
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228795896

Sequence-Dependent	Setup	Times	in	a	Two-
Machine	Job-Shop	with	Minimizing	the
Schedule	Length

Article	·	January	2008

CITATIONS

0

READS

68

5	authors,	including:

Yuri	N.	Sotskov

United	Institute	Of	Informatics	Problems

135	PUBLICATIONS			1,482	CITATIONS			

SEE	PROFILE

Tsung-Chyan	Lai

Harbin	Engineering	University

34	PUBLICATIONS			396	CITATIONS			

SEE	PROFILE

Frank	Werner

Otto-von-Guericke-Universität	Magdeburg

346	PUBLICATIONS			2,588	CITATIONS			

SEE	PROFILE

Available	from:	Frank	Werner

Retrieved	on:	22	November	2016

Би
бл
ио
те
ка

 БГ
УИ
Р

https://www.researchgate.net/publication/228795896_Sequence-Dependent_Setup_Times_in_a_Two-Machine_Job-Shop_with_Minimizing_the_Schedule_Length?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/228795896_Sequence-Dependent_Setup_Times_in_a_Two-Machine_Job-Shop_with_Minimizing_the_Schedule_Length?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Yuri_Sotskov?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Yuri_Sotskov?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/United_Institute_Of_Informatics_Problems?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Yuri_Sotskov?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Tsung-Chyan_Lai?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Tsung-Chyan_Lai?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Harbin_Engineering_University?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Tsung-Chyan_Lai?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Frank_Werner?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Frank_Werner?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Otto-von-Guericke-Universitaet_Magdeburg?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Frank_Werner?enrichId=rgreq-89828d4346e10ad93cd09c80fd5816f9-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5NTg5NjtBUzoxMDMxOTI2NzEwMzEzMDZAMTQwMTYxNDQ1ODkwNg%3D%3D&el=1_x_7

Sequence-Dependent Setup and Removal Times in a Two-Machine Job-Shop
with Minimizing the Schedule Length

Yuri N. Sotskov1, Natalja G. Egorova1, Tsung-Chyan Lai2, and Frank Werner3

1United Institute of Informatics Problems,
National Academy of Sciences of Belarus,

Surganova Str. 6, Minsk, Belarus,

2College of Management,
National Taiwan University,

50, Lane 144, Sec. 4, Keelung Rd., Taipei, Taiwan

3Faculty of Mathematics,
Otto-von-Guericke University,

Postfach 4120, D-39016, Magdeburg, Germany

Abstract: This article addresses the job-shop problem of minimizing the schedule length (makespan) for
processing n jobs on two machines with sequence-dependent setup and removal times. The processing of each job
includes at most two operations that have to be non-preemptive. Machine routes may differ from job to job. If all
setup and removal times are equal to zero, this problem is polynomially solvable via Jackson's pair of job
permutations, otherwise it is NP-hard even if each of n jobs consists of one operation on the same machine. We
present sufficient conditions when Jackson's pair of permutations may be used for solving the two-machine
job-shop problem with sequence-dependent setup and removal times. For the general case of this problem, the
results obtained provide polynomial lower and upper bounds for the objective function value which are used in a
branch-and-bound algorithm. Computational experiments show that an exact solution for this problem may be
obtained in a suitable time for n ≤ 280. We also develop a heuristic algorithm and present a worst case analysis for
it.

Keyword: Scheduling theory, setup, job-shop.

1. INTRODUCTION

The majority of scheduling research assumes the setup time as negligible or as a part of the job processing time.
This assumption adversely affects the solution quality for different applications which require an explicit treatment
of setup times. Practical situations in which machine setup times must be considered separately from the job
processing times arise in chemical, pharmaceutical, food, printing, metal processing and semiconductor industries.
During the last decade, these applications have motivated an increasing interest to include separate setups in the
scheduling environment. Allahverdi, Gupta, and Aldowaisan (1999) surveyed about 190 papers on scheduling
with separate setup times published over a period of 25 years until 1999, while Allahverdi et al. (2006) surveyed
more than 300 such papers published in the period 1999 – 2005. Most papers surveyed deal with single machine
scheduling, and a lot of papers address the flow-shop problem with setups. In particular, Khurana and Bagga
(1984) and Yoshida and Hitomi (1979) addressed the two-machine flow-shop problem of minimizing Cmax, the
schedule length (makespan), by considering setup times separately. In (Allahverdi, 2000; Bagga and Khurana,
1986), the two-machine separate setup time problem of minimizing mean job completion time ∑Ci has been
addressed. Allahverdi, Aldowaisan, and Sotskov (2003) addressed the two-machine flow-shop problem to
minimize Cmax or ∑Ci when setup times are relaxed to be distribution-free random variables with only lower and
upper bounds being given before scheduling.

As follows from the survey papers (Allahverdi, Gupta, and Aldowaisan, 1999; Allahverdi et al, 2006; Yang
and Liao, 1999) on scheduling problems with separate setups and from other surveys (Cheng, Gupta, and Wang,
2000; Potts and Kovalyov, 2000), shop-scheduling problems involving sequence-independent setup times have
been mainly treated in the OR literature so far, and there is only little research on a job-shop involving
sequence-dependent setup times. While the assumption that setup times are sequence-independent simplifies the
analysis of a shop-scheduling problem and reflects certain applications, it negatively affects the solution quality
for many other applications such as those arising in semiconductor manufacturing, see (Zant, 1997), which require
a treatment of sequence-dependent setup times.

