А. Н. Витченко, И. А. Телеш, М. А. Волчёк

ПРОГНОЗНЫЙ СЦЕНАРИЙ ИЗМЕНИЯ КОМФОРТНОСТИ КЛИМАТА ВИТЕБСКА

В XXI веке проблема изменения климата привлекла к себе внимание всего мирового сообщества и побудила рассматривать климат как важнейший природный ресурс, пространственно-временные вариации которого имеют серьезные социальноэкономические и политические последствия, определяющие благосостояние государств мира. Также в настоящее время уделяется значительное внимание проблеме урбанизации - возникновению и постоянному увеличению площади и численности населения городов, процессам формирования городских ландшафтов и многим другим вопросам их развития, требующих квалифицированного решения в теории и практике управления городами. Многогранность города как природно-социального комплекса, архитектурной и градостроительной системы требует участия в исследовании его проблем представителей многих наук. В связи с этим исследование комфортности климатических условий городов является актуальным и имеет фундаментальное и прикладное значение, является составной частью комплексной оценки геоэкологического потенциала среды жизнедеятельности населения урбанизированных территорий. Анализ метеорологических процессов и явлений, их пространственно-временной динамики позволяет проследить изменение климатических условий городов в результате естественного развития и антропогенной трансформации географической среды, дать поэлементную и комплексную оценку их воздействия на человека.

Анализ литературных источников и собственные исследования позволили разработать оригинальную методику геоэкологической оценки комфортности климата городов. Методика базируется на расчете частных и интегральных эколого-климатических показателей (ЭКП) состояния окружающей среды, характеризующих степень ее благоприятности для человека, выполненных на основе математического моделирования природно-антропогенных процессов и современных ГИС-технологий [1, 2].

Под геоэкологической оценкой комфортности климата города авторы понимают определение степени его благоприятности по отношению к организму человека с учетом естественного потенциала самоочищения атмосферы и влияния климата на режим эксплуатации жилых сооружений. Интегральный показатель комфортности климата ($K_{\text{ипкк}}$) дает представление о степени благоприятности климата городов для жизнедеятельности людей с учетом воздействия всего комплекса рассматриваемых метеорологических факторов. В крупных городах Беларуси можно выделить 4 категорий комфортности климатических условий: $K_{\text{ипкк}} \ge 4,00$ – комфортные, 3,00-3,99 – умеренно комфортные, 2,00-2,99 – мало комфортные, $\le 1,99$ – дискомфортные.

Оценка комфортности климата Витебска выполнялась на основе среднесуточной метеорологической информации (средние суточные данные о температуре и относительной влажности воздуха, парциальном давлении водяного пара, скорости ветра, атмосферном давлении, атмосферных осадках, общей облачности, туманах) по данным ГУ «Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды» за период 1980-2013 гг.

Проведенные исследования показали, что в период 1980-2013 гг. в Витебске температура воздуха отличается значительной временной изменчивостью и устойчивой тенденцией к повышению средних годовых значений (6,2 °C). Максимальная средняя месячная температура воздуха в основном наблюдалась в июле, минимальная – в январефеврале. Среднее годовое атмосферное давление воздуха характеризуется незначительной межгодовой изменчивостью и небольшой тенденцией к понижению. В 1980-2013 гг. оно варьировало от 992,4 гПа в 1983 г. до 997,1 гПа в 1996 г. и в среднем составило 994,1 гПа. В годовом ходе атмосферного давления воздуха его более высокие значения, как правило,

отмечаются зимой, более низкие – летом. Скорость ветра в Витебске отличается умеренной временной изменчивостью и устойчивой тенденцией к снижению. Средняя годовая скорость ветра изменялась от 1,8 м/с в 2009 - 2010 г.г., 2013 г., до 3,5 м/с в 1990 г. и в среднем составила 2,6 м/с. В основном максимальная скорость ветра характерна для осенне-зимнего сезона, минимальная наблюдается весной и особенно летом. Сезонная динамика этого показателя достаточно устойчивая, но в отдельные годы существенно варьирует. Относительная влажность воздуха обладает незначительной временной изменчивостью и устойчивой тенденцией к уменьшению средних годовых значений. Она имеет достаточно выраженный годовой ход с минимумом в весенние месяцы (апрель май), и максимумом – в осенне-зимний сезон года (ноябрь-январь). Средняя годовая относительная влажность воздуха в рассматриваемый период варьировала от 73,3 % в 2002 г. до 79,6 % в 1982, 1989 г.г. и в среднем составила 77,6 %. Атмосферные осадки характеризуются значительной временной изменчивостью и тенденцией к увеличению годового количества. В среднем за 1980-2013 гг. их минимум наблюдается в зимние месяцы, максимум – в летние месяцы (июль). В экстремальные годы годовой ход атмосферных осадков имеет более сложный характер. Самым дождливым месяцем за 1980-2013 гг. был 2012 г., когда сумма осадков составила 959 мм, а самым засушливым – 2000 г. Облачность в Витебске отличается незначительной временной изменчивостью. В годовом ходе облачности минимум приходится на теплый период года (май-август), максимальные значения отмечаются в ноябре-январе. Но в отдельные экстремальные годы он имеет более сложный вид. Наблюдаются месяцы, когда не бывает ни одного ясного дня. Средняя годовая облачность изменялась от 3,1 балла в 2013 г. до 7,7 балла в 1990 г., 2008 г., и в среднем составила 6,2 балла.

