2016 № 7 (101)

УДК 615.835.3

ИССЛЕДОВАНИЕ ФУНКЦИИ ВНЕШНЕГО ДЫХАНИЯ У БОЛЬНЫХ С ПРОИЗВОДСТВЕННО ОБУСЛОВЛЕННЫМ ХРОНИЧЕСКИМ БРОНХИТОМ ПРИ ПРОВЕДЕНИИ МЕДИЦИНСКОЙ РЕАБИЛИТАЦИИ

Т.И. ГРЕКОВА, А.П.СИВАКОВ, Т.М. РЫБИНА*

Белорусская медицинская академия последипломного образования П. Бровки, 3, Минск, 220013, Беларусь

*РУП «Республиканский центр охраны труда» Министерство труда и социальной защиты Победителей 23, к. 2, Минск, 220004, Беларусь

Поступила в редакцию 22 ноября 2016

Исследованы показатели функции внешнего дыхания у больных с производственно обусловленным хроническим бронхитом при проведении медицинской реабилитации с использованием магнитотерапии и рефлексотерапии.

Ключевые слова: хроническая обструктивная болезнь легких, производственно обусловленный хронический бронхит, рефлексотерапия, магнитотерапия.

Введение

Профессионально обусловленная патология органов дыхания по распространенности и тяжести течения занимает одно из ведущих мест в структуре профессиональной заболеваемости. В формировании патологического процесса при профессиональном бронхите имеют место три основных синдрома: обструктивный, инфекционно-воспалительный, эмфизема легких [1]. По классическому определению хроническая обструктивная болезнь легких (ХОБЛ) характеризуется персистирующем ограничением скорости воздушного потока, которое имеет неуклонно прогрессирующий характер и обусловлено выраженным хроническим воспалительным ответом легочной ткани на действие патогенных частиц или газов. Таким образом, проблема ХОБЛ приобретает все большую медицинскую и социальную значимость. Это обусловлено высокими показателями заболеваемости и летальности, сложностью диагностики и терапии [2].

Задачей исследования являлась оценка функционального состояния бронхолегочной системы до и после проведения медицинской реабилитации, основными методами которой являлись магнитотерапия и иглорефлексотерапия.

Теоретическое обоснование

Спирометрия является основным методом диагностики изменений легочной функции при ХОБЛ [2]. У работников, страдающих пылевым бронхитом, отмечается развитие стойкой генерализованной обструкции. При 1-ой стадии профессионального пылевого бронхита отмечается достоверное снижение объема форсированного выдоха за 1-ю секунду (ОФВ1) [3]. Магнитное поле (МП) стимулирует процессы тканевого дыхания, усиливает обмен нуклеиновых кислот и синтез белков. Гемодинамические изменения под действием МП происходят на уровне микроциркуляторного русла. Улучшение перфузии и трофики тканей в результате действия МП проявляется выраженными противоотечным и противовоспалительным эффектами. Действие МП на систему крови основано на стимуляции компенсаторных возможностей организма. Под его влиянием отмечено улучшение

2016 № 7 (101)

клинического и тромбогенного потенциала крови, что сопровождается уменьшением адгезии и агрегации тромбоцитов, реакции освобождения тромбоцитарных факторов, повышением содержания гепарина, базофильных гранулоцитов крови и ее фибринолитической активности. Действие МП на кровь приводит к повышению кислородной емкости, что в свою очередь нормализует метаболические процессы [4]. Рефлексотерапия (классическое иглоукалывание) является также патогенетически направленным методом лечения больных ХОБЛ. Применение классического иглоукалывания вызывает активацию иммунных процессов, бронходилятаторный эффект, стимуляцию защитно-компенсаторных и приспособительных механизмов, нормализацию гемодинамики организма.

Методика

Для проведения магнитотерапии у больных с производственно обусловленными хроническими бронхитами авторами использовался индуктор «НефроСПОК» аппарата «ОртоСПОК». Индуктор накладывали на область проекции легких, при положении пациента лежа на животе. Величина магнитной индукции 20 мТл (100%), при данной магнитной индукции проводили 3 процедуры по 10 мин. Следующие 3 процедуры: экспозиция составляла 15 мин, величина магнитной индукции – 25 мТл. Последние 4 процедуры: продолжительность процедуры – 20 мин при величине магнитной индукции 26 мТл (130%).

