УДК 539.216.2:621.793.14

Структурно-морфологические свойства слоев ZnSe/(Cu-In), полученных термическим испарением

И. Н. Цырельчук¹, В. Ф. Гременок², В. В. Хорошко¹

Получены тонкие пленки ZnSe/(Cu-In) последовательным термическим испарением соединения ZnSe и соиспарением Cu и In элементов. Исследование морфологии прекурсоров выявило поверхность, сформированную плотно упакованными мелкими кристаллитами с размерами 0.2–0.4 мкм и шероховатостью в пределах R_A = 0.24–0.32 мкм.

Ключевые слова: прекурсор, халькопирит, морфологические свойства.

Consecutive thermal evaporation of ZnSe combination and Cu and In elements evaporation provide ZnSe/(Cu-In) thin films. Studying the morphology of precursors we reveal the surface generated by densely packed small crystalline particles with the size of 0.2–0.4 microns and roughness within RA = 0.24–0.32 microns.

Keywords: precursor, thermal evaporation, morphological properties.

Введение

Прогресс современной полупроводниковой электроники во многом определяется как соответствующим выбором исходных материалов для изготовления приборов, так и технологическими методами их получения. И если в начальный период становления полупроводникового приборостроения в качестве исходных материалов использовались, в основном, элементарные полупроводники (Ge, Si) и бинарные соединения (GaAs и др.), то в настоящее время внимание исследователей привлекают многокомпонентные полупроводники. Это обусловлено возможностью изменять их физические свойства (а значит функциональный диапазон и характеристики получаемых приборов) в широких пределах за счет управления атомным составом веществ. Так, например, использование тройных A^IB^{III}C^{VI}₂ и более сложных фаз с халькопиритной структурой уже позволило получить тонкопленочные солнечные элементы (СЭ) на основе Cu(In,Ga)Se₂ (CIGS) с рекордной эффективностью до 21% [1]. Дальнейшее улучшение характеристик таких фотопреобразователей лежит на пути исследований взаимосвязи технологических процессов со свойствами конкретных типов структур, а также освоения новых систем на основе А^IВ^{III}С^{VI}₂ полупроводников. В рамках этих исследований твердые растворы на основе тройных и $A^{II}B^{VI}$ (ZnSe, ZnS, ZnTe) соединений в последнее время привлекают внимание разработчиков приборов на их основе [2-5]. Полупроводники этой группы являются прямозонными материалами, имеют наибольший для известных полупроводников коэффициент оптического поглощения (до 10^5 см⁻¹) и обнаруживают повышенную радиационную стойкость. Кроме того, использование цинка позволяет заменить дорогостоящие материалы как индий и галлий. Показано, что в системе $Cu_{1-X}In_{1-X}Zn_{2X}Se_2$ существует непрерывный ряд твердых растворов, и ширина запрещенной зоны изменяется от 2.67 эВ (ZnSe) до 1.04 эВ (CuInSe₂) [3, 5-8], что соответствует теоретическому оптимуму для создания высокоэффективных СЭ [9].

Вместе с тем, широкому практическому применению этих материалов на сегодняшний день препятствует ряд факторов, одним из которых является технологические трудности получения структурно совершенных пленок этих соединений, а также неполная, а иногда и противоречивая информация об их физических свойствах. В последнее время приоритетным направлением в области получения пленок $A^I B^{III} C^{VI}_2$ соединений является использование двухступенчатого технологического цикла – напыление металлов или их бинарных халькогенидов (прекурсоры) с последующей их селенизацией [10–12]. Перспективность такого подхода обусловлена возможностью получения пленок большой площади с контролируемым составом посредством хорошо развитых методов как на первой стадии напыления, так и на второй – реак-

ции с галогеном. При этом актуальными остаются вопросы, связанные с исследованием процессов формирования прекурсоров и их структурно-фазовых характеристик.

Целью настоящей работы являлось исследование кристаллической структуры, атомного состава и морфологии поверхности ZnSe/(Cu-In) пленок, полученных методом термического испарения соединения ZnSe и соиспарения Cu и In элементов. Такая технология может быть использована для развития промышленного метода получения тонких пленок $Cu_{1-X}In_{1-X}Zn_{2X}Se_2$, пригодных для создания СЭ.