Анализ показателей ЭКП комфортности климата г. Витебска в 1980-2013 гг. позволим выявить следующий закономерности. В городе наблюдается устойчивая тенденция к повышению количества дней с комфортными значениями НЭЭТ, продолжительности комфортного периода эксплуатации жилых сооружений, климатического потенциала самоочищения атмосферы, средней месячной температуры воздуха в январе и июле. Отмечается тенденция к снижению продолжительности дискомфортного периода с индексом холодового стресса по Хиллу ≥4,5 Bт/м²·с; количества случаев с контрастными изменениями погоды; количества дней: с неблагоприятным для человека резким изменением атмосферного давления, дискомфортными значениями относительной влажности воздуха, облачности, скоростью ветра ≥ 5 м/с и осадками ≥ 1 мм. В рассматриваемый период в Витебске преобладали мало комфортные (51 %) и умеренно комфортные (37 %) климатические условия, дискомфортные составили всего 5 %. Комфортность климата города отличается умеренной межгодовой изменчивостью и устойчивой тенденцией к улучшению, в среднем наименее благоприятные условия наблюдались в 1980 и 1990 гг., наиболее комфортные в 1993, 1999 и 2008 гг.

На основе изложенных выше результатах исследований был разработан прогнозный сценарий изменения эколого-климатических показателей комфортности климата Витебска в 2020 году. При анализе исходной выборки ЭКП выполнялась процедура проверки «выбросов», далее определялись уравнения регрессии изменения ЭКП, вычислялись среднеквадратические отклонения и доверительные интервалы, рассчитались прогнозные значения ЭКП [3-5].

При определении уравнений регрессии изменения ЭКП были выполнены расчеты для линейной и экспоненциальной регрессионной модели изменения ЭКП. Следует отметить, что в соответствии с физическими особенностями рассматриваемых ЭКП, для прогнозных оценок изменения продолжительность периода с комфортными НЭЭТ ($K_{HЭЭТ}$); количества душных дней ($K_{дд}$); количества дней с контрастными имениями погоды (K_{un}); количества дней с межсуточным изменением атмосферного давления ≥ 9 гПа/сут (K_{ag}); количества дней с относительной влажностью воздуха ≥ 80 % (K_{ob}); количества дней с осадками ≥ 1 мм (K_{oc}); количества дней с облачностью ≥ 6 баллам (K_{ob}); продолжительности

комфортного периода эксплуатации жилых сооружений $(K_{\rm эжс})$; климатического потенциала самоочищения атмосферы $(K_{\rm кпс})$; средней температуры июля $(t_{\rm u})$; средней температуры января $(t_{\rm u})$ и интегрального показателя комфортности климата $(K_{\rm unkk})$ в городах Беларуси предпочтительно использовать уравнение линейной регрессии, а для прогнозирования изменения продолжительности дискомфортного периода с индексом холодового стресса по Хиллу $\geq 4,5$ вт/м 2 ·с $(K_{\rm дп})$; количества холодных дней $(K_{\rm xg})$ и количества дней со скоростью ветра ≥ 5 м/с $(K_{\rm cs})$ – уравнение экспоненциальной регрессии.

Анализ прогнозных данных показал, что в 2020 году возможны следующие изменения ЭКП в Витебске (таблица).

Изменение ЭКП в Витебске согласно прогнозного сценария на 2020 г.