 1

Би
бл
ио
те
ка

 БГ
УИ
Р

To our knowledge, all papers that addressed a job-shop involving sequence-dependent setup times are
included in the references listed at the end of this paper. In particular, using a simulation study Wilbrecht and
Prescott (1969) have shown that sequence-dependent setup times play a critical role in the performance of a
job-shop operating near the full capacity. Kim and Bobrowski (1994) used a simulation to study the effect of
sequence-dependent setup times and discovered that setup times must indeed be explicitly considered while
solving scheduling problems when they are sequence-dependent. Using also simulation, Low (1995) compared the
performance of a heuristic algorithm for sequence-dependent setup times under various criteria against
non-sequence-dependent setup times. O’Grady and Harrison (1988) proposed a search sequencing rule which
prioritizes jobs using a linear combination of the due dates, processing and sequence-dependent setup times. Choi
and Korkmaz (1997) provided a mixed integer programming to minimize the makespan in a flexible
manufacturing system, and they developed a polynomial heuristic that yields a better performance than that
proposed by Artigues, Belmokhtar, and Feillet (2004) and Zhou and Egbelu (1989). Gupta (1982) and Brucker and
Thiele (1996) provided branch-and-bound algorithms for a job-shop with sequence-dependent setup times. Ovacik
and Uzsoy (1994) developed an algorithm with myopic dispatching rules in a job-shop environment, a
semiconductor testing facility and a reentrant flow-shop. In (Zoghby, Barnes, and Hasenbein, 2005), feasibility
conditions were investigated in the context of metaheuristic searches (such as tabu search or simulated annealing),
and an algorithm was proposed for obtaining an initial feasible solution using the disjunctive graph model for a
job-shop. Cheung and Zhou (2001) developed a genetic algorithm for a job-shop problem with
sequence-dependent setup times. Choi and Choi (2002) and Ballicu, Giua, and Seatzu (2002) derived mixed
integer programming models for the same problem. A tabu search heuristic was proposed by Artigues and
Buscaylet (2003). Artigues, Lopez, and Ayache (2005) obtained upper bounds by a heuristic algorithm. Sun and
Yee (2003) addressed the job-shop with the additional characteristic of reentrant work flows. They utilized the
disjunctive graph model and proposed heuristics including a genetic algorithm. In (Artigues and Roubellat, 2002;
Sotskov, Tautenhahn, and Werner, 1999), polynomial insertion techniques were used for a job-shop problem with
separate setup times. Tahar et al. (2005) proposed an ant colony algorithm and showed by computational analysis
that it performs better than a genetic algorithm.

In this paper, we consider the two-machine job-shop problem of minimizing the length of a schedule
including sequence-dependent setup times and removal times. We prove sufficient conditions when Jackson's pair
of job permutations (Jackson, 1956) may be used for solving this problem polynomially. The results obtained
provide a polynomial heuristic algorithm and a lower bound for the schedule length which are used in a
branch-and-bound algorithm. Computational experiments show that an exact solution for the randomly generated
job-shop problem with sequence-dependent setup times and removal times may be obtained in a suitable
CPU-time for n ≤ 280. We also develop a worst case analysis for the heuristic algorithm. The paper is organized as
follows. Notations are given in section 2. Modifications of the setup, removal, and processing times are described
in section 3. In section 4, it is shown when these modifications allow us to obtain an optimal solution to the
problem with sequence-dependent setup times in polynomial time. A worst case analysis of the heuristic algorithm
based on these modifications is developed in section 5. A branch-and-bound algorithm and computational results
are described in section 6. Finally, the paper concludes with some generalizations of the obtained results in section
7.

2. PROBLEM SETTING AND NOTATIONS

Assume that a set of jobs J = {1, 2, …, n} has to be processed in a job-shop with two machines M = {1, 2} provided
that each machine m ∈ M processes any job j ∈ J at most once. The subset J12 of set J is the set of jobs with the
machine route (1, 2), the subset J21 ∈ J is the set of jobs with an opposite machine route (2, 1), and the subset Jm ∈
J is the set of jobs which have to be processed only on one machine m ∈ M. Thus, J = J12 U J1 U J2 U J21. Let the
cardinality of set Jk be denoted as nk = |Jk|, where k ∈ {1, 2, 12, 21}. Ojm denotes the operation of job j ∈ J on
machine m ∈ M. The processing time pjm of operation Ojm is known before scheduling. All n jobs are available for
processing from time t = 0. Operation preemptions are forbidden.

In practice, machines often have to be reconfigured before starting a job and cleaned after completing the last
job. These processes are called setup and removal, respectively. We assume that the given setup time of a machine
depends on the job just completed and the job to be started, i.e., the setup times are sequence-dependent. If job i ∈
J is directly followed by job k ∈ J on machine m ∈ M, then the setup time is equal to a non-negative real number

. The notation is used for the non-negative setup time needed on machine m ∈ M before starting job k, if k

is the first job processed on machine m. Similarly, denotes the non-negative removal time after job i provided
that i is the last job processed on machine m ∈ M. The setup and removal times for machine 1 are given by a real
non-negative square matrix S

m
iks m

ks0
m
ks 0

1 = || || of order r1
ijs 1 × r1, where r1 = n – n2 + 1. Hereafter, in contrast to usual matrix

