Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра систем управления

А. С. Климчик, П. А. Орда, С. В. Снисаренко

МОДЕЛИРОВАНИЕ В ПРОЕКТИРОВАНИИ ПРОМЫШЛЕННЫХ СИСТЕМ

Лабораторный практикум для студентов специальности 1-53 01 07 «Информационные технологии и управление в технических системах» всех форм обучения

Под общей редакцией профессора С. В. Лукьянца

УДК 681.51-047.58(076.5) ББК 32.965я73 К49

Репензент:

заведующий кафедрой информационных технологий автоматизированных систем, доктор технических наук, профессор В. С. Муха

Климчик, А. С.

К49 Моделирование в проектировании промышленных систем : лаб. практикум для студ. спец. 1-53 01 07 «Информационные технологии и управление в технических системах» всех форм обуч. / А. С. Климчик, П. А. Орда, С. В. Снисаренко ; под общ. ред. проф. С. В. Лукьянца. – Минск : БГУИР, 2010. – 30 с. : ил.

ISBN 978-985-488-488-2

Содержит описание восьми лабораторных работ, которые выполняются в пакете моделирования GPSS World. Предназначено для студентов специальности 1-53 01 07 «Информационные технологии и управление в технических системах» при выполнении ими лабораторных работ по курсу «Моделирование в проектировании промышленных систем».

УДК 681.51-047.58(076.5) ББК 32.965я73

ISBN 978-985-488-488-2

- © Климчик А. С., Орда П. А., Снисаренко С. В., 2010
- © УО «Белорусский государственный университет информатики и радиоэлектроники», 2010

Содержание

Введение	6
Лабораторная работа №1	
Создание моделей систем с одноканальными и многоканальными	
устройствами	7
Лабораторная работа №2	
Имитационное моделирование с использованием	
зычислительных объектов	11
Лабораторная работа №3	
Использование средств рационального построения моделей	15
Лабораторная работа №4	
Организация синхронной работы подразделений	17
Лабораторная работа №5	
Обработка внештатных ситуаций при имитационном моделировании	20
Лабораторная работа №6	
Моделирование выбора устройств по определенному критерию	23
Лабораторная работа №7	
Уменьшение числа объектов в модели методом_косвенной адресации,	
обработка одновременных сообщений	25
Лабораторная работа №8	
Моделирование гибких участков штамповки	28
Литепатупа	31

Введение

Лабораторный практикум включает восемь лабораторных работ, предусмотренных рабочей учебной программой по данной дисциплине. В каждой лабораторной работе приводятся название работы, цель, практические задания с набором вариантов исходных данных, примеры составления некоторых программ и контрольные вопросы.

При подготовке к лабораторной работе необходимо изучить теоретический материал по имеющемуся в ЭУМКД [1] конспекту лекций, а также по литературе [2-4] и внимательно проработать примеры и задачи по соответствующей теме. После выполнения каждой лабораторной работы и оформления отчёта проводится её защита. При этом студент должен аргументированно ответить на все вопросы, относящиеся к выполнению работы и анализу полученных результатов. Студент допускается к экзамену после выполнения и защиты всех лабораторных работ.

Лабораторные работы выполняются в компьютерном классе на персональном компьютере с использованием пакета имитационного моделирования GPSS World.

Содержание отчёта

Отчёт выполняется в электронном виде каждым студентом индивидуально. После проверки выполнения программной части работы студент допускается к защите лабораторной работы. В отчёте должна содержаться следующая информация:

- задание согласно варианту;
- алгоритм программы;
- листинг программы;
- выходная статистика и ее анализ;
- выводы.

Создание моделей систем с одноканальными и многоканальными устройствами

Цель работы — ознакомление со средой имитационного моделирования GPSS World, изучение базовых операторов языка, сбор и анализ статистики, оценка производительности одноканальных и многоканальных устройств.

1.1 Теоретические сведения

Система имитационного моделирования GPSS в наибольшей степени подходит для моделирования реальных объектов, которые могут быть представлены в виде одного или нескольких узлов систем массового обслуживания (СМО). В языке моделирования GPSS имеются специальные средства для моделирования потоков заявок, одноканальных и многоканальных узлов СМО, очередей и т. п. Язык GPSS позволяет моделировать практически любые СМО: разомкнутые и замкнутые, одноканальные и многоканальные, с неограниченными очередями, отказами, ограничениями на очередь и др. Основные характеристики СМО (коэффициенты загрузки узлов, длины очередей и т. д.) автоматически определяются в процессе моделирования и выводятся в составе выходных данных модели. В то же время с помощью языка GPSS могут решаться задачи моделирования систем, для которых обычно не используется описание в виде СМО.

Работа языка GPSS основана на использовании метода Монте-Карло. В большинстве случаев операции метода Монте-Карло (обращения к генераторам случайных чисел, проверка условий и т. п.) выполняются в языке GPSS автоматически, т. е. они скрыты от пользователя. Однако при необходимости пользователь имеет возможность реализовать в программе на GPSS операции этого метода.

В данной работе рассматривается одна из реализаций системы моделирования GPSS – система GPSS World.

1.2 Экспериментальная часть

Компиляция модели

По окончании подготовки текста модели необходимо выполнить его компиляцию, т. е. преобразование в машинные коды. Для этого используется команда « $COMMAND - CREATE\ SIMULATION$ ». Создается файл в машинных кодах. Его имя образуется автоматически на основе имени исходного файла (т. е. файла GPSS-модели); расширение — *.SIM.

Если компиляция или моделирование прерываются из-за ошибок в модели, следует по выведенному сообщению определить допущенную ошибку, закрыть окно созданного *.SIM-файла, перейти в окно модели, внести необходимые исправления и снова выполнить компиляцию модели.

Установка счетчика завершений и запуск модели

Для запуска модели необходимо выбрать команду «COMMAND - START». На экран выводится окно «START COMMAND», в котором указывается команда «START» и начальное значение счетчика завершений. Если моделирование должно завершиться через известное время, то модуль таймера организуется следующим образом: пусть, например, это время равно 480 единицам, тогда этот модуль выглядит так:

generate 480
terminate 1
start 1

Для начала процесса моделирования необходимо нажать «OK». В процессе моделирования при выполнении оператора *terminate 1* (имитирующего окончание обработки транзакта — таймера) счетчик завершений уменьшается на единицу и оказывается равным нулю. На этом моделирование завершается.

Если же необходимо закончить процесс моделирования после обработки определенного количества транзактов, например 100 деталей, то в операнд А команды «START» заносят это число, а в операнды А блоков terminate, которые удаляют из моделей транзакты, детали по единице. Тогда после вычитания сотой единицы из счетчика завершений процесс моделирования закончится.