ЭКП	Временная	Среднее	Доверительный	Среднее значение	ЭКП
	функция*	квадратичное	интервал при	ЭКП	в 2020 г.
		отклонение, σ	$p (\alpha = 0.05)$	за 1980-2013 гг.	
К _{нээт}	y = 0,602x + 26,01	8,72	± 3,42	33,83	48,4
Кдд	y = 0.035x + 3.5	4,18	± 1,64	3,95	4,80
Кдп	$y = 90,19e^{-0,061x}$	19,57	± 7,67	45,57	9,45
К _{хд}	$y = 24,89e^{-0.026x}$	12,32	± 4,83	21,45	9,87
Кип	y = -0.174x + 159.86	12,47	± 4,89	157,5	153,16
Кад	y = -0.286x + 51.24	11,04	± 4,33	47,52	40,46
Ков	y = -0.484x + 183.81	16,43	± 6,44	177,52	165,63
Ксв	$y = 69,416e^{-0,128x}$	15,74	± 6,17	19,96	0,61
Koc	y = -0.222x + 129.4	12,38	± 4,85	126,52	120,95
Коб	y = -0.04x + 264.4	14,32	± 5,61	261,88	260,64
Кэжс	y = 0.234x + 101.92	9,6	± 3,76	104,96	110,69
Ккпс	y = 0.004x + 0.25	0,1115	± 0,04	0,29	0,38
t _u	y = 0.115x + 16.83	1,83	± 0,72	18,31	21,15
t _я	y = 0.097x - 5.98	3,15	± 1,23	-4,90	-2,47
Кипкк	y = 0.045x + 2.03	0,45	± 0,17	2,61	3,74

^{*}Рассчитана по уравнению регрессии

Ожидается существенное увеличение продолжительности периода с комфортными НЭЭТ. По сравнению со средними значениями за 1980-2013 гг. Кнээт возрастет от 14 дней и достигнет в 2020 г. 48 дней. Количество душных дней увеличится незначительно (1-2 дня) и составит 4-5 дней. Продолжительность дискомфортного периода с индексом холодового стресса по Хиллу ≥4,5 Вт/м²·с в 2020 г. значительно сократится и составит около 10 дней. Также ожидается уменьшение число холодных дней. По сравнению со средними значениями за 1980-2013 гг., их количество сократится на 11 дней.

Количество дней: с контрастными имениями погоды к 2020 г. сократится и составит в Витебске 153 дня; с межсуточным изменением атмосферного давления ≥ 9 гПа/сут уменьшится, но незначительно и составит 39-40 дней; с относительной влажностью воздуха ≥ 80 % уменьшится до 13 дней; со средней скоростью ветра ≥ 5 м/с значительно сократится, и их количество составит всего 2-6 дней; с осадками ≥ 1 мм в 2020 г. уменьшится незначительно, и составит 120 дней; с облачностью ≥ 6 баллам в 2020 г. существенно не изменится, и уменьшится всего на 1-2 дня.

Продолжительность комфортного периода эксплуатации жилых сооружений в 2020 г., по сравнению со средними значениями за 1980-2013 гг. увеличится на 4-6 дней. Климатический потенциал самоочищения атмосферы в 2020 г. немного увеличится. Также ожидается повышение средней месячной температуры воздуха в июле и январе. По сравнению со средними значениями температуры воздуха за 1980-2013 гг., в июле 2020 г. она может увеличиться на 2,5-3 °C, а в январе — на 2-2,5 °C.

В 2020 г. в Витебске предполагается повышение уровня комфортности климатических условий. Интегральный показатель комфортности климата, по сравнению со средними значениями Кипкк за 1980-2013 гг. увеличится до 1,11. Ожидается, что значения Кипкк, соответствующие умеренно комфортным климатическим условиям составят 3,74.

Материалы исследований могут быть использованы для ведения и совершенствования климатического мониторинга в Беларуси на региональном и локальном уровнях, являются основой для разработки сценариев возможного изменения комфортности климата в крупных городах Беларуси и предложений по адаптации человека к его воздействию.

^{1.} *Витичнко А.Н., Телеш И.А.* Методика геоэкологической оценки комфортности климата городов // Вестник БГУ. Сер.2. 2007. № 2. С. 99–104.

^{2.} *Витичнко А.Н., Телеш И.А.* Геоэкологическая оценка комфортности климата крупных городов Беларуси // Вестник БГУ. Сер.2, Химия, Биология, География. 2011. № 2. С. 73–78.

^{3.} *Айвазян С.А., Мхитарян В.С.* Прикладная статистика и основы эконометрии. М.: Юнити, 1998. 1022 с.

^{4.} *Пузаченко Ю.Г.* Математические методы в экологических и географических исследованиях. М., 2004.416 с.

^{5.} *Лудерер Б., Ноллау А., Феттерс К.* Высшая математика в экономике, технике, информатике / Пер с нем.; Под ред. А. В. Самусенко, В. В. Казаченка. Минск: Вышэйшая школа, 2009. 279 с.