Экспериментальная часть

Для получения базовых слоев ZnSe/(Cu-In) использовался метод термического испарения. В качестве подложек применялось боросиликатное стекло размером 75×25 мм², которое предварительно очищалось кипячением в перекисно-аммиачной среде и промывалось деионизованной водой. Нанесение слоев осуществлялось на вакуумной установке УВН-71П-3, и давление остаточных газов в процессе осаждения составляло 7.10⁻⁴ Па. Температура подложек поддерживалась на уровне 100–120 °C. Введение цинка в осаждаемые металлические пленки этим способом приводит к сильному загрязнению вакуумной установки. В связи с этим, получение базового слоя, содержащего цинк, осуществлялось методом испарения ZnSe, который испаряется возгонкой с сохранением стехиометрии. Навеска селенида цинка рассчитывалась, исходя из задаваемого состава получаемой пленки, и испарялась из отдельного танталового источника. Ранее было показано [13], что послойное осаждение меди и индия в любой последовательности термическим испарением не приводит к формированию однофазных пленок и должно сопровождаться отжигом, в результате которого происходит диффузия и образование соединений Cu_XIn_Y. Соиспарение металлов не требует дополнительной термообработки и позволяет получить прекурсоры с хорошей адгезией к подложке [11; 12]. В связи с этим Си и In (чистота ВЗ) испарялись из молибденовой лодочки одновременно со средней скоростью 0.05 мкм/мин, и соотношение металлов в пленке определялось величиной заранее подобранных навесок. Конечная толщина слоев ZnSe/(Cu-In) составляла 0.60-0.75 мкм с содержанием цинка до 30 атом. %.

Структурные свойства и фазовый состав слоев исследовались методом рентгеновского фазового анализа (РФА) в области $2\theta = 15 \div 100^{0}$ на СиК_а излучении ($\lambda = 1.5405$ Å) с никелевым фильтром. Идентификация фаз в пленках проводилась сравнением экспериментально установленных межплоскостных расстояний *d* с данными таблиц JCPDS (карты 05-642, 26-523, 42-1476, 80-0021, 81-1936, 40-1487, 05-0522, 41-0883, 26-0523).

Микрорельеф поверхности, микроструктура и поперечный скол пленок исследовались методом сканирующей электронной микроскопии на микроскопе H-800 (Hitachi, Япония) с разрешением 0.2 нм. Элементный состав материала пленок определялся методом рентгеновской дисперсионной спектроскопии на аппарате "Stereoscan-360" (Великобритания) с EDX спектрометром AH 10000 (Link Analitic, Великобритания) с разрешением 1 μ м³ и чувствительностью 0.1 атом. %. Качественный и количественный анализ элементного состава поверхности и по глубине выполнялся на сканирующем Оже-микрозонде PHI-660 (Perkin Elmer) с локальностью 0.1 μ м и чувствительностью 0.1 атом. % на ионном микрозонде IMS-4F (Cameca). Профиль поверхности и среднеарифметическая шероховатость R_A определялась на профилометре UBM.

Результаты и их обсуждение

Исследования фазового состава прекурсоров ZnSe/(Cu-In), осажденных на стекло с различным содержанием компонент, показали, что в таких слоях формируется смесь фаз, состоящая из ZnSe и бинарных соединений типа $Cu_X In_Y$ (рисунок 1, таблица 1). Как видно из данных РФА, в пленках присутствуют интерметаллические соединения $Cu_{11}In_9$, $Cu_{16}In_9$, CuIn и селенида цинка, соотношение между которыми зависит от массы испаряемых компонент. Известно, что фаза CuIn (рисунок 1, а)) является нестабильной (при комнатной температуре), образованной посредством скоростного диффузионного механизма, согласно которому [14] слой СиIn представляет собой нестабильную конфигурацию, легко распадаемую на бинарные соединения типа $Cu_x In_y$ (x > y) с повышением температуры в процессе селенизации.

