the same value s1(j →) will be 
subtracted from the removal time  and from each setup time  with j ≠ k ∈ J \ J1

0js 1
jks 2. Thus for each job j ∈ J1 \ 

J21, we obtain the modified processing time  
1jp′  = pj1 + s1(j →), (9) 

the modified setup times 
)1(

jks  =  – s1
jks 1(j →), k ∈ J \ J2, k ≠ j,  (10) 

and the modified removal time 
)1(

0js  =  – s1
0js 1(j →). (11) 

Note that the processing time pj1 of job j ∈ J21 may be increased only “from the right-hand side” by the value 
s1(j →) defined by equality (8). Due to this and equalities (2) – (3), the non-negative common part of each setup 
time may be added to the modified processing time exactly once.  

Note that the processing times of jobs i = j ∈ J1 may be modified both “from the left-hand side” due to 
equalities (2) – (3) used for job i ∈ J1 and “from the right-hand side” due to equalities (8) – (9) used for job j ∈ J1.  

Due to machine symmetry, one can modify the setup, removal, and processing times of the jobs i ∈ J2 U J12 
on machine 2 using the following formulas (12) – (14):  

2ip′  = pi2 + s2(i →), (12) 
)2(

iks  =  – s2
iks 2(i →), k ∈ {0} U J \ J2, k  ≠ i, (13) 

)2(
0js  =  – s2

0js 2(j →), (14) 
where the value s2(i →) is defined as follows: 

s2(i →) = min{  | k ∈ {0} U J \ J2
iks 2, k ≠ i}. (15) 

In order to transfer further “hard” numerical input data to the “easy” numerical input data, we can introduce a 
dummy job 0 (a dummy job n + 1, respectively) before starting the first (after completing the last) job on each of the 
two machines. The processing times p0m and the modified setup times  are defined as follows: )(

0
m
js

p0m  = sm(0), (16) 
)(

0
m
js  =  – sm

js0
m(0), j ∈ J U J3-m (17) 

provided that 
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sm(0) = min{  | j ∈ J U Jm
js0 3-m }. (18) 

The processing times pn+1,m  and the modified removal times  are defined as follows: )(
0
m

js
pn+1,m  = sm(n+1),  (19) 

m
mm

j
m

j JJjnsss −∈+−= 30
)(

0 \),1( , (20) 
provided that 

}\|min{)1( 30 m
m
j

m JJjsns −∈=+ . (21) 
Using Definition 2.1, we can summarize the above arguments in the following claim. 
 

Theorem 3.1 An instance of problem  is equivalent to the modified instance that differs from the 
original one by the setup, removal, and processing times of the jobs from 

maxjk|C|sJ 2
}1,0{ +∪ nJ  modified due to formulas 

(2) – (21). 
 
 
4. SUFFICIENT CONDITIONS FOR OPTIMALITY OF JACKSON’S PERMUTATIONS 
 
In order to obtain the simplest modified instance using formulas (2) – (21), which is equivalent to the original 
instance of problem , it is necessary to decrease the elements of the matrices  and  as much as 
possible using formulas (2) – (21). Therefore, the simplest equivalent modified instance will be obtained due to 
Theorem 3.1 when no further modification of these matrices based on formulas (2) – (21) will be possible. Let 
matrix  = || || and matrix  = || || denote such minimal matrices (their elements have minimal values) 

obtained from  and , respectively, due to formulas (2) – (21). Note that the matrices  and  are 
uniquely defined, while there may exist several modified instances of the original instance of problem  

because of different orders that may be used for the modification of the rows and columns of the matrices  and 
. We use the following definition of an instance correspondence.  

maxjk|C|sJ 2 1S 2S

(1)S )1(
ijs (2)S )2(

ijs
1S 2S (1)S (2)S

maxjk|C|sJ 2
1S

2S
 

Definition 4.2 An instance of problem  corresponds to that of problem  (and vice versa), if 
their input data are the same except non-zero setup and removal times given for the instance of problem 

. Such an instance of problem  is called a relaxed one for the corresponding instance of 
problem .  

