Химическое осаждение оксидов олова и цинка в высокоупорядоченные нанопористые матрицы

А.И. Захлебаева 1 , Г.Г. Горох 1 , А.В. Пянко 2 , В.В. Жилинский 2

¹Белорусский государственный университет информатики и радиоэлектроники,

²Белорусский государственный технологический университет, email: gorokh@bsuir.by

Послойное осаждение оксидов различных металлов в наноструктурированные матрицы анодного оксида алюминия (АОА) позволяет получить определенным образом упорядоченные смещанные метаплооксидные структуры, обладающие адсорбционно-каталитическими и хемочувствительными свойствами. Матрицу АОА формировали методом двухстадийного электрохимического анодирования А1, напыленного на Si подложку, в 0,4 M водном растворе винной кислоты. Условия анодирования обеспечивали размер и профиль пор, позволяющий провести равномерное заполнение матрицы. Послойное химическое осаждение гидроксидов металлов в матрицу АОА осуществляли из подщелаченных растворов 0,01 M ZnSO₄ и SnSO₄ при рH = 8 с последующей выдержкой образцов в растворе КОН в течение 1 мин. Полученные слои после естественной сушки отжигали при температуре 750 °C до полного перехода Sn^{+2} в Sn^{+4} и формирования смещанного оксида SnO_2 ·ZnO. Исследования структуры сформированной наносистемы показали сквозное наполнение матрицы AOA слоями SnO₂ и ZnO. Согласно данным анализа КР-спектров, пленки SnO₂·ZnO, отожженные при 750 °C, имеют кристаллическую структуру с пиками кристаллических фаз 550 cm⁻¹ и 1010 см^{-1} для SnO_2 , 705 см^{-1} и 820 см^{-1} для ZnO, 625 см^{-1} и 1150 см^{-1} для Al₂O₃. Исследования хемочувствительных свойств структурированных иленок SnO₂-ZnO показали, что их чувствительность к низким концентрациям NO₂ (1-2 ppm) существенно превышает чувствительность гладких пленок металлооксидов, что делает перспективным использование изготовленных по разработанной методике матричных систем со структурированными пленками SnO2 ZnO в качестве чувствительных элементов высокоточных газовых микросенсоров.