Рисунок 1 – Рентгенограммы базовых слоев ZnSe/(Cu-In) с разным содержанием Zn: а) 0.02; б) 0.69 ат. %

Таблица 1 – Значения межплоскостных расстояний (*d*) и интенсивности (*I*) пиков для слоев ZnSe/(Cu-In), рассчитанные из рентгеновских спектров (рисунок 1) и данные для наблюдаемых пиков, согласно таблицам JCPDS

	,	Эксперимент					Данные таблиц JCPDS			
a)		б)								
	d, Å	2θ	Ι	<i>d</i> , Å	2 <i>θ</i> ,	I	ZnSe	Cu ₁₁ In ₉	Cu ₁₆ In ₉	CuIn
	,	град			грал			/		
		I			I					
	3.2698	27.25	47	3.2686	27.26	2294	3.2729(100	3.0340(80)		
	3.0113	29.64	57	3.0024	29.73	162)	3.0160(80)		
				2.7144	32.97	139		2.7160(80)		
	2.5923	34.57	110							2.5960(110)
	2.3987	37.46	27						2.4010(60)	~ /
	2.3415	38.41	31						2.3500(20)	
	2.1756	41.47	30	2.1701	41.58	32		2.1770(100)	~ /	
	2.1435	42.12	42	2.1386	42.22	48		2.1450(100)		
	2.0951	43.14	98							2.0990(55)
	1.5388	60.07	28						1.5390(10)	
	1.5033	61.52	8					1.5090(80)		
			-	1.5008	61.76	29		1.4970(20)		
	1.3478	66.27	15						1.4110(60)	

При температурах выше 100 0 С стабильна фаза Cu₁₁In₉ и в целом любые другие фазы Cu_xIn_y имеют тенденцию преобразовываться в Cu₁₁In₉ [16]. Ряд авторов [17–19], исследовавших процессы селенизации слоев Cu-In, подчеркивают необходимость наличия в прекурсорах фазы Cu₁₁In₉ для формирования селенизированных стехиометричных пленок высокого структурного качества. В наших исследованиях фаза CuIn распадается с образованием Cu₁₁In₉ при уменьшении концентрации Cu на 3.8 атом. % (соотношение Cu/In = 1.11) (рису-

нок 1, б), таблица 2). Вероятно, это является следствием более полного перемешивания потоков элементов в процессе термического испарения.

таблица 2 тезультаты исследования элементного состава прекурсоров Енбел (си пт)								
Номер	Cu,	In,	Zn,	Se,				
образца	ат. %	ат. %	ат. %	ат. %				
a	55.25	44.30	0.02	0.43				
б	59.91	39.43	0.16	0.50				
В	53.45	44.86	0.36	1.33				
Г	51.43	46.29	0.69	1.59				
Д	51.08	46.26	1.25	1,41				

Таблица 2 – Результаты исследования элементного состава прекурсоров ZnSe/(Cu-In)

Элементный состав материала пленок определялся методом рентгеновской дисперсионной спектроскопии с разрешением 1 µм³ и чувствительностью 0.1 атом. %.

Каких-либо дополнительных рефлексов от Zn-содержащих фаз с иной стехиометрией на рентгенограммах не обнаружено. Это указывает на то, что ZnSe не взаимодействует с Cu и In на стадии формирования базовых слоев.

Рисунок 2 – Типичная микрофотография поверхности (а), поперечного скола (б) и профиль поверхности (в) пленки ZnSe/(Cu-In)

Следует отметить, что при использовании пленок $Cu_{1-X}In_{1-X}Zn_{2X}Se_2$ для создания солнечных элементов их морфология как на стадии формирования прекурсоров, так и после селенизации, является аспектом первостепенной важности, т.к. оптическая длина пути падающего света, рассеянного на текстурированной поверхности поглощающих слоев, увеличивается [20], а следовательно, возрастает время жизни носителей заряда. Показано [16], что для создания тонкопленочных СЭ на основе CuInSe₂ с эффективностью фотопреобразования бо-

лее 15% пленки тройного соединения должны обладать низкими значениями среднеарифметической шероховатости в пределах 0.20–1.00 мкм. Это показывает, что высокая эффективность гладких пленок является следствием низкой плотности границ раздела и однородного распределения размеров зерен. Значения шероховатости, полученные нами на профилометре UBM, для прекурсоров ZnSe/(Cu-In) находились в пределах $R_A = 0.24-0.32$ мкм (рисунок 2, а)), что удовлетворяет литературным данным.