Затем проводилось классическое иглоукалывание по тормозной (Т2) методике в зависимости от функциональной активности заинтересованных каналов в течение 25-30 мин. акупунктуры ДЛЯ воздействия осуществляли согласно представлениям рефлексотерапии о патогенезе бронхолегочных заболеваний, а также с учетом традиционных восточных концепций и данных, полученных методами электропунктурного тестирования. Использовали преимущественно точки задней и передней поверхности грудной клетки, точки верхних и нижних конечностей. В лечении использовались точки акупунктуры: P1, P10, P5, P7, P9; V11-13, V17, V43, V40, V60, V62; E14, E15, E36, E40; R25-27; RP3; TR5; MC6; F2, F3, F8; точки переднесрединного (VG4,11,14,20) и заднесрединного (VC17, VC14) меридианов. Воздействие осуществляли на точки акупунктуры меридианов легкого и на точки акупунктуры груди и спины с учетом клинической картины заболевания. Применялись также аурикулярные точки (АТ): АТ13, АТ31, АТ29, АТ51, АТ55, АТ101, АТ102 [5]. (Обозначение АТ приведено согласно общепринятой международной классификации.)

исследований явились работники, подвергающиеся воздействию промышленного аэрозоля, протоколы спирографических исследований, истории болезни. При поступлении на реабилитацию и при выписке из стационара работникам проводился комплекс функциональных методов исследования: функция внешнего дыхания, вариабельность ритма сердца. Исследования проводились двухкратно (до и после 10 процедур медицинской реабилитации). Распределение по полу составило: 12,5 % – женщины и 87,5 % – мужчины. По степени дыхательной недостаточности (ДН) на момент поступления в стационар, распределение было представлено следующим образом: ДНО – 18,8 %, ДНО-1 – 18,8 %, ДН1 – 18.8 %, ЛН1-2 – 37.5 %, ЛН2 – 6.3 %. Как видно из представленного распределения по степени дыхательной недостаточности 75,1 % имели умеренные или слабо выраженные нарушения функции дыхания, а 18,8 % их не имели вовсе. Распределение по классам пылевой нагрузки: 70,0 % составили работники, которых условно можно было отнести ко второму классу пылевой нагрузки. Работники с высоким классом пылевой нагрузки составили 10.0 %. Характеристика возрастно-антропометрических показателей исследуемой группы представлена в табл. 1.

Таблица 1. **Характеристика возраста, массы тела и ИМТ работников, включенных в группу** для поведения медицинской профилактики

Группа	Mean	N	SD	Min	Maxm	Q25	Me	Q75
Возраст	54,70	32	8,79	34,0	70,0	52,5	55,7	60,0
Масса тела	84,39	31	10,81	64,0	105,0	75,0	86,0	92,0
ИМТ	28,42	31	4,18	22,0	40,0	25,0	28,0	32,0

2016 № 7(101)

Методы статистической обработки данных, полученных в динамике проведения медицинской профилактики. Учитывая негаусовский характер распределения исследуемых показателей при статистической обработке результатов исследования, были использованы непараметрические методы. Для сравнения двух зависимых переменных (результаты обследования до- и после лечения) использовали тест Вилкоксона (Wilcoxon Matched Pairs Test). Для множественного сравнения независимых переменных применялись тест Краскела-Уолеса (Kruskal-Wallis ANOVA) и медианный тест (Median Test). Нулевая гипотеза (об отсутствии различий между переменными) отвергалась на уровне значимости $\alpha = 0.05$ ($p \le 0.05$). Результаты представлены в виде медианы (Me), верхней и нижней квартилей (Q25 и Q75).

Результаты и их обсуждение

Функциональные исследования системы дыхания имеют важные критериальные составляющие при формировании групп для проведения профилактических процедур. Они позволяют провести скрининговые исследования работников с производственными факторами риска и оценить их состояние здоровья на момент исследования, а также оценить результат проведенного профилактического лечения. Авторами проводились спирометрические исследования, монометрия ротовой полости, пульсоксиметрия, газоанализ у работников, включенных в группу для проведения методов медицинской реабилитации. В ходе проведения медицинской профилактики достоверное снижение показателей оценочного теста по ХОБЛ (САТ) было зарегистрировано только у представителей опытной группы и не отмечено у работников из группы сравнения. Динамика результатов САТ при проведении медицинской профилактики у представителей различных групп представлена в табл. 2.