xma||CJ 2 maxjk|C|sJ 2

maxjk|C|sJ 2 xma||CJ 2

maxjk|C|sJ 2
 
We consider the following three semiactive schedules defined by the pair ),( ππ ′′′  of job permutations: 
s ),( ππ ′′′  denotes the semiactive schedule defined by the pair ),( ππ ′′′ for the original instance of problem 

;  maxjk|C|sJ 2
),( ππ ′′′′s  denotes that for the modified instance of problem  with the processing times maxjk|C|sJ 2 ijp′ , i ∈ J, 

j ∈ M, and the minimal matrices  and  of setup times;  (1)S (2)S
),( ππ ′′′os  denotes that for the relaxed instance of problem  corresponding to the modified instance.  xma||CJ 2

Machine  is called the main machine for schedule sMm∈ ),( ππ ′′′ , if the following equality holds: 
, where  if m = 1, and m

jjmax sCC 0),(),( +′′′=′′′ ππππ
1r

ij ′=
2r

ij ′′=  if m = 2. Let  denote the completion 
time of operation  in the schedule s

),( ππ ′′′m
jc

jmO ),( ππ ′′′ .  
 
Corollary 4.1 If the main machine for schedule ),( ππ ′′′′s  has no idle times and has only zero modified setup and 
removal times, the schedule s ),( ππ ′′′  is optimal for the original instance of problem . maxjk|C|sJ 2
 
Proof. It is clear that the length of schedule ),( ππ ′′′′s  constructed for the modified instance of problem 

 is no less than that of schedule  constructed for the corresponding relaxed instance. As 

shown by Jackson (1956), the schedule  is optimal for the latter instance. Since the main machine for 
schedule 

maxjk|C|sJ 2 ),( ππ ′′′os

),( ππ ′′′os
),( ππ ′′′′s  has zero modified setup times and a zero removal time, the length of schedule ),( ππ ′′′′s  is 

equal to that of schedule . Therefore, the schedule ),( ππ ′′′os ),( ππ ′′′′s  is optimal for the modified instance of 
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problem . Due to Theorem 3.1, the modified instance of problem  is equivalent to the 
original instance of problem  and the schedule s

maxjk|C|sJ 2 maxjk|C|sJ 2

maxjk|C|sJ 2 ),( ππ ′′′  defined by the permutations ),( ππ ′′′  is 
optimal for the original problem . ■ maxjk|C|sJ 2

The condition of Corollary 4.1 definitely holds, if the minimal matrices = || || and = || || have 

only zero elements. Thus, we obtain the following sufficient condition for the optimality of schedule s

(1)S )1(
ijs (2)S )2(

ijs

),( ππ ′′′  for 
the corresponding instance of problem :  maxjk|C|sJ 2

(j) Matrices  and  have only zero elements: , . |||| )1((1)
ijsS = |||| )1((2)

ijsS = )2()1( 0 ijij ss == ji ≠
If it is a priory clear which machine Mm∈  has to be the main machine in schedule s ),( ππ ′′′  without idle 

times on machine m, then the above sufficient condition is reduced to the following one:  
(jj) Matrix  has only zero elements. )(mS
Corollaries 4.1 and the above sufficient conditions (j) and (jj) provide special cases of problem  

which are solvable in polynomial time using Jackson's pair of job permutations.  
maxjk|C|sJ 2

 
 
5. WORST CASE ANALYSIS OF THE HEURISTIC ALGORITHM 
 
Using the results proven in section 3 and 4, we propose the following polynomial algorithm for finding an exact 
solution to problem  (if at least one of the sufficient conditions holds) or its heuristic solution 
(otherwise). 

maxjk|C|sJ 2

 
Algorithm HEUR 

Step 1: Construct a modified instance that is equivalent (due to Theorem 2.1) to the original instance of the 
given problem . maxjk|C|sJ 2

Step 2: Find Jackson's pair ),( ππ ′′′  of job permutations constructed for the problem  
corresponding to the modified instance of problem . 

xma||CJ 2

maxjk|C|sJ 2
Step 3: Test the sufficient conditions (given in Corollary 4.1, or conditions (j) or (jj)) for the optimality of 

schedule ),( ππ ′′′′s  for the modified instance of problem . maxjk|C|sJ 2
Step 4: If at least one of the above sufficient conditions holds, the schedule s ),( ππ ′′′  is optimal for the 

original instance of problem . Stop. Otherwise go to step 5.  maxjk|C|sJ 2
Step 5: The schedule s ),( ππ ′′′  provides a heuristic solution to the original instance of problem . 

