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1. INTRODUCTION

At present, there are no signs of the lessening of
interest in the study of mechanisms of conduction in
semiconducting materials at low temperatures, including
such materials as traditional heavily doped semicon�
ductors in the vicinity of the metal–insulator transi�
tion [1, 2]. This is related both to fundamental prob�
lems of electron transport in the vicinity of these tran�
sitions and to some applied aspects. In particular, the
features of the mechanisms of low�temperature elec�
trical conductivity in doped semiconductors with the
involvement of multicharged localized states, the
mechanisms of the manifestation of positive and neg�
ative magnetoresistance (MR), the trends in the local�
ization and specific features of the energy structure of
bands for impurity and localized states, and so on,
remain not quite clearly understood. In this context,
detailed study of conduction in heavily doped semi�
conductors within a wide temperature range under the
effect of a magnetic field remains pressing.

The behavior of the dependence of the specific
resistance on temperature and magnetic�field induc�
tion ρ(T, B) in heavily doped semiconductors in the
case where the metal–insulator is approached from
the semiconductor side has been the subject of many
experimental and theoretical studies over the last
20 years. The metal–insulator transition takes place

when the Mott criterion aB ≈ 0.25 becomes satis�
fied (here, NC is the critical concentration of impurity
centers and aB is the effective Bohr radius of an iso�
lated center). This criterion was verified in various

NC
1/3

experiments [4, 5]. Nevertheless, there still remain
some problems with correct understanding of the tem�
perature dependences of the specific resistance and
MR in the vicinity of the critical concentration of
localized centers, i.e., in the situation where, at low
temperatures, competition between hopping conduc�
tion (with a constant or variable hop length) of various
types, mechanisms of weak localization, and percola�
tion�related or band�type (metallic and/or impurity�
based) conduction typically takes place. Thus, a num�
ber of crossovers between different mechanisms can be
observed in a wide range of temperatures; this makes it
necessary take into account these crossovers very
accurately in order to obtain the correct values of
model characteristic parameters from the experimen�
tal dependences ρ(T, B).

2. MAIN APPROACHES TO THE DESCRIPTION 
OF CROSSOVERS

In available publications, we can find quite a num�
ber of models of crossovers between hopping conduc�
tion in accordance with the Mott and Shklovskii�Efros
mechanisms for variable�range hopping (the VRH
mode) [6–12]. The temperature dependences of the
specific resistance for these mechanisms are described
by the well�known expression

(1)

where ρ0 is the pre�exponential factor, while T* and
p are the characteristic temperature and the exponent,
which are defined by the mechanism of hopping con�
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duction (by the character of the energy dependence of
the electron density of states near the Fermi energy).
In the three�dimensional case, expression (1) charac�
terizes the VRH mode [3, 5] with characteristic tem�
peratures T* = TM = β0/kBg0a3 for the Mott mecha�
nism and the exponent p = 1/4 and, correspondingly,
T* = T0 = β1q2/(kBaκ) at p = 1/2 for the Shklovskii–
Efros mechanism.

On the other hand, there are a small number of
publications concerned with crossovers from the VRH
mechanisms to the mode of hopping conduction with
hops via the nearest states in the Coulomb gap (near�
est�neighbor hopping, the NNH mode), in which case
T* = TN = EN/kB and p = 1 [13–15]. We introduced
the following designations in the above relations for
T*: β0 = 21.2 and β1 = 2.8 are numerical coefficients;
a is the localization radius of an electron, κ is the per�
mittivity (absolute) of the material, g0 is the density of
states at the Fermi level (for the Mott mechanism, g0 =
const, i.e., this parameter is independent of energy),
kB is the Boltzmann constant, q is the elementary
charge, and EN is the activation energy for conduction
according to nearest�neighbor hopping.