Обработка результатов моделирования

По окончании моделирования создается файл-отчет с результатами моделирования. Его имя образуется автоматически на основе имени файла GPSS-модели; расширение — *.GPR. Файл-отчет, созданный системой GPSS World, содержит информацию о различных объектах GPSS-модели (устройствах, очередях и т. п.). Кроме того, в файле-отчете содержатся некоторые внутренние данные о работе системы моделирования. Обычно следует сохранить этот файл (командой «FILE - SAVE»), а также скопировать его содержимое в окно текстового редактора Word для обработки и последующей печати. Сохранять файл в машинных кодах не требуется.

1.3 Практические задания

Задание 1 *Изготовление заданного количества деталей, моделирование таймера, использование очередей, списки событий, статистика.*

Базовые операторы: generate, terminate, advance, seize, release, start, queue, depart.

На прессе гибкого производственного модуля нужно изготовить a деталей. Заготовки к нему поступают через b мин. На изготовление одной детали уходит c мин. Определить время, за которое будет изготовлено a, 2a деталей. Сделать вывод о загрузке пресса. Предложить варианты оптимизации работы. Время поступления заготовок может изменяться не более чем на 50 % от номинального, а разброс — на 1 мин. Время обработки детали неизменно. Показать

статистику повышения производительности. Задание выполняется согласно индивидуальному варианту (таблица 1.1).

Таблица 1.1 – Варианты индивидуальных заданий

Вариант	а	b	С
1	50	7 ± 3	5 ± 2
2	70	5 ± 2	4 ± 2
3	100	8 ± 2	6 ± 2
4	80	9 ± 1	7 ± 3
5	75	3 ± 1	4 ± 1
6	40	4 ± 1	6 ± 2
7	30	7 ± 3	6 ± 1
8	150	5 ± 3	7 ± 2
9	200	5 ± 2	4 ± 1
10	120	5 ± 1	6 ± 2
11	60	8 ± 3	5 ± 1
12	35	3 ± 1	5 ± 2
13	90	6 ± 2	5 ± 3
14	110	3 ± 2	5 ± 1
15	130	10 ± 3	6 ± 2

Выполнить задание, организовав работу пресса в течение одной, двух смен. Предусмотреть статистику очереди. Определить среднюю и максимальную длину очереди, количество заготовок, которые пресс начал обрабатывать сразу, среднее время ожидания заготовки изготовления без учета заготовок, которые сразу попали на пресс. Оценить загрузку пресса и предложить способы повышения производительности труда.

Задание 2 Моделирование одноканальных и многоканальных устройств.

Базовые операторы: seize, release, storage, enter, leave.

В цех поступают заготовки через a мин. Вначале деталь обрабатывается на токарном станке в течение b мин. Далее деталь обрабатывается на фрезерном станке c мин. и на шлифовальном станке d мин. Время перемещения между операциями составляет $(1\pm0,2)$ мин. Определить оптимальное количество токарных, фрезерных и шлифовальных станков. Частота подачи заготовок может варьироваться в пределах 10% от исходного значения. Провести моделирование в течение суток. Выполнить анализ выходной статистики. Задание выполняется согласно индивидуальному варианту (таблица 1.2).

Таблица 1.2 – Варианты индивидуальных заданий

Вариант	а	b	С	d
1	2	3	4	5
1	2 ± 1	7 ± 3	3 ± 1	6 ± 4
2	2 ± 0.5	5 ± 2	3 ± 1	4 ± 2
3	2 ± 0.3	8 ± 2	5 ± 2	6 ± 4
4	1 ± 0.3	9 ± 1	4 ± 1	7 ± 3

Продолжение таблицы 1.2

1	2	3	4	5
5	$2 \pm 0,4$	10 ± 1	8 ± 2	3 ± 1
6	$1,5 \pm 0,5$	6 ± 1	5 ± 1	3 ± 2
7	3 ± 1	7 ± 3	5 ± 2	6 ± 3
8	$3 \pm 0,5$	11 ± 2	5 ± 1	6 ± 3
9	3 ± 1	12 ± 3	7 ± 1	4 ± 2
10	3 ± 0.5	9 ± 2	3 ± 1	5 ± 2
11	$3 \pm 1,2$	8 ± 3	6 ± 1	7 ± 1
12	3 ± 0.7	7 ± 1	3 ± 1	5 ± 2
13	$4 \pm 1,5$	10 ± 2	8 ± 3	5 ± 3
14	4 ± 1	12 ± 2	5 ± 1	4 ± 1
15	$4 \pm 0,5$	10 ± 3	6 ± 2	8 ± 4

1.4 Контрольные вопросы

- 1 Что такое транзакт?
- 2 Назовите операторы занятия и освобождения одноканальных, многоканальных устройств.
 - 3 Как организовывать в программе таймер?
 - 4 Какую информацию содержат операнды операторов storage, queue, depart?
 - 5 На каком методе основана работа пакета GPSS World, в чем его суть?

Имитационное моделирование с использованием вычислительных объектов

Цель работы — использование функций и различных законов распределения, моделирование последовательной работы оборудования.

2.1 Практические задания

Задание 1 Использование различных законов распределения.

Базовые операторы: exponential, normal, uniform, duniform, triangular, binominal, poisson.

На станции техобслуживания работают a мастеров. Каждые b мин приезжает клиент. Время обслуживания одного клиента составляет c мин. Промоделировать работу станции техобслуживания в течение рабочей смены. Рассмотреть варианты с 2-3 комбинациями законов распределения. Сделать вывод о лучшем и худшем сочетаниях законов распределения. Неизвестные параметры законов распределения выбрать по своему усмотрению. Рассмотреть один закон распределения с различными параметрами. Рассмотреть заданные законы распределения с различными отклонениями, промоделировать работу для 1, 3 и 10 рабочих смен. Задание выполняется согласно индивидуальному варианту (таблица 2.1).

