
Ontological Mapping for Conceptual Models of
Software System

Guskov G.U.
Namestnikov A.M.

Ulyanovsk State Technical University
Ulyanovsk, Russia

Email: g.guskov@ulstu.ru
Email: nam@ulstu.ru

Abstract—The paper proposes a integration methodology of
conceptual models and domain ontology. Also a system based on
the use of this technique was considered. The developed system
implements the integration of UML-diagrams as conceptual
models and ontologies represented on OWL [15]. The results
of this system for projects from open source repositories and the
ways of further development are presented.

Keywords—ontology, engineering design, conceptual model,
UML-diagramm.

I. INTRODUCTION

Description of the application domain [9] in the form
of formalized set of documents in OWL format is rare in
industrial projects. A formal description of the application
domain is time-consuming, both of experts and engineers that
have the skills to work with ontologies. Artifacts created during
the development of software products are usually described
formally. These artifacts include requirements specification,
requirements, conceptual models, source code with comments,
version control system logs, etc. Transfer the knowledge from
these artifacts in an ontology is much easier than from non-
formalized texts on relevant topics.[10] [13] This article de-
scribes an approach to extracting knowledge from conceptual
models and further integration conceptual models with domain
ontology.

Generally any manufacture can be automated to some de-
gree. Automation is done using specialized software packages.
All stages of working with the products need to design: produc-
tion, implementation, modernization, marketing, etc. During
the creation of software products a qualitative formalization
of application domain have a place, because software when is
being introduced into production it passes multiple levels of
testing. Conceptual models were been chosen as an example
of artifacts generated by the development of the software.
Conceptual models have a high degree of formalization and
semantically close enough to the subject area.

The UML-diagrams are discussed as conceptual models
in this article. UML-diagrams are most extended in software
development today. By using the UML- daigrams it is possible
to describe the system from different view points and all
diagrams will be built on the common meta-model.[12]

UML is being developed by a consortium of OMG, while
OWL belongs to W3C. Because different consortiums specify
UML and OWL technologies it is not surprising that direct

way of integrating from the manufacturer does not exist.
UML is defined as a comprehensive meta-model in the form
of a text description.The users get UML in the form of
implementation of the software from one of the vendors,
such as Visual Paradigm, StarUML, ArgoUML and others.
Each of the vendors interpret UML standard in different
ways and stores diagrams in its unique internal format. The
way to integrate diagrams from different vendors is XMI
format (XML Metadata Exchange). Nevertheless, diagrams
from different publishers in the exported XMI format also have
unique features.

Designers can use the UML in different ways depending
on the purpose of creating diagrams. M. Fowler [8] identifies
three different approaches to the use of language: sketches,
detailed design and visual programming language.This article
presents the results of frequency analysis of UML elements
and approaches to using UML.

OWL most relevant language for describing ontologies.To
create OWL ontologies software Protégé is used. By using
Protégé it is posible to create and edit the ontology and execute
queries using different reasoners. Importantly, the Protege
allows to export and import OWL ontology in various formats
of knowledge representation. Thus OWL format is compatible
with most formats of knowledge representation.

The relevance of the integration problems are caused by
the accumulation of a large number of artifacts in the projects
of large software organizations. It is necessary not only to fix
the design decisions in the form of artifacts, but also automate
process making changes to the project. Purpose of processing
UML-diagrams is to compile a list of conflicts and alternatives.
In this area there are several papers devoted similar subject.
There are a similar software systems for the transfer of con-
ceptual models to the production knowledge base [1] using its
own notation representation of the productive knowledge [2].
Examples of transformation of the same works are presented
in [3], [4] [14]. Authors are positioning transformation as a
system for the transfer knowledge from the diagrams in the
ontology.