It follows from relation (1) that the characteristics
of the VRH and NNH modes of conduction differ
both in terms of the numerical parameters involved in
T* and possibly in terms of the physical pattern itself.
On the other hand, the temperature range of the cross�
over in this case is typically found to be fairly wide so
that the correct comparison of theory with the experi�
ment, as was mentioned above, can be noticeably
complicated. Therefore, in order to make it possible to
compare the experimental values of the parameters
TM, T0, and TN with the calculated ones, it is important
to correctly describe the crossover range both from the
experimental and the theoretical (model) points of
view. From the point of view of an experiment, the
methodology of such a description is typically based
on two approaches. In the first approach, researchers
determine the temperature range where the depen�
dences (1) are linearized in the Mott coordinates
lnρ – (1/T)p in the corresponding temperature ranges.
This makes it possible to determine the value of T*
(from the slope angle) and also the exponent p (by
exhaustively searching through known model values).
In the second approach [16, 17], researchers search for
the temperature region corresponding to linearization
of the reduced activation energy w(T) = –∂logρ/∂logT,
which formally makes it possible to determine the
exponent p in relation (1). In both approaches, the
correctness of the determination of T* and p is appre�
ciably affected by the following factors: the accuracy
of temperature stabilization at the experimental points
ρ(T), the number of mechanisms in the crossover’s
temperature range under study, and the temperature
dependence of pre�exponential factors ρ0 in expres�
sions of type (1). The two last factors, evidently, are

especially important for samples with a localized�cen�
ter concentration close to the metal–insulator transi�
tion. For such samples, the range of variation in the
resistance in the temperature region 2–25 K under
investigation can be fairly small and the number of
mechanisms of conduction observed in this region, in
contrast, can be large (from two to four). In the latter
case, in order to derive the mechanisms involved in the
crossover, additional experiments with measurements
of the Hall effect and MR are required. It is worth not�
ing that, for the samples, which are far from the Mott
transition, the third factor can be apparently disre�
garded in a number of cases [18].

The known theoretical models of crossovers from
the Mott mechanism to the Shklovskii–Efros mecha�
nism are characterized by two different approaches to
the determination of exponent p in relation (1). The
first approach is based on analysis of the percolation
problem [6–10], while the second approach is based
on optimization of the exponent in the expression for
hopping conduction with the use of an interpolation
expression for the density of states [11, 12]. The sec�
ond approach is less strict than analysis of the percola�
tion problem. As was shown by Meir [10], this
approach leads to noticeable overestimation of the
width of the crossover region.

Meir [10] suggested a general approach to descrip�
tion of the crossover from the Mott mechanism to the
Shklovskii–Efros mechanism; this approach leads to a
fairly complex multiparameter integral equation,
which does not allow analytical processing and
requires fairly complex numerical analysis.

In order to describe crossovers in the two� and
three�dimensional situations, Van Lien et al. [11, 12,
14, 15] suggested a procedure based on optimization
of the exponent in the expression for the probability of
hopping (~exp(–η), where η = (2r/a) + (E/kT), r is
the hop length, and E is the activation energy for a
hop) using an interpolation expression for the density
of states g(E) ∝ |E|n (n is the integer exponent, which is
equal to 0 for the Mott mechanism and to 2 for the
Shklovskii–Efros mechanism). This approach leads to
comparatively simple analytical expressions but is less
rigorous than analysis of the percolation problem.

Agrinskaya and Kozub [9] suggested a relatively
simple approach to description of the crossover from
the Mott mechanism to the Shklovskii–Efros mecha�
nism; this approach is based (as the approach sug�
gested in [10]) on considerations of percolation the�
ory; however, this approach provides simpler analysis
of the connectivity condition. The theoretical equa�
tion for the critical value of the exponent ξ(T) in the
temperature dependence of the hopping resistance
was obtained as

(2)ρ T( )ln Aξ T( ),=
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where A is the coefficient and the relation between the
function ξ(T) and the exponent p in (1) corresponds to
the expression ξ ∝ (T*/T)p.