Stop. 
maxjk|C|sJ 2

 
If algorithm HEUR terminates at step 4, it provides an exact solution to the original instance of problem 

. If algorithm HEUR terminates at step 5, the schedule  constructed for the corresponding 
instance of problem  (schedule 

maxjk|C|sJ 2 ),( ππ ′′′os

xma||CJ 2 ),( ππ ′′′′s  constructed for the corresponding modified instance of 
problem ) provides a polynomial lower bound LB (upper bound UB, respectively) for the minimal 
schedule length for problem . Both these bounds LB and UB are used in the branch-and-bound 
algorithm developed for problem   

maxjk|C|sJ 2

maxjk|C|sJ 2

maxjk|C|sJ 2 .
Next, we perform a worst case analysis of the solution s ),( ππ ′′′  obtained using algorithm HEUR. First, we 

consider the case when the following condition holds:  
JjiJips m

j
m

ij ∈≠∈≤ ,,)()( . (22) 

Let  denote the optimal value of the objective function (1) for the original problem , and *
maxC maxjk|C|sJ 2
),( ππ ′′′maxC  denote the value of the objective function (1) obtained for the schedule s ),( ππ ′′′  calculated using the 

algorithm HEUR. We use the following notations: 
nmin = min{min{|J \ J1|, |J \ J2|\}, min{|J12| + 1, |J21| + 1}}, 
nmax = max{max{|J \ J1|, |J \ J2|\}, max{|J12| + 1, |J21| + 1}}, 
smin = min{ }, JjiJiMms m

ij ∈≠∈∈ ,,|)(

smax = max{ }. JjiJiMms m
ij ∈≠∈∈ ,,|)(
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The above value nmin (nmax, respectively) defines the minimal (maximal) cardinality of the critical set of 
operations which defines the objective value ),( ππ ′′′maxC . 

If condition (22) holds, the obvious bound  is valid for any semiactive schedule 
generated from Jackson’s pair of permutations constructed for the corresponding relaxed instance of the original 
problem . Due to Theorem 3.1, we can strengthen this bound as follows:  

*2),( maxmax CC ≤′′′ ππ

maxjk|C|sJ 2

minminmaxmax snCC −≤′′′ *2),( ππ  
since at least nmin  setup and removal times are compensated by the value smin in the modified instance of problem 

 maxjk|C|sJ 2 .

Thus, if condition (22) holds, the bound  holds for the schedule sminminmaxmax snCC −≤′′′ *2),( ππ ),( ππ ′′′  
constructed by algorithm HEUR. Using similar arguments, we can prove the following bounds.  

If 
JjiJipsp m

j
m

ij
m

j ∈≠∈≤≤ ,,2 )()()( , (23) 
then  

*2/3),( maxmax CC ≤′′′ ππ . 
In the general case (when both conditions (22) and (23) do not hold), we obtain the following worst-case 

bound: 
)(),( *

minmaxmaxmaxmax ssnCC −+≤′′′ ππ . 
In the latter case, the heuristic rule based on the setup and removal times may be more effective than that 

based on the modified processing times considered in section 3. 
 
 
6. BRANCH-AND-BOUND ALGORITHM AND COMPUTATIONAL RESULTS 
 
We develop a branch-and-bound algorithm, called SETUP, for solving problem exactly. Algorithm 
SETUP is based on the lower bound LB and the upper bound UB obtained by algorithm HEUR, and the stopping 
rules for branching based on Theorem 3.1 and Corollary 4.1.  

maxjk|C|sJ 2

The branching procedure is based on fixing an operation at the first place from the left-hand side which is 
currently free either in the sequence π' on machine 1 or in the sequence π'' on machine 2. After fixing the position 
of an operation, the size of the subproblem of the original problem  is decreased by one.  maxjk|C|sJ 2