The difference of this article from the above is the approach
to the problem. Projects in large enterprises have a long history
and can be supported and expanded by decades. It is therefore
necessary to ensure a permanent connection between concep-
tual models and the application domain. Such an approach
would avoid the most costly mistakes in the development

111

Би
бл
ио
те
ка

 БГ
УИ
Р

of projects and ensure their semantic coherence. In order to
integrate conceptual diagrams and ontology, it is necessary
not only automated conversion tool from UML to OWL, but
also a system to work with UML an enhanced knowledge by
OWL. This research is an attempt to produce integration the
domain ontology in the software development process at the
level of conceptual models. Thus,the normative documentation
[5] [11] and source code should be linked with the ontology.It
will allow to automatically detect conflicts and inconsistencies
between projects in the same domain ontology.

II. FORMULATION OF THE PROBLEM

Modern trends in the development are to increase the flex-
ibility and design of information systems, as well as the need
to become more flexible.The flexible design suggests frequent
modifications version of the conceptual models rather than
building them again each time. Designing from the beginning
is extremely expensive. Consideration of single system module
separately of the remaining components will cause problems.
Among the developers it is widely believed that the program
can not be described better than the source code, if it is written
qualitatively. But this statement is rather the consequence of
a lack of understanding and ambiguity the interpretation of
conceptual diagrams. Besides the user of conceptual diagrams
can be a non-programmer but the domain expert, the customer
(or its qualified representative) or manager.

In our opinion, the design should be more standardized
and more closely integrated into the development process. We
understand integration of design into the process of an informa-
tion system development not like automatically generate source
code, but the exact structure of the program description and
the nuances of its interaction. The technology will be accepted
by the community when its use reduces the time required
to execute a certain work. In order to increase the design
flexibility it is necessary automatically perform the consistency
check UML diagrams by reasoner working with ontology in
which these diagrams are integrated.

For the integration of domain ontology and design dia-
grams necessary to determine:

1) Format of the conceptual models description;
2) Format of the domain ontology description;
3) Rules for the conversion of conceptual models to the

domain ontology;
4) Architecture of software for integration system;
5) The algorithm of integration system;
6) The results of transformation experiments.

III. FORMAT OF THE CONCEPTUAL MODELS
DESCRIPTION

There are several common languages and notations that
allow to describe the conceptual models, such as: IDEF0,
IDEF1x, IDEF3, DFD, eEPC, UML etc. Some of these no-
tations have not been widely adopted and were considered
obsolete, such as IDEF2. Other notations, such idef0 or dfd
are successfully applied.Notations and modeling languages are
described in the official documentation. Documentation defines
the purpose, the basic elements , communication between
them and the semantic interpretation of the diagrams. Often
diagrams are built without the help of special software, as an

image on paper or image file. Diagrams that have been saved as
an images can not be updated in case of changes in the system.
The value of such diagrams is determined by the date of its
creation. These diagrams could be developed to synchronize
the view points of developers on the system at the time of
creating diagrams. If the diagram is constructed in the form of
image, it is impossible to produce on an automated processing.
Therefore it is necessary to focus on diagrams constructed with
the help of specialized software.

The Unified Modeling Language (UML) was chosen as the
format of conceptual models of the for the following reasons:

• availability of detailed and unambiguous documenta-
tion;

• implementation a set of diagrams describing all as-
pects of the system;

• wide popularity among engineers community and IT
engineers in particular;

• standardized diagrams export format - XMI .

Different organizations may have their own custom UML
design rules somewhat different from the standard or extend
it.It is necessary to support not only the most common diagram
elements, but also be able to add new items and delete obsolete.

IV. FORMAT OF THE DOMAIN ONTOLOGY
DESCRIPTION

As an ontology description format was chosen OWL.OWL
has several modifications. Selection of modification defines the
semantic power of language by the set of available syntactic
rules.For solving the problems of integration are best suitable
OWL Full as the most complete implementation of the OWL.
OWL Full allows to describe the same concept as a class and
as an object in different situations. But using OWL Full has
quite impressive drawback, namely the absence of guarantees
of solvability query to the ontologies in finite time. Therefore,
in the process of implementation of the system we will try to
harness the power of OWL full only where it is needed. In
other cases, we should use OWL DL.