Исследование морфологии и поперечного скола слоев ZnSe/(Cu-In) выявило поверхность, сформированную плотно упакованными мелкими кристаллитами со средними размерами 0.2–0.4 мкм. Кристаллиты Cu-In не имели четкой огранки, однако их направление роста сильно ориентировано перпендикулярно плоскости подложки, что четко видно на поперечном сечении (рисунок 2, б)). Видимых изменений морфологии поверхности при изменении соотношения компонент в пленках (толщины слоя ZnSe) не обнаружено (рисунок 2, в)). На профиле распределения элементов по толщине слоя наблюдали неравномерное распределение элементов по глубине и наличие повышенной концентрации индия на поверхности, что, возможно, обусловлено процессами конденсации паров In на подложке в процессе напыления.

Содержание Си и In уменьшается в области, соответствующей переходному слою ZnSe/(Cu-In) (рисунок 3), а концентрация Zn и Se в области подложки возрастает. Такой характер распределения элементов свидетельствует о том, что ZnSe не растворяется в металлических составляющих.

Предварительные исследования селенизированных базовых слоев показали возможность получения пленок $Zn_{2-2X}Cu_XIn_XSe_2$ со структурой халькопирита или сфалерита, размерами кристаллитов более 3 мкм и однородным распределением компонент по толщине слоев [15].

Выводы

Тонкие пленки ZnSe/(Cu-In) получены последовательным термическим испарением соединения ZnSe и соиспарением Cu и In элементов. Исследование морфологии прекурсоров выявило поверхность, сформированную плотно упакованными мелкими кристаллитами с размерами 0.2–0.4 мкм и шероховатостью в пределах $R_A = 0.24-0.32$ мкм. Установлено, что фазовый состав базовых слоев ZnSe/(Cu-In) формируется смесью фаз, состоящих из ZnSe и бинарных соединений типа Cu_XIn_Y, и зависит от массы испаренных материалов.

Литература

1 Ward, J.S. A 21.5% Efficient Cu(In,Ga)Se₂ Thin-Film Concentrator Solar Cell / J.S. Ward, K. Ramanathan, F.S. Hasoon [et. al] // Prog. Photovolt. Res. Appl. – 2002. – V. 10. – P. 41–46.

2 Rud', V.Yu. Photosensitivity of Thin-Film Stuctures Based on $(CuInSe_2)_X (2ZnSe)_{1-X}$ Solid Solutions / V.Yu. Rud', Yu.V. Rud', R.N. Bekimbetov [et. al] // Semiconductors. – 2000. – V. 34. – No 5. – P. 558–562.

3 Rud', Yu.V. Formation and Investigation of Photosensitive Structures Based on Laser-Deposited CuInSe₂ – 2ZnSe Films / Yu.V. Rud', V.F. Gremenok, V.Yu. Rud' [et. al] // Phys. Stat. Sol (a). – 2001. – V. 188. – N_{2} 3. – P. 1077–1085.

4 Nishiwaki, S. Preparation of Zn doped $Cu(In,Ga)Se_2$ thin films by physical vapor deposition for solar cells / S. Nishiwaki, T. Saton, Y. Hashimoto, S. Shimakawa [et. al] // Solar Energy Materials & Solar Cells. – 2003. – V. 77. – P. 359–368.

5 Durante, C.A. Lattice Parameters and Optical Energy Gap of Pure and Doped (Cu-InSe2)_X(ZnSe)_{1-X} / C.A. Durante, S.M. Wasim, E. Hernandez // Cryst. Res. Technol. – 1996. – V. 31. – Special Issue 2. – P. 241–246.