Таблица 2.1 – Варианты индивидуальных заданий

Вариант	а	Ь	С
1	2	3	4
1	3	Экспоненциальная величина	Равномерное распределение
		со средним значением 5	в диапазоне 3–7
2	3	Равномерное распределение	Экспоненциальная величина
	7	в диапазоне 4–7	со средним значением 8
2 .	4	Гауссовское распределение	Дискретное равномерное
3	4	с матожиданием 6 и СКО 1	распределение в диапазоне 5-8
	4	Распределение Пуассона	Дискретное равномерное
4)4	со средним значением 3	распределение в диапазоне 8-12
5	2	Дискретное равномерное	Экспоненциальная величина
3	2	распределение в диапазоне 4-8	со средним значением 7
6	2	Экспоненциальная величина	Гауссовское распределение
0	2	со средним значением 8	с матожиданием 9 и СКО 2
7	4	Равномерное распределение	Гауссовское распределение
/	4	в диапазоне 6–9	с матожиданием 7 и СКО 1
8	3	Гауссовское распределение	Равномерное распределение
0	<u> </u>	с матожиданием 4 и СКО 1	в диапазоне 3-6
9	5	Распределение Пуассона	Гауссовское распределение
9	3	со средним значением 12	с матожиданием 10 и СКО 2

Продолжение таблицы 2.1

1	2	3	4
10	4	Дискретное равномерное	Гауссовское распределение
10	4	распределение в диапазоне 12–15	с матожиданием 10 и СКО 1
11	2	Экспоненциальная величина	Дискретное равномерное
11	3	со средним значением 7	распределение в диапазоне 5–10
12	2	Равномерное распределение	Гауссовское распределение
12		в диапазоне 4–10	с матожиданием 8 и СКО 1
13	5	Гауссовское распределение с	Экспоненциальная величина
13	3	матожиданием 5 и СКО 0,5	со средним значением 6
14	4	Распределение Пуассона	Равномерное распределение
14	4	со средним значением 5	в диапазоне 4–7
15	3	Дискретное равномерное	Гауссовское распределение
13	3	распределение в диапазоне 3-7	с матожиданием 5 и СКО 1

Задание 2 Организация циклов, применение стандартных числовых атрибутов.

Базовые операторы: assign, loop, test.

На склад прибывают грузовые автомобили с контейнерами (от 4 до $10 \, \text{шт.}$). В среднем на склад прибывает a автомобилей в час (интервалы между моментами их прибытия — экспоненциальные случайные величины). Одновременно на складе могут разгружаться не более чем 3 автомобиля. Выгрузка одного контейнера занимает от 4 до 12 мин. Склад вмещает b контейнеров. При заполнении склада разгрузка приостанавливается.

Примерно c % грузов доставляются заказчикам автомобилями, принадлежащими складу. Склад имеет e автомобилей. Доставка груза заказчику занимает от 1 до 5 ч. Остальные грузы вывозятся автомобилями заказчиков. Интервал от поступления груза до прибытия за ним автомобилей заказчика составляет от 5 до 20 ч.

Одновременно на складе могут загружаться не более пяти автомобилей. Затраты времени на погрузку примерно такие же, как и на выгрузку.

Разработать имитационную программу для анализа работы склада в течение календарного года. Определить количество контейнеров, которое проходит через склад. Определить оптимальный объем склада. Определить минимальное и максимальное время доставки груза заказчику с момента прихода машины с грузом на склад своими силами и машинами заказчика. Предложить варианты повышения эффективности работы склада. Задание выполняется согласно индивидуальному варианту (таблица 2.2).

Таблица 2.2 – Варианты индивидуальных заданий

Вариант	а	b	С	e
1	2	3	4	5
1	8	200	10	4
2	10	150	15	5
3	12	300	20	3

Продолжение таблицы 2.2

1	2	3	4	5
4	14	100	25	8
5	15	180	30	10
6	7	140	35	12
7	8	220	40	8
8	9	260	45	10
9	10	180	50	8
10	11	270	55	12
11	12	210	60	8
12	13	130	65	9
13	14	280	70	11
14	15	290	30	13
15	16	240	40	7

Пример решения задачи №2

На склад прибывают грузовые автомобили с контейнерами (от 3 до 5 шт.) через 10 мин с СКО, равным 1 мин. Одновременно на складе могут разгружаться не более чем 3 автомобиля. Выгрузка одного контейнера занимает ровно 5 мин. Склад вмещает 100 контейнеров. При заполнении склада разгрузка приостанавливается. На складе имеется 10 автомобилей для доставки привезенного груза клиентам. Доставка занимает 40–60 мин, а время возращения составляет 80 % от продолжительности движения с грузом. Время загрузки одного контейнера составляет 3 мин. Всего имеется 2 места для загрузки. Разгрузка машины занимает 10 мин. Интервал времени между двумя операциями погрузки/разгрузки составляет 1 мин. Разработать имитационную программу для определения количества прошедших через склад контейнеров в течение календарной недели.

Листинг программы:

```
100
sklad
              storage
pogr
              storage
                            2
              storage
razg
              storage
                            (normal(1, 10, 1))
              generate
              assign
                            1, (duniform(2,3,5))
              assign
              enter
                            razg
m razq
              advance
             enter
                            sklad
              loop
                            1,m_razg
              advance
              leave
                            razq
              enter
                            car
              enter
                            pogr
              advance
zagr
              leave
                            sklad
              1000
                            2, zagr
              advance
              leave
                            pogr
              assign
                            5, (uniform(3,40,60))
              advance
                            р5
              advance
                            1.0
              advance
                            (0.8 # p5)
              leave
                            car
              terminate
                            (1440#7)
              generate
              terminate
                            1
              start
```

Выходная статистика:

	START TIME 0.000		D TIME 80.000	BLOCKS 26	FACILIT:	IES ST	ORAGES 4	
	0.000	1000	00.000	20	O		7	
LABEL	LOC	BLOCK TYPI	F. F	ENTRY CO	OUNT CURRE	лт сопи	T RETRY	
211222	1	GENERATE		1005	, , , , , , , , , , , , , , , , , , , ,	0	0	
	2	ASSIGN		1005		0	0	
	3	ASSIGN		1005		0	Ö	
	4	TEST		1005		0	0	
	5	TEST		943		97	0	
POG	6	ENTER		908		0	0	
M RAZG	7	ADVANCE		3591		3	0	
_	8	ENTER		3588		0	0	
	9	LOOP		3588		0	0	
	10	ADVANCE		905		0	0	
	11	LEAVE		905		24	0	
	12	ENTER		881		0	0	
	13	ENTER		881		0	0	
ZAGR	14	ADVANCE		3490		1	0	
	15	LEAVE		3489		0	0	
	16	LOOP		3489		0	0	
	17	ADVANCE		880		1	0	
	18	LEAVE		879		0	0	
	19	ASSIGN		879		0	0	
	20	ADVANCE		879		5	0	
	21	ADVANCE		874		0	0	
	22	ADVANCE		874		3	0	
	23	LEAVE		871		0	0	
	24	TERMINATE		871		0	0	
	25	GENERATE		1		0	0	
	26	TERMINATE		1		0	0	
STORAGE	CAP.	REM. MIN. I	MAX. F	ENTRIES	AVL. AVE	.C. UTT	L. RETRY	DELAY
SKLAD	100		100	3588	1 84.48			0
POGR	2	0 0	2	881	1 1.1			0
RAZG	3	0 0	3	908	1 2.7			97
CAR	10	0 0	10	881	1 9.9			24

2.2 Контрольные вопросы

- 1 Назовите законы распределения в пакете GPSS World.
- 2 Какая информация находится в *report*-файле?
- 3 Как организовать проверку условий в GPSS World?
- 4 Какие операторы необходимо использовать при организации цикла?
- 5 Какие операторы используются для проверки условий?