As for the crossover from the VRH mode to the
NNH mode, we know only one fairly substantiated
model suggested by Rosenbaum [14, 15]; this model is
based on the procedure of optimization of the expo�
nent (the second approach above).

In this study, we undertake an attempt to provide a
description of the experimentally observed crossover
from the VRH mode to the NNH mode; the descrip�
tion is based on a simplified solution of the percolation
problem with the use of an interpolation expression for
the density of states; this solution is valid for both
modes.

3. EXPERIMENTAL

The samples for electrical measurements were cut
from commercial wafers of single�crystal silicon of the
n�Si:Sb type (ρ = 0.01 Ohm cm) with the orientation
(100) in the form of strips with a thickness of 1 mm and
a length of 12 mm. Onto the rectangular samples two
current contacts, two Hall contacts, and two potential
contacts were deposited by means of ultrasonic solder�
ing. The ohmic behavior of the contacts was con�
trolled by measurements of the current–voltage (I–V)
characteristics. The I–V characteristics were strictly
linear in the entire range of temperatures under study.

In order to perform electrical measurements, the
fabricated samples were soldered with the use of cop�
per microwires in a special measurement probe, which
was placed into a CHNF system (Cryogenics Ltd.,
England) based on a closed�cycle refrigerator. The
CHNF system made it possible to measure the I–V
characteristics and electrical resistance in the range of
temperatures 1.8 K < T < 310 K and in magnetic fields
with an induction B as high as 8 T. The used tempera�
ture controller (Lakeshore, model 331) made it possi�
ble to perform continuous scanning of the tempera�
ture with a rate of 0.1–1 K/min or stabilize the tem�
perature with an accuracy of 0.005 K during the course
of scanning the magnetic field or during measure�
ments of the I–V characteristics. Thermometers based
on gallium–arsenide diodes used in the temperature
range 1.5–20 K were calibrated to an accuracy of
0.5 mK. The used devices for measurement of the
voltage and current made it possible to determine the
electrical resistance with an accuracy of greater
than 0.1%.

4. RESULTS

In this study, we measured the temperature depen�
dences of the specific resistance under direct current,
and of ρ(T), MC, and the Hall effect insingle�crystal
silicon doped with antimony Si:Sb. Measurements of
the temperature dependence of the Hall effect made it

possible to estimate the antimony concentration
whose value was found to be NSb ≈ 1 × 1018 cm–3, which
is much lower than the critical Mott concentration Nc

and the values of NSb in the samples studied previously
[19]. This means that we can disregard the effects of
weak localization and percolation in the experimental
and theoretical analysis of the crossover in specific
resistance in the studied temperature range.

Recent preliminary analysis [20] of the experimen�
tal data of measurements of the specific resistance for
samples of Si:Sb in the temperature range of 5–25 K
and in magnetic fields as high as 8 T showed the fol�
lowing. In fields B > 1.5 T, the magnetic�field depen�
dence of the MC follows the trend ln[ρ(B)/ρ0] ∝ B2.
An analysis of the dependences ρ(T) indicated that, in
Si:Sb in the temperature range of 5–25 K, the VRH
mode with the Mott mechanism takes place. The
obtained estimates of the density of states g0, the Mott
temperature TM, and the localization radius a revealed
the temperature dependence of the localization radius
[20]. In the context of the Demishev–Pronin model
[21] of hopping conduction (this model takes into
account the presence of the spin�polarization mecha�
nism and the mechanism of compression of the wave
function for hopping conduction according to the
Mott mechanism), the presence of two temperature
regions, which are characterized by differing contribu�
tion of these mechanisms to ρ(T), was established. It
was established that spin�polarization transport is
dominant in the range 5–11 K, while, in the range 11–
20 K, it is necessary to take into account both the con�
tribution of spin�polarization transport and the con�
tribution of the mechanism related to compression of
the wave function in ρ(T).