Таблица 2. Динамика результатов теста САТ при проведении медицинской профилактики у представителей группы

Eminus M		До профилактики			После профилактики			P
Группы	1 V	Q25	Me	Q75	Q25	Me	Q75	
Сравнения	19	15,0	18,0	23,0	10,5	13,0	18,5	_
Исследуемая группа	37	14,0	21,0	24,0	14,0	18,0	23,0	0,02

Прирост объема форсированного выдоха за 1-ю секунду (ОФВ1 после медицинской профилактики – ОФВ1 до проведения медицинской профилактики) достоверно (Chi-Square = 6,49, p=0,04) зависел от характера проводимой профилактики. Наибольший подъем этого показателя отмечался у работников исследуемой группы (табл. 3).

Таблица 3. Прирост показателя ОФВ1 в зависимости от вида медицинской профилактики

Группы	N	Q25	Me	Q75
Сравнения	19	-0,02	0,06	0,19
Исследуемая группа	37	-0,10	0,13	0,41

Вид медицинской профилактики существенно повлиял на динамику показателя минутного объема дыхания (МОД). Достоверное его снижение после проведенной профилактики было отмечено у представителей 1-й группы (табл. 4).

Таблица 4. Динамика показателя МОД при проведении медицинской профилактики

Emanage N		До профилактики			П	P		
Группы	IV	Q25	Me	Q75	Q25	Me	Q75	
Сравнения	19	0	0,00	1,36	0	0,18	2,86	_
Исследуемая	37	0	1,12	5,31	0	0,20	0,92	0,007
группа								

2016 № 7 (101)

Выволы

Прирост объема форсированного выдоха за 1-ю секунду (ОФВ1 после лечения – ОФВ1 до лечения) достоверно (Chi-Square = 6,49, p=0,04) повышался у пациентов, получавшим комбинированную магнитотерапию и классическое иглоукалывание. Разработанная нами комбинация методов медицинской профилактики существенно повлияла на динамику показателя МОД ($H=7,82,\ p=0,02$), достоверное его снижение после проведенной терапии было отмечено у представителей исследуемой группы по сравнению с контрольной группой.

RESEARCH OF FUNCTIONAL RESPIRATORY STATUS IN REHABILITATION AND PREVENTION OF THE PATIENTS WITH INDUSTRIALLY CONDITIONED CHRONIC BRONCHITIS

T.I GREKOVA, A.P. SIVAKOV, T.M. RYBINA

Abstract

The functional respiratory status of patients with industrially conditioned chronic bronchitis was researched. The use of reflexotherapy and magnetotherapy in rehabilitations programs lead to prevention of chronic bronchitis.

Keywords: chronic obstructive pulmonary disease, industrially conditioned chronic bronchitis, reflexotherapy, magnetotherapy.

Список литературы

- 1. Иванова Л.А., Горизонтова М.И. // Пульмонология. 2008. № 4. С. 26–30.
- 2. Global Initiative for Chronic Obstructive Lung Disease (GOLD). [Электронный ресурс]. Режим доступа: http://www.goldcopd.org/uploads/users/files/GOLD_Report_2014_Jun 11.pdf. Дата доступа: 22.11.2016.
- 3. Косарев В.В., Жестков А.В. // Пульмонология. 2008. № 4. С. 56–61.
- 4. Улашик В.С., Плетнев С.В. Магнитотерапия: теоретические основы и практическое применение. Минск, 2015.
- 5. *Гаваа Лувсан*. Лечение хронического бронхита. Традиционные и современные аспекты восточной медицины. М., 2000.

УДК 582.28:538.6

ВЛИЯНИЕ УНИПОЛЯРНОГО МАГНИТНОГО ПОЛЯ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

В.И. ШАЛАТОНИН, Г.Г. ВЕРЕЩАКО

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Институт Радиобиологии АН Беларуси Федюнинского, 4, Гомель, 246007, Беларусь

Поступила в редакцию 22 ноября 2016

Приведены результаты экспериментов по влиянию униполярного магнитного поля (МП) на всхожесть и развитие семян пшеницы. Установлено влияние экранирующей полиэтиленовой пленки (ПП) на биологические эффекты МП.

Ключевые слова: магнит, N- и S-полюс, зерна пшеницы, полиэтиленовая пленка, вода.