Использование средств рационального построения моделей

Цель работы — организация работы модели со взаимосвязанными процессами, а также управление движением транзактов в зависимости от состояния элементов модели.

3.1 Практические задания

Задание 1 Организация модели взаимосвязанных процессов.

Базовые операторы: test, loop, assign, initial.

В ремонтную службу предприятия поступают приборы для ремонта. Каждый прибор может содержать от 3 до 7 неисправных деталей (с одинаковой вероятностью). Поток приборов — пуассоновский с заданным средним интервалом поступления приборов. В ремонтной службе работают два ремонтника. Ремонт прибора включает следующие операции:

- осмотр прибора от e до f мин;
- замена неисправных деталей, время замены одной детали гауссовская случайная величина со средним значением *а* мин и стандартным отклонением 30 с.

В начале работы в ремонтной службе имеется c запасных деталей. Каждые 24 ч этот запас пополняется до d штук.

В данной задаче два взаимосвязанных процесса: ремонт приборов и поступление запасных частей. Разработать модель для анализа работы ремонтной службы в течение 30 сут. Задание выполняется согласно индивидуальному варианту (таблица 3.1).

Таблица 3.1 – Варианты индивидуальных заданий

Вариант	а	c	d	e	f
1	2	200	240	4	10
2	3	180	220	5	12
3	3	100	150	6	14
4	3	80	160	7	8
5	4	120	140	8	9
6	4	260	280	10	11
7	5	230	250	9	13
8	5	170	200	8	12
9	5	300	300	7	14
10	2	140	170	6	15
11	3	165	180	11	20
12	5	190	200	12	16
13	5	145	170	5	14
14	4	90	100	6	10
15	4	140	160	7	9

Задание 2 Управление движением транзактов в зависимости от состояния элементов модели.

Базовые операторы: gate, logic, split, assemble.

В ремонтную службу предприятия поступают приборы для ремонта. Поток приборов поступает согласно закону распределения b. Каждый прибор состоит из a блоков; каждый из этих блоков требует ремонта. Блоки, входящие в один прибор, могут ремонтироваться независимо друг от друга разными ремонтниками.

В ремонтной службе работают два ремонтника. Время ремонта одного блока — экспоненциальная величина со средним значением c мин.

После ремонта всех блоков, входящих в прибор, требуется регулировка прибора на специальном стенде. Регулировка занимает от d до e мин.

Приборы поступают в ремонтную службу только в течение рабочего дня (8 ч). Ремонтная служба работает круглосуточно. Разработать модель для анализа работы ремонтной службы в течение 30 сут. Задание выполняется согласно индивидуальному варианту (таблица 3.2).

Вариант	а	b	C	d	e
1	2	Uniform(8,10)	Exponential(6)	4	10
2	3	Uniform(10,14)	Exponential(8)	5	12
3	3	Uniform(8,12)	Exponential(12)	6	14
4	3	Uniform(10,12)	Exponential(7)	7	8
5	4	Uniform(6,10)	Exponential(10)	8	9
6	4	Uniform(6,8)	Exponential(11)	10	11
7	5	Uniform(9,13)	Exponential(5)	9	13
8	5	Uniform(9,11)	Exponential(9)	8	12
9	5	Uniform(7,10)	Exponential(6)	7	14
10	2	Uniform(7,11)	Exponential(10)	6	15
11	3	Uniform(12,14)	Exponential(8)	11	20
12	5	Uniform(12,16)	Exponential(7)	12	16
13	5	Uniform(10,16)	Exponential(9)	5	14
14	4	Uniform(14,16)	Exponential(12)	6	10
15	4	Uniform(8,11)	Exponential(5)	7	9

Таблица 3.2 – Варианты индивидуальных заданий

3.2 Контрольные вопросы

- 1 В чем состоит назначение оператора *test* при реализации модели со взаимосвязанными процессами?
 - 2 Для чего используется команда *initial?* Каков ее формат объявления?
- 3 В каких состояниях может находиться логический переключатель? В чем заключается суть его использования?
 - 4 Какой оператор используется для проверки состояния переключателя?
 - 5 В чем заключается отличие оператора *test* от оператора *gate*?

Организация синхронной работы подразделений

Цель работы — организация синхронной работы подразделений, применение табличных величин для сбора статистики и ввода исходных данных.

4.1 Практические задания

Задание 1 Разработка имитационной программы для анализа работы участка технологического процесса производства.

Базовые операторы: split, assemble, gather.

На участке цеха по выпуску напитков выполняются следующие операции: заполнение бутылок напитком и закупоривание, наклейка этикеток, установка бутылок в ящики.

Пустые бутылки по одной поступают в цех в среднем через каждые a с. (экспоненциальная случайная величина). По мере поступления бутылки устанавливаются в поддон, вмещающий 25 шт. Поддон с бутылками поступает к машине, выполняющей заполнение и закупоривание. Эти операции выполняются для всех бутылок в поддоне одновременно и занимают b с на поддон (обе операции вместе). На закупоренные и заклеенные бутылки наклеиваются этикетки; эта операция занимает c с на бутылку (включая извлечение ее из поддона, наклеивание этикетки и установку обратно в поддон). По окончании всей обработки бутылки из поддона перегружаются в ящики, вмещающие по b шт.

Всего на участке используется d поддонов. Перемещение поддона от места подачи пустых бутылок к машине для заполнения и закупоривания, от нее – к месту наклейки этикеток, и оттуда – к месту перегрузки бутылок в ящики занимает e c; возвращение пустого поддона к месту подачи пустых бутылок занимает 20 c.

Разработать имитационную программу для анализа процесса работы участка в течение недели (5 дн. по 3 смены). Предложить возможные методы повышения выпуска продукции при минимальных изменениях технологического процесса производства. Задание выполняется согласно индивидуальному варианту (таблица 4.1).

Таблица 4.1	 Варианты индивидуальных : 	заданий

Вариант	а	b	С	d	e
1	2	3	4	5	6
1	2	21 ± 2	Uniform(8,10)	4	10
2	3	22 ± 1	Uniform(10,14)	5	12
3	3	24 ± 5	Uniform(8,12)	6	14
4	3	29 ± 6	Uniform(10,12)	7	8
5	4	30 ± 2	Uniform(6,10)	8	9
6	4	35 ± 4	Uniform(6,8)	10	11

Продолжение таблицы 4.1

1	2	3	4	5	6
7	5	38 ± 1	Uniform(9,13)	9	13
8	5	39 ± 5	Uniform(9,11)	8	12
9	5	36 ± 6	Uniform(7,10)	7	14
10	2	25 ± 2	Uniform(7,11)	6	15
11	3	34 ± 3	Uniform(12,14)	11	20
12	5	38 ± 4	Uniform(12,16)	12	16
13	5	40 ± 1	Uniform(10,16)	5	14
14	4	27 ± 3	Uniform(14,16)	6	10
15	4	29 ± 5	Uniform(8,11)	7	9

Задание 2 Разработка имитационной программы для процесса работы мастерской.