V. RULES FOR THE CONVERSION OF CONCEPTUAL
MODELS TO THE DOMAIN ONTOLOGY

The elements of conceptual models should be translated
into the concepts of the ontology with regard to their semantic
interpretation. Semantics of the whole diagram is being formed
from the semantics of diagram elements and the semantics of
their interaction. Accordingly, it’s important to translate the
semantics of the elements of diagrams in view of the global
UML meta-model. At an earlier stage of development of the
integration system [7], rules for the transfer of some objects
the class diagrams have been identified. Consider the rules for
conversion of some elements of class diagrams to the concepts
of the ontology.

A. Element and Relationship

The Element and Relationship are root concepts and pro-
vide the basis for modeling all other concepts in UML. UML-
diagram contains Elements. Descendants of Element provide

112

Би
бл
ио
те
ка

 БГ
УИ
Р

semantics appropriate to the concept they represent.Each Ele-
ment can hold other Elements. Elements hierarchy are being
represented in the ontology as a hierarchy of classes, in which
the certain classes will be presented as nodes of last level.
A Relationship is an Element that specifies some kind of rela-
tionship between other Elements. Descendants of Relationship
provide semantics appropriate to the concept they represent. By
this definition Relationship can be translated to the ontology as
a subclass of the class Element. But in terms of the structure
of OWL is better to move a hierarchy with root Relationship
as ObjectProperty.This problem can be reduced to the problem
of dualism of concept and attribute. This problem is enough
common, one option of solving is considered in the article [6].

B. Type and DataType

To determine the Elements such as a class with its attributes
and operations, it is necessary to correlate the data types of
UML and OWL. DataType in UML is a subset of Type. Type is
a subclass of Element in turn. A Type specifies a set of allowed
values known as the instances of the Type. Basic types of OWL
and UML data are taken from XSD that means that the types
can be transformed directly without additional logic.The data
types in UML and OWL are not completely identical. Unique
data types, in turn, are based on the same basic XSD data
types, and are specified by the restrictions on the basic data
type.

C. Classes

The concept of class exists as in the UML, as well as
in OWL.In OWL class is a set of individuals. As a built-
in classes are offered the set of all instances of the Thing
class and the empty set of instances Nothing class. Custom
classes are interconnected by a relationship of ObjectProp-
erty.Custom classes and connected with literal values by using
the DataTypeProperty. UML class diagram considers a class
as an aggregate internal structure and behavior of objects.
Concepts of Class differ semantically, but the translation will
be available at the level of the class hierarchy. Internal structure
classes from UML-diagrams can be translated in OWL classes
using ObjectProperties and DatatypeProperty. Most object-
oriented programming languages do not support multiple in-
heritance because of the ambiguity problems of inheritance of
individual members of the class. However, such construction
is permissible in the description of domain ontology.

During the the research it was necessary to solve the prob-
lem of translating the hierarchy UML class in the hierarchy
of OWL classes. Inheritance relationship in UML, and the
OWL determined as follows, each instance (an individual) is a
subclass of the base class instance.The inheritance relationship
in UML, and the OWL defined equally, each instance of a
subclass is instance of the base class.

If you need to extract data from a domain uml-diagram to
fill the ontology class hierarchy can be translated uml-diagram
hierarchy OWL classes without any additional changes. But
in the case of integration uml-diagrams with the ontology
is necessary to present UML meta model in the form of
ontologies, and specify classes as individuals.In this case the
generalization from UML-diagram is entered as relation be-
tween individuals. Generalization from UML will be translated

to OWL as subproperty of Relationship, which in turn is
ObjectProperty subproperty.

D. Classes:Attributes

Class attributes can be divided by data types on a attributes
of primitive type (xsd schema) and custom attributes. Custom
attribute contains a reference to the class object, transfer,
etc.The attributes of the primitive data types are translated
into the ontology as a DataTypeProperty. Domain of DataType-
Property equal to the class that owns the attribute and Range
equal to the primitive type. Enumeration translated into a
user-defined data type DataTypeProperty for which are set
predefined values. Class attribute that contains a reference to
an object of another class is translated into ObjectProperty.
Domain of ObjectProperty equal to the class that owns the
attribute and Range equal to the class to which the attribute
refers.