 2

Би
бл
ио
те
ка

 БГ
УИ
Р

notations when the subindex i (subindex j) of the element of matrix S1
ijs 1 denotes the row index (column index,

respectively), we define that the first subindex i in denotes the job i ∈ J \ J1
ijs 2 and the second subindex j in

denotes the job j ∈ J \ J

1
ijs

2. As usual, it is assumed that the columns (rows) in matrix S1 are ordered with respect to an
increasing second subindex (first subindex) of their elements . In particular, each element of the first row in

matrix S

1
ijs 1

0is
1 defines the setup time for job i ∈ J \ J2 on machine 1, if i is the first job processed on machine 1. Each

element of the first column in matrix S1
0js 1 defines the removal time for job j ∈ J \ J2, if j is the last job processed

on machine 1. The diagonal elements in matrix S1 are not used. Similarly, the setup and removal times for machine
2 are given by a real non-negative square matrix S2 = || || of order r2

ijs 2 × r2, where r2 = n – n1 + 1.
Since the minimization of the schedule length is a regular criterion, we can consider only the set of

semiactive schedules, each of which is uniquely defined by a permutation of the jobs on machine 1 and by one on
machine 2. So, the problem is to find a permutation π' = (1i′ , 2i′ ,…,

1r
i′) of the jobs ki′ ∈ J12 U J1 U J21 on machine

1 and a permutation π'' = (1i ′′ , 2i ′′ ,…,
2ri ′′) of the jobs ki ′′ ∈ J12 U J2 U J21 on machine 2 which minimize the objective

function
Cmax(π', π'') = max{ (π', π'') + , (π', π'') + }, (1)

1ri
C ′

1
01ri

s ′ 2ri
C ′′

2
02ri

s ′′

where Ci(π', π'') denotes the completion time of job i ∈ J in the semiactive schedule s(π', π'') defined by the pair of
permutations (π', π''). Objective function (1) is equal to the schedule length including the removal time of a
machine after processing the last jobs. This problem is denoted as . maxjk|C|sJ 2

3. MODIFICATION OF SETUP, REMOVAL AND PROCESSING TIMES

The value of objective function (1) depends on two essentially different parts of the numerical input data. The first
part includes the processing times pij of the jobs i ∈ J on the machines j ∈ M, while the second part includes the
setup and removal times given by the matrices S1 and S2. Generally speaking, the former part is easier to treat
optimally than the latter part. Indeed, if all setup times and removal times are equal to zero, then problem

 turns into the classical job-shop problem J2||Cmaxjk|C|sJ 2 max which is polynomially solvable by Jackson's pair of
job permutations (Jackson, 1956). Otherwise, problem is NP-hard even if each of the n jobs consists of
only one operation on the same machine (e.g., if n = n

maxjk|C|sJ 2

1) since of the latter problem turns into the NP-hard traveling
salesman problem.

If there exist non-zero setup or removal times, then the schedule length Cmax(π', π'') depends on the choice of
r1 + r2 setup and removal times (from the set of possible setup and removal times given by the matrices S2

2
2

1 rr + 1
and S2) which have to be involved into the schedule. In this section, we show how it is possible to transfer at least
a part of the “hard” numerical input data to the “easy” numerical input data.

Let job i belong to set J1 U J12. We calculate the non-negative value
s1(→ i) = min{ | k ∈ {0} U J \ J1

kis 2, k ≠ i}. (2)
Since each setup time before processing operation Oi1 includes a part equal to s1(→ i), we can add the value s1(→
i) to the processing time pi1 of operation Oi1 provided that the same value s1(→ i) will be subtracted from each
setup time with i ≠ k ∈ {0} U J \ J1

kis 2. Thus for each job i ∈ J1 U J12, we obtain the following modified processing
time:

1ip′ = s1(→ i) + pi1 (3)
and the modified setup and removal times:

)1(
kis = – s1

kis 1(→ i), (4)

where k ∈ {0} U J \ J2, k ≠ i. Due to (2) and (4), we obtain inequality ≥ 0 for each job i∈ J)1(
kis 1 U J12 and each job

k ∈ {0} U J \ J2 with k ≠ i. Next, we prove that the original instance of problem and the modified

instance that differs from the original instance only by the setup and processing times of the jobs i ∈ J
maxjk|C|sJ 2

1 U J12
modified due to equalities (3) and (4) are equivalent in the following sense.

Definition 3.1 Two instances of a scheduling problem are equivalent if there exists a one-to-one correspondence
between their semiactive schedules such that the corresponding two schedules have the same schedule length.

 3

Би
бл
ио
те
ка

 БГ
УИ
Р

Indeed, the desired correspondence of the semiactive schedules is defined by the same pair (π', π'') of permutation
π' = (, , … ,1i′ 2i′ 1r

i′) of the jobs ki′ ∈ J12 U J1 U J21 on machine 1 and permutation π'' = (, , … ,1i ′′ 2i ′′ 2ri ′′) of the jobs

ki ′′ ∈ J12 U J2 U J21 on machine 2. It is easy to convince that for both instances of problem , machines 1
and 2 are occupied (either by processing jobs or by setups or by removals) during the same time intervals since in
each semiactive schedule constructed for the modified instance each non-negative value s

maxjk|C|sJ 2

1(→ i) is added exactly
once to the processing time pi1 and subtracted exactly once from the setup time (or removal time) which is involved
in the schedule. Moreover, the processing time pi1 of each job i ∈ J12 may be increased only “from the left-hand
side” by the value s1(→ i) of the setup time. Hence, the processing of job i ∈ J12 on machine 2 may be started just
from the same time as in the corresponding semiactive schedule constructed for the original instance of problem