A solution-tree is constructed in order to enumerate feasible semiactive schedules implicitly. At each vertex 
vi of the solution tree T=(V,A), the polynomial algorithm HEUR is realized to calculate the lower bound LBBi for the 
objective function (1) equal to the length of the schedule  and the upper bound UB),( ππ ′′′os i for the objective 
function (1) equal to the length of the schedule ),( ππ ′′′′s . To this end, the corresponding subproblem has to be 
modified using the modification mentioned in Theorem 3.1. All calculations are realized for the modified problem 

 and the relaxed problem .  maxjk|C|sJ 2 xma||CJ 2
Algorithm HEUR allows us to cut branching from vertex vi if at least one of the sufficient conditions proven 

in section 4 or inequality 
LBi ≤ UB  (24) 

holds, where UB denotes the smallest upper bound on the objective function value (1) for the best schedule for the 
original instance of problem  currently constructed in the solution tree.  maxjk|C|sJ 2

Algorithm SETUP was coded in C++ and tested on a РС Pentium (2800 МНz) for solving randomly 
generated problems  with n ≤ 300. Table 1 shows the results of the computational experiments for the 
case when the numbers of jobs in the sets J

maxjk|C|sJ 2

12, J1, J2, and J21 are the same and equal to ¼ |J|. The number of jobs n = 
|J| is given in the first column of Table 1.  

Table 2 shows the results of the computational experiments for the case when the numbers of jobs in the 
subsets J12, J1, J2, and J21 of the set J are different and n = 100 (the cardinalities of these subsets are given in the 
first column of Table 2). The interval for the possible job processing times (setups times) are given in columns 2 
and 3 (columns 4 and 5, respectively).  

Each line in Tables 1 and 2 presents the results for a series of 10 randomly generated instances. For each 
series of instances, the number of instances unsolved within the given limit of CPU time or the limit of vertices |V| 
constructed in the solution tree T=(V,A) is given in column 6. In our experiments, we used at most 900 seconds of 
CPU time and at most 15,000,000 vertices |V| for solving each problem instance. The average and maximal 
running times used for solving one instance in seconds on a PC Pentium IV processor are given in columns 7 and 9. 
Column 8 gives the average number of vertices in the solution tree T=(V,A) constructed for solving one instance.   
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Table 1. Computational results for problems with n jobs and 60 ≤ n ≤ 300 
 

Number 
of jobs 

Processing 
times 

Setup times Number of 
unsolved 
problems 

Average 
CPU time 

Average 
number |V|  
of vertices  

Maximal 
CPU time 

1 2 3 4 5 6 7 8 9 
60 10 100 0 10 0 1.8 32898.8 5 
80 10 100 0 10 1 86.3 1725784 466 

100 10 100 0 10 0 20.7 448734.7 105 
120 10 100 0 10 0 28.7 450656.2 70 
140 10 100 0 10 1 45.3 402628.8 91 
160 10 100 0 10 0 97.6 1039838 244 
180 10 100 0 10 1 132.1 844546.7 153 
200 10 100 0 10 1 145.6 396204.6 172 
220 10 100 0 10 0 267.8 1065730 453 
240 10 100 0 10 0 388.9 929035.3 541 
260 10 100 0 10 3 533.3 894747.7 538 
280 10 100 0 10 1 798.9 1337519 872 
300 10 100 0 10 10    
60 1 100 0 10 0 18.2 593697.8 83 
80 1 100 0 10 2 262.9 4549846 742 

100 1 100 0 10 1 91.3 1759915 516 
120 1 100 0 10 2 20 239937.3 58 
140 1 100 0 10 0 153.8 2074839 656 
160 1 100 0 10 1 96.9 1317195 399 
180 1 100 0 10 2 219.9 1139278 813 
200 1 100 0 10 4 220.2 822969,5 569 
220 1 100 0 10 2 317.3 1291139.9 569 
240 1 100 0 10 2 413.3 1442192.8 604 
260 1 100 0 10 3 542 837036.6 668 
280 1 100 0 10 4 818.8 1644840.8 882 
300 1 100 0 10 10    
60 20 100 0 20 2 171.9 3517887 440 
80 20 100 0 20 1 84.1 1345522 417 