E. Links

Relations used in the design of UML class diagrams,
usually do not have a direct analog in the ontological represen-
tation of the domian. A different approach to the description
of the relationship between the elements is explained by the
different objectives of creating diagrams and ontologies.

When transferring data from diagrams, it was required
to establish a conformity of relationship UML-diagrams and
ontologies.Attempts to implement this conformity in previous
research were limited use of private cases. Also rarely the
result such conversion can be uniquely interpreted in the
reverse conversion. In order to implement long-term integration
between diagrams and ontology, this approach can not be used.

When using ontology built on the basis of a meta-model
of UML relationships all meta-model will be transformed
into a hierarchy ObjectProperty. Specific relationships defined
on a particular UML-diagram are converted into instance of
ObjectProperty for classes translated as individuals.

VI. ARCHITECTURE OF SOFTWARE FOR INTEGRATION
SYSTEM

General scheme of the system is shown in Figure 1.
The diagram presents the key components of the system, the
connection between them, the data format of relations and the
role of users are interacting with them. It is assumed that the
organization has the following staff: programmer (developer
directly), designer (the most experienced programmer) and
domain expert. We assume that the domain expert and a
specialist in working with ontologies are one and the same
person. Although are generally, in practice, it is still two differ-
ent people. Furthermore, one specialist of ontologies usually
aggregates in the ontology knowledge of a large number of
domain experts.The same employee may be located in different
roles at different times. For example, designer can also be a
computer programmer.

The set of UML diagrams usually characterize more than
one project. For example : server application, client applica-
tions for different platforms, tools, services, etc. can be realized
as independent applications, but its UML-daigrams may sub-
stantially intersect. Programmers working on different projects,

113

Би
бл
ио
те
ка

 БГ
УИ
Р

Figure 1. General scheme of the system

can spend less time on the synchronization of applications
through the use of common parts of design.

Integration System creates an internal project that includes
the data from the conceptual models and data from the domain
ontology. UML- diagrams can be loaded into the project in the
XMI format. Ontology in OWL format can also be added to
the project.

Domain experts could work with ontology directly through
the instrument to which they are accustomed. A feature of
the ontology used in the scheme is a part responsible for the
representation of meta-model UML diagrams.Not all elements
of the UML diagrams can be unambiguously represented on
the application domain.In this regard, it is proposed to link
the elements of domain ontology with elements of the UML
meta-model with the help of a special relationship.

Figure 2 shows a sequence diagram representing the work-
flow of the system integration during designing:

• 1.The designer creates a set of UML-diagrams;

• 2.Domain expert creates ontology.In this case, it does
not matter which action will occur first and which is
second. Usually the enterprise already has existing set
of UML diagrams, because the creation of a UML
diagrams set is shown first;

• 3. Domain expert formulate request to integrate on-
tology and a set of UML-diagrams.This action is per-
formed by the domain expert, as it becomes relevant
only after the creation of ontology;

• 3.1 Integration system creates a UML meta-model part
in a given ontology;

• 4, 4.1, 4.2 Integration System takes data from domain
ontology in OWL format;

• 4.3, 4.4 Integration System takes data from the UML-
diagrams in XMI format;

• The integration system combines the data obtained
from the UML-diagrams and ontology using rules of
integration between 4.4 and 4.5 messages ;

Figure 2. Workflow of Integration system submitted to the sequence diagram

• 4.5, 4.6 integration system checks the consistency of
the ontology and uml diagrams for axioms specific to
this application domain;

• 4.7 The integration system updates the ontology by
the data derived from UML;

• 5, 5.1 The designer receives a diagram of processing
results using reasoner from the system integration;

• 6 Designer updates UML-diagrams.