Базовые операторы: split, assemble, gather.

Мастерская по наладке устройств получает задания каждые a мин. Устройство состоит из трех частей. Бригада ремонтников (3 чел.) после получения устройства в течение (5 \pm 2) мин разбирает его на части, и каждый из рабочих занимается своей частью в течение b мин. Затем части отправляются на тестирование, а бригада берется за новое устройство, но только после отправки всех трех частей. Тестирование занимает по c мин на часть, после чего устройство собирают в течение (6 \pm 3) мин и отправляют на склад.

Разработать имитационную программу для анализа процесса работы мастерской в течение дня (две смены). Предложить способы повышения эффективности работы ремонтников. Задание выполняется согласно индивидуальному варианту (таблица 4.2).

Таблица 4.2 – Варианты индивидуальных заданий

Вариант	a	Ь	С
1	29 ± 6	15 ± 2 , 12 ± 5 , 17 ± 2	6 ± 2 , 5 ± 3 , 2 ± 1
2	25 ± 2	10 ± 3 , 14 ± 1 , 12 ± 5	$3 \pm 1, 2 \pm 2, 2 \pm 1$
3	34 ± 3	$15 \pm 5, 18 \pm 3, 13 \pm 3$	$10 \pm 2, 5 \pm 3, 2 \pm 1$
4	38 ± 4	15 ± 3 , 10 ± 5 , 17 ± 2	12 ± 2 , 9 ± 3 , 10 ± 4
5	22 ± 1	$12 \pm 4, 8 \pm 6, 9 \pm 3$	$6 \pm 4, 4 \pm 3, 5 \pm 3$
6	24 ± 5	10 ± 3 , 10 ± 1 , 10 ± 3	$5 \pm 1, 7 \pm 1, 9 \pm 1$
7	30 ± 2	13 ± 2 , 12 ± 5 , 12 ± 2	10 ± 2 , 5 ± 3 , 2 ± 1
8	35 ± 4	20 ± 1 , 14 ± 2 , 15 ± 4	12 ± 2 , 9 ± 3 , 10 ± 4
9	36 ± 6	12 ± 3 , 16 ± 2 , 14 ± 2	6 ± 2 , 5 ± 3 , 2 ± 1
10	38 ± 1	15 ± 2 , 12 ± 5 , 17 ± 2	$6 \pm 4, 4 \pm 3, 5 \pm 3$
11	39 ± 5	13 ± 2 , 12 ± 5 , 12 ± 2	$5 \pm 1, 7 \pm 1, 9 \pm 1$
12	21 ± 2	10 ± 3 , 14 ± 1 , 12 ± 5	6 ± 2 , 5 ± 3 , 2 ± 1
13	40 ± 1	15 ± 5 , 18 ± 3 , 13 ± 3	12 ± 2 , 9 ± 3 , 10 ± 4
14	27 ± 3	15 ± 3 , 10 ± 5 , 17 ± 2	10 ± 2 , 5 ± 3 , 2 ± 1
15	29 ± 5	15 ± 2 , 12 ± 5 , 17 ± 2	12 ± 2 , 9 ± 3 , 10 ± 4

Задание 3 Синхронизация работы, формирование таблиц.

Базовые операторы: match, adopt, table, tabulate.

В цех поступают заготовки двух типов. Заготовки первого типа поступают через a мин и обрабатываются на станке в течении b мин. Брак на операции составляет c %. Заготовки второго типа поступают на другой станок с интервалом d мин, обрабатываются e мин. Брак составляет f %. После этого обе детали попадают одновременно на третий станок, где собираются в одну деталь в течение g мин.

Определить минимальное и максимальное время сборки одной детали – от поступления заготовки до собранной детали. Занести время сборки деталей в таблицу и построить согласно этим данным диаграмму (tabulate). Задание выполняется согласно индивидуальному варианту (таблица 4.3).

Вариант	а	b	c	d	e	f	g
1	6–8	Normal(6,1)	2	Exponential(10)	Normal(8,1)	1	10-12
2	7–9	Normal(6,1)	2	Normal(8,1)	Exponential(7)	2	7–12
3	5–6	Normal(5,1)	3	Exponential(6)	Poisson(6)	3	8-10
4	5–7	Normal(6,1)	3	Poisson(7)	Normal(6,1)	4	8–12
5	6–10	Normal(8,1)	4	Exponential(7)	Exponential(7)	5	8-10
6	7–10	Exponential(7)	4	Normal(8,1)	Poisson(7)	1	10–12
7	8–10	Exponential(7)	5	Normal(10,1)	Normal(8,1)	2	8–12
8	8–9	Exponential(7)	5	Poisson(10)	Exponential(8)	3	10–14
9	8-11	Exponential(7)	1	Poisson(7)	Poisson(7)	4	8–12
10	10-12	Exponential(7)	1	Poisson(10)	Normal(8,1)	5	11–12
11	4–6	Poisson(5)	1	Normal(5,1)	Exponential(4)	5	6–8
12	4–8	Poisson(5)	2	Exponential(5)	Poisson(5)	4	7–8
13	5–9	Poisson(5)	3	Poisson(8)	Normal(8,1)	3	7–9
14	6–9	Poisson(7)	4	Normal(8,1)	Exponential(7)	2	7–9
15	6–8	Poisson(7)	5	Exponential(10)	Poisson(9)	1	8–9

Таблица 4.3 – Варианты индивидуальных заданий

4.2 Контрольные вопросы

- 1 Что такое ансамбль?
- 2 В чем заключается назначение оператора *split*? Назовите формат команды, назначение операндов, значения по умолчанию.
 - 3 В чем заключается назначение операторов gather и assemble?
 - 4 Для чего служит оператор *match*?
 - 5 Когда применяется оператор *adopt*?

Обработка внештатных ситуаций при имитационном моделировании

Цель работы — организация прерываний программы, работы одноканальных и многоканальных устройств, использование приоритетов.

5.1 Практические задания

Задание 1 *Моделирование профилактических работ на производственном участке.*

Базовые операторы: savail, sunavail.

В цехе установлено устройство обработки деталей, которое может обрабатывать по a деталей одновременно. Детали на обработку поступают каждые b мин. Однако устройство необходимо останавливать для профилактического обслуживания каждые c мин, перерыв в работе длится d мин.