Figure 1 shows the experimental dependences ρ(T)
in the temperature range 2–25 K; the dependences
were measured with a small temperature step and
careful stabilization (in the range of ±1.5 mK) of the
temperature at each experimental point. These mea�
surements confirmed the previously observed [20]
implementation of the VRH mode with the Mott
mechanism at temperatures higher than 5 K. As can be
seen, in the case of cooling of the sample in the region
4.5–5.0 K, the transition from the Mott mode to the
mode of hops to nearest neighbors (the NNH mode),
which is observed in the temperature region 2.5–
4.5 K, occurs. The performed estimates of the con�
ductivity activation energy for the NNH mode showed
that these energies are EN ≈ (17–18)kB J (TN ≈ 17.6 K)
in zero magnetic field and EN ≈ 24.75kB J (TN ≈
24.75 K) at B = 8 T. For Si:Sb, estimation of the impu�
rity localization radius from the expression

 yielded the value a ≈ 3.3 nm (at an
effective mass of m = 0.19m0 and ionization energy of
Ei = 0.036 eV).

At temperatures below 2.5 K, there is a transition
region, which is probably caused by transition to the

a �/ 2mEi=
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VRH mode with the Shklovskii–Efros mechanism.
However, detailed analysis of this range requires addi�
tional studies.

In order to correctly use the models of crossovers
(both those which already exist and that developed in
this study, see below), it is necessary to determine the
lattice type stipulated by the location of impurity
atoms and also the percolation threshold for samples
applicable in our experiments. In the theory of hop�
ping conduction, problems related to percolation in a
system of random lattice sites (chaotically distributed
in space) play the most important role. In this case, the
average number of lattice sites in the unit volume is
assumed to be given (equal to the impurity concentra�
tion ND), while the average distance between these
sites is rm = (3/4πND)1/3. For such a lattice, the perco�
lation threshold rc (or, as it is also known, the percola�
tion radius) is determined from the condition of the
connectivity of two or more lattice sites, which form

an infinite cluster [5], so that the value of rc depends
only on the concentration of sites ND. Typically, the
threshold value Bc is used, which has the meaning of
the average number of bonds per site. The expression
for the dimensionless percolation threshold in the
three�dimensional case [5] is written as

(3)

The threshold value of the average number of bonds
per site Bc for a random lattice is typically determined
numerically by solving the sphere problem via applica�
tion of the Monte Carlo method. Numerous calcula�
tions yield values of Bc in the range 2.65–2.7 [5]. Con�
sequently, the percolation radius is given by rc =

(0.865 ± 0.015) . In this case, rc is always larger
than the average distance between impurity atoms in a

random lattice rm = 0.62 . At the concentration

ND = NSb ≈ 1018 cm–3 in the samples we used, we have
rc = 8.64 nm and the average distance between the
impurity atoms in the sample is rm = 6.2 nm. In this
case, only the number of sites with the radius rc is
important while their relative position (the lattice
symmetry) is unimportant.

5. MODEL AND DISCUSSION OF RESULTS

Taking into account the fact that the aforemen�
tioned estimates are reasonable, we then developed a
model of crossover from the VRH mode with the Mott
mechanism to the NNH mode; this model is based on
a simplified procedure for solving the percolation
problem with the use of an interpolation expression for
the density of states, fair for both modes. The sug�
gested model is based on the following expression for
the dimensionless concentration of sites

(4)

which satisfies the condition of connectivity at a hop�
ping exponent (see (2)) smaller than a certain value ξ
[5, 9]. Here, Emax and rmax are maximal values of the
energy and the distance between lattice sites, which
allow connectivity (see (5) and below), and g(E) is the
density of states. Equating expression (4) to the critical
concentration in (3) for the percolation threshold 2Bc