6 Gremenok, V.F. Crystals and Thin Films of $Zn_{2-2x}Cu_xIn_xSe_2$ Solid Solutions: Structural and Physical Properties / V.F. Gremenok, W. Schmitz, I.V. Bodnar [et. al] // Jap. J. Appl. Phys. – 2000. – V. 39. – Sup. 39–1. – P. 277–278.

7 Bodnar, I.V. Optical Properties of the $(CuInSe_2)_X 2(ZnSe)_{1-X}$ and $(CuInTe_2)_X 2(ZnTe)_{1-X}$ Solid Solutions / I.V. Bodnar, V.F. Gremenok // Journal of Applied Spectrosopy. – 2003. – V. 70 – No 3. – P. 427–430. 8 Bodnar, I.V. Preparation and Investigation of $(CuInSe_2)_X(2ZnSe)_{1-X}$ and $(CuInTe_2)_X(2ZnTe)_{1-X}$ Solid Solution Crystals / I.V. Bodnar, V.F. Gremenok, W. Schmitz [et. al] // Journal of Crystal Research and Technology. – 2004. – V. 39. – No 4. – P. 301–307.

9 Goetzberger, A. Photovoltaic materials, history, status and outlook / A. Goetzberger, C. Hebling, H.W. Schock // Material Science and engineering. -2003. - V.40. - P.1-46.

10 Kazmerski, L.L. Photovoltaics: a review of cell and module technologies / L.L. Kazmerski // Renewable and sustainable energy reviews. $-1997. - V. 1. - N_{\odot} 1, 2. - P. 71-170.$

11 Rau, U. Properties of Cu(In,Ga)Se₂ heterojunction solar cells – recent achievements, current understanding, and future challenges / U. Rau, H.W. Schock // Appl. Phys. A. – 1999. – V. $69. - N_{2}$ 131–147. – P. 32–147.

12 Rau, U. Cu(In,Ga)Se₂ Sollar Cells / U. Rau, H.W. Schock // Series of Photoconversion of Solar Energy. – 2001. – V. 1. – P. 277–345.

13 Gossla, M. Investigation of thin films of the Cu-In and CuInS₂ system / M. Gossla, H.-E. Mahnke, H. Metzner // Thin Solid Films. -2000. - V. 361-362. - P. 56-60.

14 Guillen, C. Structure, morphology and photoelectrochemical activity of $CuInSe_2$ thin films as determined by the characteristics of evaporated metallic precursors / C. Guillen, J. Herrero // Solar Energy Materials & Solar Cells. – 2002. – V. 73. – P. 141–149.

15 Гременок, В.Ф. Анализ структуры и состава пленок Zn_{2x}Cu_{1-x}In_{1-x}Se₂, полученных методом селенизации / В.Ф. Гременок, Е.П. Зарецкая, О.Н. Сергеева // Поверхность. – 2004. – № 7. – С. 45–50.

16 Guillen, C. Semiconductour CuInSe₂ formation by close-spaced selenization processes in vacuum / C. Guillen, J. Herrero // Vacuum. – 2002. – V. 67. – № 3–4. – P. 659–664.

17 Brattacharyya, D. Formation of CuInSe₂ by the selenization of sputtered Cu/In layers / D. Brattacharyya, I. Forbes, F.O. Adurodija [et. al] // Journal of Materials Science. -1997. - V. 32. - P. 1889-1894.

18 Caballero, R. CuInSe₂ Formation by selenization of sequentially evaporated metallic layers / R. Caballero, C. Guillen // Solar Energy Materials & Solar Cells. – 2005. – V. 86. – № 1. – P. 1–10.

19 Hermann, A.M. Deposition of smooth Cu(In,Ga)Se₂ films from binary multilayers / A.M. Hermann, M. Mansour, V. Badri [et. al] // Thin Solid Films. – 2000. – V. 361–362. – P. 74–78.

20 Бутиков, Е.И. Оптика: учеб. пособие для вузов / под ред. Н.И. Калитеевского. – М.: Высшая школа, 1986. – 512 с.

¹Белорусский государственный университет информатики и радиоэлектроники

Поступило 08.11.11

²НПЦ Институт физики твердого тела и полупроводников НАН Беларуси