. maxjk|C|sJ 2
Due to machine symmetry, one can also obtain an equivalent modified instance of problem ia

modifying the setup and processing times of the jobs i ∈ J
maxjk|C|sJ 2 v

2 U J21 on machine 2:
2ip′ = s2(→ i) + pi2, (5)

)2(
kis = – s2

kis 2(→ i), (6)

where k ∈ {0} U J \ J1, k ≠ i, and the above value s2(→ i) is defined as follows:
s2(→ i) = min{ | k ∈ {0} U J \ J2

kis 1, k ≠ i}. (7)
Similarly, one can increase the processing times of the jobs of the set J21 on machine 1 “from the right-hand

side” due to the decrease of the corresponding setup and removal times as follows. Let job j belong to set J1 U J21.
We calculate the non-negative value

s1(j →) = min{ | k ∈ {0} U J \ J1
jks 2, k ≠ j}. (8)

Since the removal time and each possible setup time before operation Oj1 includes a part equal to s1(j →), we can
add the value s1(j →) to the processing time pj1 of operation Oj1 provided that the same value s1(j →) will be
subtracted from the removal time and from each setup time with j ≠ k ∈ J \ J1

0js 1
jks 2. Thus for each job j ∈ J1 \

J21, we obtain the modified processing time
1jp′ = pj1 + s1(j →), (9)

the modified setup times
)1(

jks = – s1
jks 1(j →), k ∈ J \ J2, k ≠ j, (10)

and the modified removal time
)1(

0js = – s1
0js 1(j →). (11)

Note that the processing time pj1 of job j ∈ J21 may be increased only “from the right-hand side” by the value
s1(j →) defined by equality (8). Due to this and equalities (2) – (3), the non-negative common part of each setup
time may be added to the modified processing time exactly once.

Note that the processing times of jobs i = j ∈ J1 may be modified both “from the left-hand side” due to
equalities (2) – (3) used for job i ∈ J1 and “from the right-hand side” due to equalities (8) – (9) used for job j ∈ J1.

Due to machine symmetry, one can modify the setup, removal, and processing times of the jobs i ∈ J2 U J12
on machine 2 using the following formulas (12) – (14):

2ip′ = pi2 + s2(i →), (12)
)2(

iks = – s2
iks 2(i →), k ∈ {0} U J \ J2, k ≠ i, (13)

)2(
0js = – s2

0js 2(j →), (14)
where the value s2(i →) is defined as follows:

s2(i →) = min{ | k ∈ {0} U J \ J2
iks 2, k ≠ i}. (15)

In order to transfer further “hard” numerical input data to the “easy” numerical input data, we can introduce a
dummy job 0 (a dummy job n + 1, respectively) before starting the first (after completing the last) job on each of the
two machines. The processing times p0m and the modified setup times are defined as follows:)(

0
m
js

p0m = sm(0), (16)
)(

0
m
js = – sm

js0
m(0), j ∈ J U J3-m (17)

provided that

 4

Би
бл
ио
те
ка

 БГ
УИ
Р

sm(0) = min{ | j ∈ J U Jm
js0 3-m }. (18)

The processing times pn+1,m and the modified removal times are defined as follows:)(
0
m

js
pn+1,m = sm(n+1), (19)

m
mm

j
m

j JJjnsss −∈+−= 30
)(

0 \),1(, (20)
provided that

}\|min{)1(30 m
m
j

m JJjsns −∈=+ . (21)
Using Definition 2.1, we can summarize the above arguments in the following claim.

Theorem 3.1 An instance of problem is equivalent to the modified instance that differs from the
original one by the setup, removal, and processing times of the jobs from

maxjk|C|sJ 2
}1,0{ +∪ nJ modified due to formulas

(2) – (21).

4. SUFFICIENT CONDITIONS FOR OPTIMALITY OF JACKSON’S PERMUTATIONS

In order to obtain the simplest modified instance using formulas (2) – (21), which is equivalent to the original
instance of problem , it is necessary to decrease the elements of the matrices and as much as
possible using formulas (2) – (21). Therefore, the simplest equivalent modified instance will be obtained due to
Theorem 3.1 when no further modification of these matrices based on formulas (2) – (21) will be possible. Let
matrix = || || and matrix = || || denote such minimal matrices (their elements have minimal values)

obtained from and , respectively, due to formulas (2) – (21). Note that the matrices and are
uniquely defined, while there may exist several modified instances of the original instance of problem

because of different orders that may be used for the modification of the rows and columns of the matrices and
. We use the following definition of an instance correspondence.

maxjk|C|sJ 2 1S 2S

(1)S)1(
ijs (2)S)2(

ijs
1S 2S (1)S (2)S

maxjk|C|sJ 2
1S

2S

Definition 4.2 An instance of problem corresponds to that of problem (and vice versa), if
their input data are the same except non-zero setup and removal times given for the instance of problem

. Such an instance of problem is called a relaxed one for the corresponding instance of
problem .

xma||CJ 2 maxjk|C|sJ 2

maxjk|C|sJ 2 xma||CJ 2

maxjk|C|sJ 2

We consider the following three semiactive schedules defined by the pair),(ππ ′′′ of job permutations:
s),(ππ ′′′ denotes the semiactive schedule defined by the pair),(ππ ′′′ for the original instance of problem

; maxjk|C|sJ 2
),(ππ ′′′′s denotes that for the modified instance of problem with the processing times maxjk|C|sJ 2 ijp′ , i ∈ J,

j ∈ M, and the minimal matrices and of setup times; (1)S (2)S
),(ππ ′′′os denotes that for the relaxed instance of problem corresponding to the modified instance. xma||CJ 2

Machine is called the main machine for schedule sMm∈),(ππ ′′′ , if the following equality holds:
, where if m = 1, and m

jjmax sCC 0),(),(+′′′=′′′ ππππ
1r

ij ′=
2r

ij ′′= if m = 2. Let denote the completion
time of operation in the schedule s

),(ππ ′′′m
jc

jmO),(ππ ′′′ .