Необходимо скорректировать интервал поступления деталей так, чтобы детали, накапливающиеся за время перерыва, успевали обработаться до следующего перерыва. Построить график изменения количества деталей в очереди на обработку. Задание выполняется согласно индивидуальному варианту (таблица 5.1).

Таблица 5.1 – Варианты индивидуальных заданий

Вариант	а	b	С	d	e
1	2	7±2	5	90	30
2	2	1±2	2	35	8
3	1	4±2	4	50	7
4	3	15±2	5	40	5
5	3	2±2	2	40	8
6	3	4±2	2	30	5
7	1	3±2	2	45	4
8	4	8±2	3	50	10
9	3	7±2	3	20	7
10	4	3±2	2	33	8
11	2	5±2	3	25	6
12	1	4±2	4	50	5
13	2	2±2	2	36	7
14	4	6±2	2	24	5
15	1	3±2	3	46	6

Задание 2 Моделирование прерываний работы устройств.

Базовые операторы: preempt, return, priority.

В цехе установлен станок по обработке деталей. Обработка длится a минут. Заказы на детали бывают трех видов: обычные, срочные и сверхсрочные, они приходят каждые b, c, d мин соответственно. Более срочный заказ прерывает выполнение менее срочного.

Промоделировать работу станка в течение недели (5 дн., 2 смены). Показать графически (plot) как происходят прерывания выполнения заказов. Задание выполняется согласно индивидуальному варианту (таблица 5.2).

Таблица 5.2 – Варианты индивидуальных заданий

Вариант	а	b	С	d
1	30	80	140	220
2	20	40	90	190
3	40	90	150	320
4	50	50	160	220
5	20	30	110	150
6	20	30	130	200
7	30	40	80	250
8	30	60	150	330
9	40	70	230	350
10	20	50	120	250
11	30	40	150	320
12	40	60	210	330
13	20	30	170	260
14	20	40	130	200
15	30	70	150	230

Задание 3 Обработка внештатных ситуаций и их профилактика.

Базовые операторы: preempt, return, favail, funavail.

В цехе установлен станок для обработки деталей. Детали поступают каждые a мин, обработка длится b мин. Каждые c мин станок останавливают и в течении d мин осматривают на наличие неисправностей. Кроме того, станок выходит из строя (обнаруживается поломка при осмотре) каждые e мин. На ремонт тратится f мин. После ремонта обрабатывавшуюся в момент поломки деталь необходимо подвергнуть действию g (забраковать, обработать заново, продолжить обработку), а осмотр станка — действию h (не прекращается во время ремонта, продолжается после, проходит заново).

Промоделировать работу станка в течение трех часов и показать графически порядок обработки деталей, осмотров и ремонтов (plot). Задание выполняется согласно индивидуальному варианту (таблица 5.3).

Таблица 5.3 – Варианты индивидуальных заданий

Вариант	а	b	С	d	e	f	g	h
1	2	3	4	5	6	7	8	9
1	5	2	30	2	62	3	Забраковать	Не прекращать
2	2	1	30	2	61	3	Обработать заново	Не прекращать
3	4	3	32	1	43	3	Продолжить	Не прекращать

Продолжение таблицы 5.3

продолжение и	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0.0					
1	2	3	4	5	6	7	8	9
4	5	3	20	5	51	2	Забраковать	Продолжить после
5	3	2	30	3	61	1	Обработать заново	Продолжить после
6	3	2	30	3	41	3	Продолжить	Продолжить после
7	2	1	30	4	51	2	Забраковать	Заново
8	5	2	20	5	44	5	Обработать заново	Заново
9	6	4	20	3	51	1	Продолжить	Заново
10	5	2	30	5	51	3	Забраковать	Не прекращать
11	4	3	20	2	62	2	Обработать заново	Не прекращать
12	5	2	30	5	41	3	Продолжить	Не прекращать
13	3	2	20	2	31	1	Забраковать	Продолжить после
14	4	2	30	4	51	3	Обработать заново	Продолжить после
15	3	2	20	1	61	2	Продолжить	Продолжить после

5.2 Контрольные вопросы

- 1 Когда необходимо использовать операторы *preempt*, *return*?
- 2 Для чего служат операторы savail, sunavail?
- 3 Для чего служат операторы favail, funavail?
- 4 Для чего нужны списки задержанных и прерванных транзактов?

Моделирование выбора устройств по определенному критерию

Цель работы — организация выбора устройств по заданному критерию, подсчет подходящих устройств.

6.1 Практические задания

Задание 1 Выбор направления движения.

Базовый оператор: select.

В цехе имеется a станков. Заготовки поступают каждые b мин и направляются на станок, имеющий минимальную очередь, причём время движения заготовки от места поступления до станка равно 5n (n — номер станка). Реализовать время перехода через обращение к матрице. Время обработки на станке зависит от длины очереди и определяется функцией oбработка = c - d * oчередь (при этом максимальное повышение производительности равно 10d). Промоделировать работу участка в течение месяца. Предложить варианты повышения эффективности. Задание выполняется согласно индивидуальному варианту (таблица 6.1).

Таблица 6.1 – Варианты индивидуальных заданий

Вариант	а	b	С	d
1	3	Normal(12,1)	40–46	1
2	3	Exponential(7)	22–26	0,5
3	3	Poisson(10)	41–43	1,2
4	4	Normal(8,1)	40–44	1,1
5	4	Exponential(10)	44–48	1
6	4	Poisson(11)	52–56	1,4
7	5	Normal(10,1)	59–61	1,2
8	5	Exponential(8)	42–50	1
9	5	Poisson(12)	62–66	0,8
10	6	Normal(12,1)	80–86	2
11	6	Exponential(9)	60–64	1,1
12	6	Poisson(10)	70–74	1,4
13	6	Normal(10,1)	62–64	0,4
14	5	Exponential(11)	62–64	0,8
15	4	Poisson(9)	42–44	1

Задание 2 Подсчет устройств, удовлетворяющих критерию.

Базовые операторы: select, count.

На заводе проходит испытание новое устройство покраски деталей. Устройство состоит из трех красящих и одного вспомогательного манипуляторов. Процесс организован так: вспомогательный манипулятор устанавливает деталь

в одну из трех рабочих позиций (a мин), затем красящий манипулятор наносит краску (b мин), вспомогательный убирает готовую деталь (c мин). Детали поступают каждые d мин и попадают на устройство с наименьшим числом обрабатываемых в данный момент деталей. Кроме того, каждый час происходит контроль одного из параметров (e). Результаты проверок заносятся в таблицу. Промоделировать работу цеха в течение дня (2 смены). Задание выполняется согласно индивидуальному варианту (таблица 6.2).