100 20 100 0 20 4 150.4 1429831 374 
120 20 100 0 20 3 186.7 1523421.5 483 
140 20 100 0 20 7 41 241643.3 56 
160 20 100 0 20 6 297 2993533.5 443 
180 20 100 0 20 5 270.2 1434625 623 
200 20 100 0 20 6 562 2848247 899 
220 20 100 0 20 3 589 2012981 812 
240 20 100 0 20 4 538.8 1437953 855 
260 20 100 0 20 7 642.7 1297065 800 
280 20 100 0 20 9 857 1375839 857 
60 30 100 0 30 2 147 2765492 538 
80 30 100 0 30 6 76.3 1102367.3 131 

100 30 100 0 30 6 393.8 3952795.8 577 
120 30 100 0 30 6 73.8 566798.3 194 
140 30 100 0 30 9 30 161116 30 
160 30 100 0 30 8 523,5 2847564 607 
60 40 100 0 40 2 54.9 1122884 263 
80 40 100 0 40 2 117.9 1653783.3 530 

100 40 100 0 40 4 271 2683008 798 
120 40 100 0 40 9 15 108613 15 
60 50 100 0 50 1 103.4 1956272 559 
80 50 100 0 50 2 262.8 3544800.5 891 

100 50 100 0 50 6 74.8 748976 138 
120 50 100 0 50 8 139 983004 221 
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The numbers in columns 7, 8, and 9 are calculated only for the portion of instances which were solved exactly 
within the given limits of CPU time and |V|.  
 

Table 2. Computational results for problems with 100 jobs 
 

Number of jobs: 
|J|=|J12|+|J1|+|J2|+|J21| 

Processing 
times 

Setup 
times 

Number of 
unsolved 
problems 

Average 
CPU 
time 

Average 
number of 

vertices 

Maximal 
CPU time 

1 2 3 4 5 6 7 8 9 
100 = 30+20+20+30 10 100 0 10 0 152.7 1719753 712 
100 = 35+15+15+35 10 100 0 10 1 180.3 2109264 782 
100 = 40+10+10+40 10 100 0 10 2 220.6 1931838 499 
100 = 45+5+5+45 10 100 0 10 1 22.7 203081.8 58 

100 = 20+30+30+20 10 100 0 10 1 45.7 799548.8 174 
100 = 15+35+35+15 10 100 0 10 0 14.8 240780.9 39 
100 = 10+40+40+10 10 100 0 10 2 112.25 2003443 509 
100 = 5+45+45+5 10 100 0 10 0 22.1 745053.2 78 

 
 
7. CONCLUDING REMARKS 
 
In most of the shop-scheduling models considered in the OR literature, it is assumed that an individual processing 
time incorporates all other time parameters (lags) attached to a job. In practice, however, such parameters often 
have to be considered separately from the actual job processing times. For example, if for an operation some 
pre-processing and post-processing are required, then it is necessary to use a scheduling model with setup and 
removal times separated. Moreover, setup times are often sequence-dependent. In sections 3 and 4, we derived 
sufficient conditions when Jackson's pair of job permutations may be used for solving the two-machine job-shop 
problem with sequence-dependent setup times and removal times.  

The main issue of this paper was to test the significance of the modifications based on Theorem 3.1 for 
problem . The results based on a modification of the setup and removal times may be used for 
calculating lower bounds for the minimal length of a schedule for problem  with m > 2 machines. To 

this end, one can use a decomposition of problem  into a series of problems .  

maxjk|C|sJ 2

maxjk|CJm|s

maxjk|CJm|s maxjk|C|sJ 2
In a forthcoming paper, we will present computational results for heuristic and exact algorithms based on 

Corollary 4.1 and some other sufficient conditions for the optimality of Jackson’s permutations for problem 
. As shown in (Braun, Leshchenko, and Sotskov, 2006), a stability analysis used for the job-shop with 

limited machine availability allows one to solve randomly generated problems with thousands of jobs exactly. We 
plan to test similar conditions for problem .  

maxjk|C|sJ 2

maxjk|C|sJ 2
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