Corollary 4.1 If the main machine for schedule),(ππ ′′′′s has no idle times and has only zero modified setup and
removal times, the schedule s),(ππ ′′′ is optimal for the original instance of problem . maxjk|C|sJ 2

Proof. It is clear that the length of schedule),(ππ ′′′′s constructed for the modified instance of problem

 is no less than that of schedule constructed for the corresponding relaxed instance. As

shown by Jackson (1956), the schedule is optimal for the latter instance. Since the main machine for
schedule

maxjk|C|sJ 2),(ππ ′′′os

),(ππ ′′′os
),(ππ ′′′′s has zero modified setup times and a zero removal time, the length of schedule),(ππ ′′′′s is

equal to that of schedule . Therefore, the schedule),(ππ ′′′os),(ππ ′′′′s is optimal for the modified instance of

 5

Би
бл
ио
те
ка

 БГ
УИ
Р

problem . Due to Theorem 3.1, the modified instance of problem is equivalent to the
original instance of problem and the schedule s

maxjk|C|sJ 2 maxjk|C|sJ 2

maxjk|C|sJ 2),(ππ ′′′ defined by the permutations),(ππ ′′′ is
optimal for the original problem . ■ maxjk|C|sJ 2

The condition of Corollary 4.1 definitely holds, if the minimal matrices = || || and = || || have

only zero elements. Thus, we obtain the following sufficient condition for the optimality of schedule s

(1)S)1(
ijs (2)S)2(

ijs

),(ππ ′′′ for
the corresponding instance of problem : maxjk|C|sJ 2

(j) Matrices and have only zero elements: , . ||||)1((1)
ijsS = ||||)1((2)

ijsS =)2()1(0 ijij ss == ji ≠
If it is a priory clear which machine Mm∈ has to be the main machine in schedule s),(ππ ′′′ without idle

times on machine m, then the above sufficient condition is reduced to the following one:
(jj) Matrix has only zero elements.)(mS
Corollaries 4.1 and the above sufficient conditions (j) and (jj) provide special cases of problem

which are solvable in polynomial time using Jackson's pair of job permutations.
maxjk|C|sJ 2

5. WORST CASE ANALYSIS OF THE HEURISTIC ALGORITHM

Using the results proven in section 3 and 4, we propose the following polynomial algorithm for finding an exact
solution to problem (if at least one of the sufficient conditions holds) or its heuristic solution
(otherwise).

maxjk|C|sJ 2

Algorithm HEUR

Step 1: Construct a modified instance that is equivalent (due to Theorem 2.1) to the original instance of the
given problem . maxjk|C|sJ 2

Step 2: Find Jackson's pair),(ππ ′′′ of job permutations constructed for the problem
corresponding to the modified instance of problem .

xma||CJ 2

maxjk|C|sJ 2
Step 3: Test the sufficient conditions (given in Corollary 4.1, or conditions (j) or (jj)) for the optimality of

schedule),(ππ ′′′′s for the modified instance of problem . maxjk|C|sJ 2
Step 4: If at least one of the above sufficient conditions holds, the schedule s),(ππ ′′′ is optimal for the

original instance of problem . Stop. Otherwise go to step 5. maxjk|C|sJ 2
Step 5: The schedule s),(ππ ′′′ provides a heuristic solution to the original instance of problem .

Stop.
maxjk|C|sJ 2

If algorithm HEUR terminates at step 4, it provides an exact solution to the original instance of problem

. If algorithm HEUR terminates at step 5, the schedule constructed for the corresponding
instance of problem (schedule

maxjk|C|sJ 2),(ππ ′′′os

xma||CJ 2),(ππ ′′′′s constructed for the corresponding modified instance of
problem) provides a polynomial lower bound LB (upper bound UB, respectively) for the minimal
schedule length for problem . Both these bounds LB and UB are used in the branch-and-bound
algorithm developed for problem

maxjk|C|sJ 2

maxjk|C|sJ 2

maxjk|C|sJ 2 .
Next, we perform a worst case analysis of the solution s),(ππ ′′′ obtained using algorithm HEUR. First, we

consider the case when the following condition holds:
JjiJips m

j
m

ij ∈≠∈≤ ,,)()(. (22)

Let denote the optimal value of the objective function (1) for the original problem , and *
maxC maxjk|C|sJ 2
),(ππ ′′′maxC denote the value of the objective function (1) obtained for the schedule s),(ππ ′′′ calculated using the

algorithm HEUR. We use the following notations:
nmin = min{min{|J \ J1|, |J \ J2|\}, min{|J12| + 1, |J21| + 1}},
nmax = max{max{|J \ J1|, |J \ J2|\}, max{|J12| + 1, |J21| + 1}},
smin = min{ }, JjiJiMms m

ij ∈≠∈∈ ,,|)(

smax = max{ }. JjiJiMms m
ij ∈≠∈∈ ,,|)(

 6

Би
бл
ио
те
ка

 БГ
УИ
Р

The above value nmin (nmax, respectively) defines the minimal (maximal) cardinality of the critical set of
operations which defines the objective value),(ππ ′′′maxC .