Таблица 6.2 – Варианты индивидуальных заданий

Вариант	а	b	С	d	e
1	2	15	3	6-8	Число свободных красящих манипуляторов
2	2	20	4	7-9	Число занятых красящих манипуляторов
3	1	14	3	5-6	Число красящих манипуляторов с загрузкой меньше 60 %
4	5	25	2	5-7	Число красящих манипуляторов с загрузкой больше 60 %
5	3	15	1	6-10	Число свободных красящих манипуляторов
6	3	20	3	7-10	Число занятых красящих манипуляторов
7	1	18	3	8-10	Число красящих манипуляторов с загрузкой меньше 60 %
8	5	30	5	8-9	Число красящих манипуляторов с загрузкой больше 60 %
9	3	20	1	8-11	Число свободных красящих манипуляторов
10	5	15	3	10-12	Число занятых красящих манипуляторов
11	2	8	2	4-6	Число красящих манипуляторов с загрузкой меньше 60 %
12	1	14	3	4-8	Число красящих манипуляторов с загрузкой больше 60 %
13	2	20	1	5-9	Число свободных красящих манипуляторов
14	4	12	3	6-9	Число занятых красящих манипуляторов
15	1	23	2	6-8	Число красящих манипуляторов с загрузкой меньше 60 %

6.2 Контрольные вопросы

- 1 Для чего используется оператор *count*?
- 2 В чем заключается назначение оператора *select*?
- 3 Какие условия возможны в операторах select и count?
- 4 Как организовать занесение данных в таблицу?

Уменьшение числа объектов в модели методом косвенной адресации, обработка одновременных сообщений

Цель работы — использование косвенной адресации, организация обработки временных узлов.

7.1 Теоретические сведения

Идея косвенной адресации состоит в том, что каждый транзакт в некотором своем параметре содержит номер того или иного объекта, а в операндах блоков, адресующихся к объектам, записывается ссылка на этот параметр транзакта. Например,

означает: поместить в ячейку с номером 1 значение, содержащееся в ячейке, номер которой определяется значением параметра 2 транзакта.

Временной узел – это наличие более одного транзакта с одинаковым временем в списке будущих событий.

7.2 Практические задания

Задание 1 Уменьшение числа объектов в модели методом косвенной адресации.

Базовые операторы: function, variable, table, qtable, priority.

На вход многоканальной системы с тремя каналами обслуживания поступает экспоненциальный поток заявок со средним интервалом поступления a единиц модельного времени. Каждая заявка с равной вероятностью 0,2 относится к одному из пяти видов: 1, 2, 3, 4 или 5. Среднее время обслуживания заявок каждого типа составляет соответственно b, c, d, e, f единиц модельного времени. Чем меньше среднее время обслуживания заявки, тем выше ее приоритет. Необходимо построить модель, позволяющую оценить средние значения времени ожидания заявок каждого вида, а также модель распределения общего времени ожидания в очереди и общего времени пребывания в системе. Задание выполняется согласно индивидуальному варианту (таблица 7.1).

Таблица 7.1 – Варианты индивидуальных заданий

Вариант	а	b	c	d	e	f
1	2	3	4	5	6	7
1	140	90	100	110	120	130
2	130	120	110	100	90	90
3	150	140	100	90	110	120

Продолжение таблицы 7.1

1	2	3	4	5	6	7
4	145	120	100	110	90	130
5	180	130	140	100	80	90
6	165	100	90	140	100	110
7	120	90	110	110	110	120
8	130	80	90	100	110	120
9	160	130	120	100	110	90
10	155	150	100	130	90	120
11	140	140	130	90	110	120
12	190	150	90	120	130	130
13	170	100	110	150	90	100
14	140	120	110	100	90	80
15	135	90	110	100	120	130

Задание 2 Обработка временных узлов для моделей со списками пользователя.

Базовые операторы: variable, transfer, assign, priority, preempt, gate, test, link, unlink.

На вычислительный комплекс коммутации сообщений поступают сообщения от трех абонентов и далее передаются по двум каналам передачи данных со скоростью 1 кб/с. Длительности интервалов между сообщениями от каждого абонента распределены по экспоненциальному закону с интенсивностью λ 1/с. Сообщения равновероятно могут принадлежать одной из двух категорий: команды или иная информация. Команды обладают абсолютным приоритетом. Длины сообщений — команд равномерно распределены в интервале 1400-6000 байт. Длины остальных сообщений (иная информация) распределены по нормальному закону с параметрами m и n байт. Для хранения сообщений, ожидающих обработки в комплексе, предусмотрен накопитель емкостью 1 Мб.

С целью исследования в течение 1 ч функционирования вычислительного комплекса разработать имитационную модель зависимости емкости накопителя от интенсивности поступления сообщений, обеспечивающей вероятность передачи сообщений-команд не менее a, а иной информации — не менее b. Задание выполняется согласно индивидуальному варианту (таблица 7.2).

Таблица 7.2 – Варианты индивидуальных заданий

Вариант	а	b	$m(*10^3)$	$n(*10^2)$
1	2	3	4	5
1	0,9	0,7	2	3
2	0,8	0,6	3	4
3	0,7	0,6	1	2
4	0,6	0,5	1	2
5	0,9	0,6	2	3
6	0,8	0,7	3	4

Продолжение таблицы 7.2

1	2	3	4	5
7	0,7	0,5	3	4
8	0,6	0,4	2	3
9	0,9	0,5	3	4
10	0,8	0,6	2	3
11	0,7	0,4	2	3
12	0,6	0,3	2	3
13	0,9	0,6	2	3
14	0,8	0,5	1	2
15	0,7	0,4	1	2

7.3 Контрольные вопросы

- 1 В каких случаях целесообразно использовать косвенную адресацию при имитационном моделировании систем?
 - 2 Что такое временной узел?
 - 3 Для чего служит оператор *preempt*?
 - 4 Когда применяются операторы link, unlink?
 - 5 Когда может возникнуть параллельная адресация?

Моделирование гибких участков штамповки

Цель работы — исследование гибких участков штамповки, разработка алгоритмов функционирования участков и оптимизация их работы посредством моделирования и анализа.

Задание Моделирование гибких участков штамповки.

Проанализировать работу участков штамповки деталей из штучных заготовок, компоновочные схемы которых представлены на рисунке 8.1 (однопрессовые) и на рисунке 8.2 (двухпрессовые).