(for the three�dimensional situation, the correspond�
ing value is equal to ~5.3), we can obtain an equation
for the critical value of the percolation exponent ξ(T),
which determines the electrical resistance. The
dimensionless concentration N(ξ) in (4) is determined
as a product of the site concentration with hop ener�
gies E < Emax and the volume available for these sites.
Such a procedure (used by Shklovskii and Efros [5] in
relation to the Mott mechanism) for the state density
dependent on energy is not at all strict and the condi�

Bc 4π/3( )rc
3ND.=

ND
–1/3
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N ξ( ) 2 rmax
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Fig. 1. Temperature dependence of the specific resistance
ρ(T) of a Si:Sb sample in the ranges of (a) 2–25 K and
(b) 2–7 K: (1) experimental data, (2) results of calcula�
tions based on relation (1) for the Mott mechanism, and
(3) results of calculations based on relation (1) for the
NNH mode.
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tion of connectivity should be considered for each
energy value separately, which results in a complex
integral equation [10]. We use the procedure described
in [9], which makes it possible to considerably simplify
the calculations.

The largest values of the energy and the distance
between lattice sites, as allowed by the condition of
connectivity in percolation theory [5] (see also formu�
las (4.30) in [22]) are determined by the formulas

(5)

Here, the critical value of the exponent ξ is involved in
the temperature dependence of the hopping resis�
tance (2).

For the density of states, we use the interpolation
expression which is fair for the case where the expo�
nent ρ in expression (1) for the resistivity approaches
unity [15]. Rosenbaum et al. [12, 14, 15] described the
models of crossovers from the Mott mechanism to the
Shklovski–Efros mechanism and the NNH mode tak�
ing into account a variation in the density of states
from its constant value for the Mott mechanism to the
density of states g(E) ∝ |E|n with n > 2. According to
[23], the exponent n in the expression for g(E) is
related to the exponent p in the three�dimensional
VRH model (1) (see [5]) by the expression

(6)

In this case, according to Rosenbaum [14], in order
to describe the crossover at different combinations of
p values, it is possible to use the formula

(7)

where g0 is the density of states in the absence of the
Coulomb gap (at n = 0). Here, the value of n can be
determined from relation (6) for the exponent p in the
VRH model. The values of α and Esg in (7) depend on
n and are constant at a fixed value of n. In the case n = 2,
the density of states coincides with (7) used in [12] for
description of the crossover from the Mott mechanism
to the Shklovskii–Efros mechanism.

Calculation of the integral (4), with (7) taken into
account in the case where n is an integer even positive
number, yields the expression

(8)

rmax aξ/2, Emax kBTξ.= =

p n 1+( )/ n 4+( ).=

g E( ) αEsg
n E/Esg( )n

1 E/Esg( )n+
������������������������ g0

εn

1 εn+
�����������,= =

N ξ( ) 2rmax αEsg
n 1+ εn εd

1 εn+
�����������

0

εm

∫= 2rmax αEsg
n 1+=

× εm
1
n
�� 1 εm

2 2εm kncos–+( ) kncosln

k 0=

n/2( ) 1–

∑+

– 2
n
��

εm kncos–
knsin

��������������������⎝ ⎠
⎛ ⎞ knsinarctan

k 0=

n/2( ) 1–

∑ ,

where εm = ξ(kBT/Esg), coskn = , and

sinkn = . Equating (8) to the value

2Bc = 5.3 and substituting expressions (5), we obtain,
after transformations of the equation, which will be
used for determination of the function ξ(T):

(9)

where kBT* = Esg. Taking into account the value of the
Mott parameter TM, we obtain the final equation

(10)

which provides the dependence ξ(T) for a specified set
of parameters n, T*, and TM at n ≥ 4. At an odd
number n, the relation (10) changes its form and is
represented by the expression

(11)

for n ≤ 5.
Comparison of the results of calculations per�

formed on the basis of relations (2), (10), and (11) with
the experimental dependences in Fig. 1 showed that,
for the previously obtained parameters TM = 15240 K
[16] and T* = TN = (17–18)K, the developed model of
crossover adequately describes the experimental data:
at n = 0 (Mott mechanism; absence of the Coulomb
gap), coincidence was obtained in the region 4–25 K
(Fig. 2a); for n = 6 and larger, there is coincidence in
the region 2.5–5.0 K (the NNH mode).