If condition (22) holds, the obvious bound is valid for any semiactive schedule
generated from Jackson’s pair of permutations constructed for the corresponding relaxed instance of the original
problem . Due to Theorem 3.1, we can strengthen this bound as follows:

*2),(maxmax CC ≤′′′ ππ

maxjk|C|sJ 2

minminmaxmax snCC −≤′′′ *2),(ππ
since at least nmin setup and removal times are compensated by the value smin in the modified instance of problem

 maxjk|C|sJ 2 .

Thus, if condition (22) holds, the bound holds for the schedule sminminmaxmax snCC −≤′′′ *2),(ππ),(ππ ′′′
constructed by algorithm HEUR. Using similar arguments, we can prove the following bounds.

If
JjiJipsp m

j
m

ij
m

j ∈≠∈≤≤ ,,2)()()(, (23)
then

*2/3),(maxmax CC ≤′′′ ππ .
In the general case (when both conditions (22) and (23) do not hold), we obtain the following worst-case

bound:
)(),(*

minmaxmaxmaxmax ssnCC −+≤′′′ ππ .
In the latter case, the heuristic rule based on the setup and removal times may be more effective than that

based on the modified processing times considered in section 3.

6. BRANCH-AND-BOUND ALGORITHM AND COMPUTATIONAL RESULTS

We develop a branch-and-bound algorithm, called SETUP, for solving problem exactly. Algorithm
SETUP is based on the lower bound LB and the upper bound UB obtained by algorithm HEUR, and the stopping
rules for branching based on Theorem 3.1 and Corollary 4.1.

maxjk|C|sJ 2

The branching procedure is based on fixing an operation at the first place from the left-hand side which is
currently free either in the sequence π' on machine 1 or in the sequence π'' on machine 2. After fixing the position
of an operation, the size of the subproblem of the original problem is decreased by one. maxjk|C|sJ 2

A solution-tree is constructed in order to enumerate feasible semiactive schedules implicitly. At each vertex
vi of the solution tree T=(V,A), the polynomial algorithm HEUR is realized to calculate the lower bound LBBi for the
objective function (1) equal to the length of the schedule and the upper bound UB),(ππ ′′′os i for the objective
function (1) equal to the length of the schedule),(ππ ′′′′s . To this end, the corresponding subproblem has to be
modified using the modification mentioned in Theorem 3.1. All calculations are realized for the modified problem

 and the relaxed problem . maxjk|C|sJ 2 xma||CJ 2
Algorithm HEUR allows us to cut branching from vertex vi if at least one of the sufficient conditions proven

in section 4 or inequality
LBi ≤ UB (24)

holds, where UB denotes the smallest upper bound on the objective function value (1) for the best schedule for the
original instance of problem currently constructed in the solution tree. maxjk|C|sJ 2

Algorithm SETUP was coded in C++ and tested on a РС Pentium (2800 МНz) for solving randomly
generated problems with n ≤ 300. Table 1 shows the results of the computational experiments for the
case when the numbers of jobs in the sets J

maxjk|C|sJ 2

12, J1, J2, and J21 are the same and equal to ¼ |J|. The number of jobs n =
|J| is given in the first column of Table 1.

Table 2 shows the results of the computational experiments for the case when the numbers of jobs in the
subsets J12, J1, J2, and J21 of the set J are different and n = 100 (the cardinalities of these subsets are given in the
first column of Table 2). The interval for the possible job processing times (setups times) are given in columns 2
and 3 (columns 4 and 5, respectively).

Each line in Tables 1 and 2 presents the results for a series of 10 randomly generated instances. For each
series of instances, the number of instances unsolved within the given limit of CPU time or the limit of vertices |V|
constructed in the solution tree T=(V,A) is given in column 6. In our experiments, we used at most 900 seconds of
CPU time and at most 15,000,000 vertices |V| for solving each problem instance. The average and maximal
running times used for solving one instance in seconds on a PC Pentium IV processor are given in columns 7 and 9.
Column 8 gives the average number of vertices in the solution tree T=(V,A) constructed for solving one instance.

 7

Би
бл
ио
те
ка

 БГ
УИ
Р

Table 1. Computational results for problems with n jobs and 60 ≤ n ≤ 300

Number
of jobs

Processing
times

Setup times Number of
unsolved
problems

Average
CPU time

Average
number |V|
of vertices

Maximal
CPU time

1 2 3 4 5 6 7 8 9
60 10 100 0 10 0 1.8 32898.8 5
80 10 100 0 10 1 86.3 1725784 466

100 10 100 0 10 0 20.7 448734.7 105
120 10 100 0 10 0 28.7 450656.2 70
140 10 100 0 10 1 45.3 402628.8 91
160 10 100 0 10 0 97.6 1039838 244
180 10 100 0 10 1 132.1 844546.7 153
200 10 100 0 10 1 145.6 396204.6 172
220 10 100 0 10 0 267.8 1065730 453
240 10 100 0 10 0 388.9 929035.3 541
260 10 100 0 10 3 533.3 894747.7 538
280 10 100 0 10 1 798.9 1337519 872
300 10 100 0 10 10
60 1 100 0 10 0 18.2 593697.8 83
80 1 100 0 10 2 262.9 4549846 742

100 1 100 0 10 1 91.3 1759915 516
120 1 100 0 10 2 20 239937.3 58
140 1 100 0 10 0 153.8 2074839 656
160 1 100 0 10 1 96.9 1317195 399
180 1 100 0 10 2 219.9 1139278 813
200 1 100 0 10 4 220.2 822969,5 569
220 1 100 0 10 2 317.3 1291139.9 569
240 1 100 0 10 2 413.3 1442192.8 604
260 1 100 0 10 3 542 837036.6 668
280 1 100 0 10 4 818.8 1644840.8 882
300 1 100 0 10 10
60 20 100 0 20 2 171.9 3517887 440
80 20 100 0 20 1 84.1 1345522 417