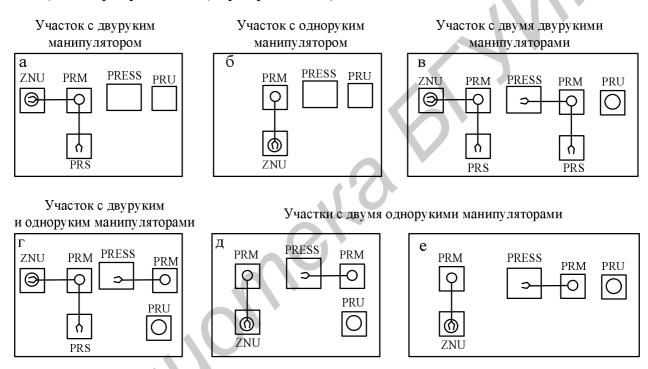


Рисунок 8.1 – Компоновочные схемы однопрессовых участков

8.1 Экспериментальная часть

Однопрессовый участок содержит пресс PRESS, четырехпозиционное поворотное загрузочное устройство ZNU (одно – в компоновках a, δ ; два – в компоновках a, δ , e), приемное устройство PRU (в компоновках a, δ), промежуточный приемный стол PRS (один – в компоновках a, e; два – в компоновке e), один или два манипулятора PRM.

В двухпрессовых участках между прессами находится транспортный манипулятор TRM.

Движение заготовок, полуфабрикатов и деталей осуществляется слева направо. Продолжительность цикла работы манипулятора (опустить руку, взять заготовку, поднять руку, повернуться на 90° , опустить руку, положить заготовку, поднять руку, возвратиться в исходное положение) составляет k с. Кассета вмещает l шт. заготовок, тара под отштампованные детали -7l шт. деталей.

Продолжительность поворота загрузочного устройства на $90^{\circ} - m$ с, перегрузка приемного устройства после его заполнения -n с, рабочего цикла прессования детали -q с.

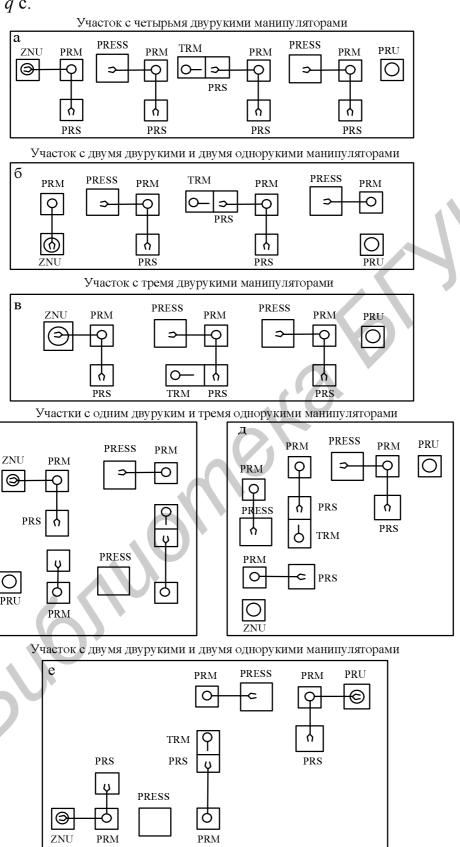


Рисунок 8.2 – Компоновочные схемы двухпрессовых участков

8.2 Практическое задание

Составить алгоритм моделирования работы участка согласно варианту (таблица 8.1), по нему реализовать программу имитационной модели, учитывая, что работа участка составила *р* смен при коэффициенте использования рабочего времени, равном 0,9. Оценить производительность участков и загрузку оборудования, а именно, количество отштампованных деталей, среднее время изготовления одной детали, коэффициенты загрузки основного и вспомогательного оборудования. Предложить варианты повышения производительности участков. Задание выполняется согласно индивидуальному варианту (см. таблицу 8.1).

Таблица 8.1 – Варианты индивидуальных заданий

Вариант	k	l	m	n	p	q	Рис.
1	3	300	10	150	1	1	A
2	3,5	400	15	160	2	1,5	Б
3	4	450	12	140	3	1,2	В
4	3	300	10	150	1	1	Γ
5	3,5	400	15	160	2	1,5	Д
6	4	450	12	140	3	1,2	Е
7	3	300	10	150	1	1	Б
8	3,5	400	15	160	2	1,5	В
9	4	450	12	140	3	1,2	Γ
10	3	300	10	150	1	1	Д
11	3,5	400	15	160	2	1,5	Е
12	4	450	12	140	3	1,2	A
13	3	300	10	150	1	1	В
14	3,5	400	15	160	2	1,5	Γ
15	4	450	12	140	3	1,2	Д

8.3 Контрольные вопросы

- 1 Как организовать моделирование счетчиков при заполнении тары?
- 2 Как уточнить коэффициент использования рабочего времени, чтобы не было незавершенного производства и максимально использовалось рабочее время?
- 3 Каким образом повысить коэффициенты использования менее загруженного оборудования?
 - 4 Как зависит производительность участков от номенклатуры изделий?
- 5 Как изменить имитационную модель при учете задержки на замену штампов в случаях перехода к штамповке новой партии (типа) изделий?

Литература

- 1 Лукьянец, С. В. Электронный учебно-методический комплекс дисциплины «Моделирование в проектировании промышленных систем» для студ. спец. 1-53 01 07 «Информационные технологии и управление в технических системах» / С. В. Лукьянец, А. С. Климчик. Минск : БГУИР, 2007.
- 2 Боев, В. Д. Моделирование систем. Инструментальные средства GPSS World : учеб. пособие / В. Д. Боев. СПб. : БХВ–Петербург, 2004. 368 с.
- 3 Кудрявцев, Е. М. GPSS World. Основы имитационного моделирования различных систем / Е. М. Кудрявцев. М. : ДМК Пресс, 2004. 320 с.
- 4 Томашевский, В. И. Имитационное моделирование в среде GPSS / В. И. Томашевский, Е. Г. Жданова. М. : Бестселлер, 2003. 416 с.

Учебное издание

Климчик Александр Сергеевич Орда Павел Андреевич Снисаренко Светлана Валерьевна

МОДЕЛИРОВАНИЕ В ПРОЕКТИРОВАНИИ ПРОМЫШЛЕННЫХ СИСТЕМ

Лабораторный практикум для студентов специальности 1-53 01 07 «Информационные технологии и управление в технических системах» всех форм обучения

Редактор Т. П. Андрейченко Корректор Л. А. Шичко

Подписано в печать 21.01.2010.

Гарнитура «Таймс».

Уч.-изд. л. 1,6.

Формат 60х84 1/16. Отпечатано на ризографе.

Тираж 80 экз.

Бумага офсетная. Усл. печ. л. 1,98. Заказ 443.

Издатель и полиграфическое исполнение: Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ №02330/0494371 от 16.03.2009. ЛП №02330/0494175 от 03.04.2009. 220013, Минск, П. Бровки, 6