Thus, using the developed model, we may ade�
quately describe the temperature dependence ρ(T) as
hopping conduction is varied from the VRH mode for

2k 1+
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the Mott mechanism to the NNH mode using the cor�
responding parameters of these modes at a fixed value
of exponent n. The value of n does not introduce any
doubts for the Mott mechanism (n = 0) and for the
Shklovskii–Efros mechanism (n = 2). The choice is
not quite unique for the NNH mode. It follows from
expression (6) that the value of n is bound to be much
larger than unity. If we intend to determine the optimal
(or minimal) choice of the value of n for the NNH
mode, we may use the connection of the function ξ ∝
(T*/T)p with the exponent p for the calculation of ρ
from the obtained model using the expression

(12)

reported in publication [9]. It follows from (12) that,
for n = 0, the exponent p is exactly equal to 0.25 in the
entire temperature range (as in relation (1) for the
Mott mechanism), while p depends on temperature
for other values of n. This dependence estimated from
expressions (10) and (11) for various values of n is rep�
resented in Fig. 3.

p d ξ/d Tloglog– T/ξ( )dξ/dT,–= =

The obtained dependences are represented for
clarity at fixed values of n for the entire range of tem�
peratures. However, the curves for n = 5–50 reflect the
adequacy of the model in the region T < 4 K and make
it possible to conclude that, in order to attain values of
exponent p close to unity, it is sufficient to use nmin = 5;
also, there is no point in increasing n to values larger
than 25 (since it is clear that the curves for n = 25 and
n = 50 coincide Fig. 3). It first of all follows from Fig. 3
that, at T > 5 K, the NNH mode is clearly not observed
in our experiments since the exponent p ceases to
depend on n at all, which is precisely indicative of the
predominance of the Mott mechanism under the
above conditions.

The developed model makes it possible to show
that the theoretical range of crossover from the VRH
mode to the NNH mode should be in the range 3–7 K.
The experiment fixes this transition at a temperature
of 4.5 K exactly. It is worth noting that such a spread is
observed for all known models of crossovers, which
represents its main disadvantage at present.

6. CONCLUSIONS

The performed detailed analysis of the obtained
experimental results for the temperature dependences
of the specific resistance in the range 2–25 K for sili�
con doped with antimony showed that, as a result of
cooling to a temperature lower than T = 4.5 K, the
temperature crossover from the Mott mechanism to
the mode of hopping conduction via the nearest
neighbors (NNH), while, at T < 2.5 K, the transition
to the Shklovskii—Efros mechanism possibly takes
place. We suggested a model describing the tempera�
ture crossover from the Mott mechanism to the mech�
anism of hopping conduction via nearest neighbors;
the model is based on a simplified solution of the per�
colation problem with the use of an interpolation
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Fig. 2. Experimental (1) and calculated (2) temperature
dependences of the normalized resistivity (ρ0 is the pre�
exponential factor in (1) as determined from the experimental
data) of a Si:Sb sample for the NNH mode, n = 7 (a) and the
Mott mechanism, n = 0 (b).
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Fig. 3. Temperature dependences of the exponent p in rela�
tion (1) as obtained using expressions (10)–(12) at n ≥ 2.
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expression for the density of states (this expression is
valid for both modes). We obtained equations for
determination of the critical value of the exponent in
the temperature dependence of the hopping resis�
tance. The performed estimations showed that it is
possible to attain satisfactory agreement between the�
oretical and experimental crossovers with the use of an
optimal number of adjustable parameters.
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