100 20 100 0 20 4 150.4 1429831 374
120 20 100 0 20 3 186.7 1523421.5 483
140 20 100 0 20 7 41 241643.3 56
160 20 100 0 20 6 297 2993533.5 443
180 20 100 0 20 5 270.2 1434625 623
200 20 100 0 20 6 562 2848247 899
220 20 100 0 20 3 589 2012981 812
240 20 100 0 20 4 538.8 1437953 855
260 20 100 0 20 7 642.7 1297065 800
280 20 100 0 20 9 857 1375839 857
60 30 100 0 30 2 147 2765492 538
80 30 100 0 30 6 76.3 1102367.3 131

100 30 100 0 30 6 393.8 3952795.8 577
120 30 100 0 30 6 73.8 566798.3 194
140 30 100 0 30 9 30 161116 30
160 30 100 0 30 8 523,5 2847564 607
60 40 100 0 40 2 54.9 1122884 263
80 40 100 0 40 2 117.9 1653783.3 530

100 40 100 0 40 4 271 2683008 798
120 40 100 0 40 9 15 108613 15
60 50 100 0 50 1 103.4 1956272 559
80 50 100 0 50 2 262.8 3544800.5 891

100 50 100 0 50 6 74.8 748976 138
120 50 100 0 50 8 139 983004 221

 8

Би
бл
ио
те
ка

 БГ
УИ
Р

The numbers in columns 7, 8, and 9 are calculated only for the portion of instances which were solved exactly
within the given limits of CPU time and |V|.

Table 2. Computational results for problems with 100 jobs

Number of jobs:
|J|=|J12|+|J1|+|J2|+|J21|

Processing
times

Setup
times

Number of
unsolved
problems

Average
CPU
time

Average
number of

vertices

Maximal
CPU time

1 2 3 4 5 6 7 8 9
100 = 30+20+20+30 10 100 0 10 0 152.7 1719753 712
100 = 35+15+15+35 10 100 0 10 1 180.3 2109264 782
100 = 40+10+10+40 10 100 0 10 2 220.6 1931838 499
100 = 45+5+5+45 10 100 0 10 1 22.7 203081.8 58

100 = 20+30+30+20 10 100 0 10 1 45.7 799548.8 174
100 = 15+35+35+15 10 100 0 10 0 14.8 240780.9 39
100 = 10+40+40+10 10 100 0 10 2 112.25 2003443 509
100 = 5+45+45+5 10 100 0 10 0 22.1 745053.2 78

7. CONCLUDING REMARKS

In most of the shop-scheduling models considered in the OR literature, it is assumed that an individual processing
time incorporates all other time parameters (lags) attached to a job. In practice, however, such parameters often
have to be considered separately from the actual job processing times. For example, if for an operation some
pre-processing and post-processing are required, then it is necessary to use a scheduling model with setup and
removal times separated. Moreover, setup times are often sequence-dependent. In sections 3 and 4, we derived
sufficient conditions when Jackson's pair of job permutations may be used for solving the two-machine job-shop
problem with sequence-dependent setup times and removal times.

The main issue of this paper was to test the significance of the modifications based on Theorem 3.1 for
problem . The results based on a modification of the setup and removal times may be used for
calculating lower bounds for the minimal length of a schedule for problem with m > 2 machines. To

this end, one can use a decomposition of problem into a series of problems .

maxjk|C|sJ 2

maxjk|CJm|s

maxjk|CJm|s maxjk|C|sJ 2
In a forthcoming paper, we will present computational results for heuristic and exact algorithms based on

Corollary 4.1 and some other sufficient conditions for the optimality of Jackson’s permutations for problem
. As shown in (Braun, Leshchenko, and Sotskov, 2006), a stability analysis used for the job-shop with

limited machine availability allows one to solve randomly generated problems with thousands of jobs exactly. We
plan to test similar conditions for problem .

maxjk|C|sJ 2

maxjk|C|sJ 2
This research was partially supported by the National Science Council of Taiwan, by INTAS (project

03-51-5501), and by ISTC (project B-986).

REFERENCES

1. Allahverdi, A. (2000). Minimizing mean flowtime in a two-machine flowshop with sequence independent

setup times. Computers & Operations Research, 27: 111-127.
2. Allahverdi, A., Aldowaisan, T., and Sotskov, Yu. N. (2003). Two-machine flowshop scheduling problem to

minimize makespan or total completion time with random and bounded setup times. International Journal of
Mathematics and Mathematical Sciences, 39 (11): 2475-2486.

3. Allahverdi, A., Gupta, J.N.D, and Aldowaisan, T. (1999). A review of scheduling research involving setup
considerations. OMEGA The International Journal of Management Sciences, 27: 219-239.

4. Allahverdi, A., Ng, C.T, Cheng, T.C.E., and Kovalyov, M.Y. (2006). A survey of scheduling problems with
setup times or costs. European Journal of Operational Research (to appear).

5. Artigues, C., Belmokhtar, S., and Feillet, D. (2004). A new exact solution algorithm for the job shop problem
with sequence-dependent setup times. In J.C. Regin and M. Rueher, editors, 1st International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.
Lecture Note in Computer Science. 3011, Springer: 37-49.

 9

Би
бл
ио
те
ка

 БГ
УИ
Р

6. Artigues, C., and Buscaylet, F. (2003). A fast tabu search method for the job-shop problem with
sequence-dependent setup times. Proceedings of Metaheuristic International Conference. Kyoto, Japan,
August 23-28: 1-6.

7. Artigues, C., Lopez, P., and Ayache, P. (2005). Scheduling generation schemes for the job-shop problem with
sequence-dependent setup times: dominance properties and computational analysis. Annals of Operations
Research (to appear).

8. Artigues, C., and Roubellat, F. (2002). An efficient algorithm for operation insertion in a multi-resource
job-shop scheduling with sequence-dependent setup times. Production Planning and Control, 13: 175-186.

9. Bagga, P.C., and Khurana, K. (1986). Two-machine flowshop with separated sequence-independent setup
times: Mean completion time criterion. Indian Journal of Management and Systems, 2: 47-57.

10. Ballicu, M., Giua, A., and Seatzu, C. (2002). Job-shop scheduling models with set-up times. Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, 5: 95-100.

11. Braun, O., Leshchenko, N.M., and Sotskov, Yu.N. (2006). Optimality of Jackson's permutations with respect
to limited machine availability. International Transactions in Operational Research, 13: 59-74.

12. Brucker, P., and Thiele, O. (1996). A branch and bound algorithm for the general job shop with sequence
dependent setup times. OR Spektrum, 18: 145-161.

13. Cheng, T.C.E., Gupta, J.N.D, and Wang, G. (2000). A review of flowshop scheduling research with setup
times. Production and Operations Management, 9: 262-282.

14. Cheung, W., and Zhou, H. (2001). Using genetic algorithms and heuristics for job shop scheduling with
sequence-dependent setup times. Annals of Operations Research, 107: 65-81.

15. Choi, I.C., and Choi, D.S. (2002). A local search algorithm for jobshop scheduling problems with alternative
operations and sequence-dependent setups. Computers & Industrial Engineering, 42: 43-58.

16. Choi, I.C., and Korkmaz, O. (1997). Job shop scheduling with separable sequence-dependent setups. Annals
of Operations Research, 70: 155-170.

17. Gupta, S.K. (1982). n jobs and m machines job-shop problem with sequence-dependent setup times.
International Journal of Production Research, 20: 643-656.

18. Jackson, J.R. (1956). An extension of Johnson's results on job lot scheduling. Naval Research Logistics
Quarterly, 3: 201-203.

19. Kim, S.C., and Bobrowski, P.M. (1994). Impact of sequence-dependent setup times on job shop scheduling
performance. International Journal of Production Research, 32: 1503-1520.

20. Khurana, K., and Bagga, P.C. (1984). Minimizing the makespan in a two-machine flowshop with time lags
and setup conditions. Zeitschrift Operations Research, 28: 163-174.

21. Low, C.Y. (1995). Job shop scheduling heuristics for sequence dependent setups. Computers & Industrial
Engineering, 29: 279-283.

22. O’Grady, P.J., and Harrison, C. (1988). Search based job scheduling and sequencing with setup times.
OMEGA The International Journal of Management Sciences, 16: 547-552.

23. Ovacik, I.M., and Uzsoy, R. (1994). Exploiting shop floor status information to schedule complex job shops.
Journal of Manufacturing Systems, 13: 73-84.

24. Potts, C.N., and Kovalyov, M.Y. (2000). Scheduling with batching: A review. European Journal of
Operational Research, 120: 228-349.

25. Sotskov, Yu.N., Tautenhahn, T, and Werner, F. (1999). On the application of insertion techniques for job shop
problems with setup times. RAIRO Recherche Operationnelle, 33 (2): 209-245.

26. Sun, J.U., and Yee, S.R. (2003). Job shop scheduling with sequence dependent setup times to minimize
makespan. International Journal of Industrial Engineering: Theory Applications and Practice, 10: 455-461.

27. Tahar, D.N., Yalaoiui, F., Amodeo, L., and Chu, C. (2005). An ant colony system minimizing total tardiness
for hybrid job-shop scheduling problem with sequence-dependent setup times and release dates. Proceedings
of the International Conference on Industrial Engineering and Systems Management. Marrakech, Morocco,
May 16-19: 469-478.

28. Wilbrecht, J.K., and Prescott, W.B. (1969). The influence of setup time on job shop performance.
Management Sciences, 16: B274-B280.

29. Yang, W.H., and Liao, C.J. (1999). Survey of scheduling research involving setup times. International
Journal of System s Science, 30: 143-155.

30. Yoshida, T., and Hitomi, K. (1979). Optimal two-stage production scheduling with setup times separated.
AIIE Transactions, 11: 261-263.

31. Zant, P.V. (1997). Microchip Fabrication – A Practical Guide to Semiconductor Processing, 3rd ed.,
McGraw-Hill, New York, The USA.

32. Zhou, C., Egbelu, P.J. (1989). Scheduling in a manufacturing shop with sequence-dependent setups. Robotics
Comput-Integr. Manufacturing, 5: 73-81.

33. Zoghby, J., Barnes, J.W., and Hasenbein, J.J. (2005). Modeling the reentrant job shop scheduling problem
with setups for metaheuristic searches. European Journal of Operational Research, 167: 336-348.

 10

Би
бл
ио
те
ка

 БГ
УИ
Р

	Sequence-Dependent Setup and Removal Times in a Two-Machine Job-Shop with Minimizing the Schedule Length
	1. INTRODUCTION
	2. PROBLEM SETTING AND NOTATIONS
	REFERENCES