VII. THE ALGORITHM OF INTEGRATION SYSTEM

The algorithm processes the XMI file, which is a specific
structure of xml file. This feature allows to build non-trivial
queries to the document. Thus, it is possible to not think about
the implementation of a query at a low level (indexing, data
structures for storage, etc.).

Listing 1. Parsing UML in XMI format
1 b e g i n
2 c l a s s D i a g r a m = getClassDiagramm (

XMIroot) ;
3 i f (c lassDiagramm == n u l l) t h a n
4 e x i t ;
5 UserTypes [] = g e t T y p e s (

c l a s s D i a g r a m) ;
6 C l a s s e s [] = g e t C l a s s e s (ClassDiagram

)
7 f o r e a c h (c l a s s i n C l a s s e s [])
8 b e g i n
9 c l a s s . A t t r i b u t e s = g e t A t t r i b u t e s

(c l a s s) ;

114

Би
бл
ио
те
ка

 БГ
УИ
Р

10 c l a s s . O p e r a t i o n s = g e t O p e r a t i o n s (
c l a s s) ;

11 c l a s s . C h i l d s = g e t C h i l d s (c l a s s ,
C l a s s e s []) ;

12 c l a s s . P a r e n t = g e t P a r e n t (c l a s s ,
C l a s s e s []) ;

13 end
14 MatchingDataTypes (C l a s s e s [] ,

UserTypes []) ; / / R e p l a c i n g XMI ID
on t h e t y p e o f names

15 A s s o c i a t i o n s [] = g e t A s s o c i a t i o n s (
r o o t , C l a s s e s []) ;

16 Dependenc ie s [] = g e t D e p e n d e n c i e s (
r o o t , C l a s s e s []) ;

17 / / G e n e r a t i o n o f OWL
18 owl = w r i t e H e a d e r (owl) ;
19 / / G e n e r a t i o n o n t o l o g y header
20 owl = w r i t e D a t a T y p e s (owl , UserTypes) ;
21 / / D a t a T y p e P r o p e r t i e s
22 owl = w r i t e C l a s s e s (owl , C l a s s e s []) ;
23 / / C l a s s e s
24 owl = w r i t e L i n k s (owl , C l a s s e s [] ,

A s s o c i a t i o n s [] ,
25 Dependenc ie s []) / / O b j e c t P r o p e r t i e s

;
26 E r r o r L i s t [] = r e a s o n e r . V a l i d a t e (owl)

;
27 f o r e a c h (e r r o r i n e r r o r L i s t)
28 b e g i n
29 p r i n t (e r r o r) ;
30 end
31 end

This algorithm was implemented in the Visual Studio
development environment, the language C # in the form of
a desktop application. The core modules are implemented as
linked libraries.

VIII. THE RESULTS OF TRANSFORMATION
EXPERIMENTS

The experiments have been some exceptions, but all dia-
gram elements described in the article, have been successfully
translated into ontology. It is worth noting that the developers
rarely use a wide range of elements. Using UML in such a
way leads to creation of sketches intended for understanding
difficult situations in project functioning. The histogram in
figure 3 represents the frequency distribution of the elements
of the class diagram.

For testing implemented systems were selected for the class
diagram of various projects of the Open Source GitHub. We
were searched diagrams on the basis of the file expansion
names. In this regard, we chosen development tools uml-
diagrams supporting XMI export.

Table 1 contains a summary of the editors of uml-diagrams.
Many editors do not implement export XMI at all, some
supports outdated version of the format. Some editors allocates
export to XML as a paid functionality. As a result, test a few
editors were selected: Visual Paradigm, Enterprise Architech
and Altova UModel.

Figure 3. Histogram of the frequency of use of the elements

Table I. RESULTS OF TESTING BY EXPORT UML DIAGRAM TO XMI
FORMAT

Editor Version
XMI

Export Translation Comment

ArgoUML 1.2 Success Impossible Outdated
version XMI

Astah 1.1 Success Impossible Outdated
version XMI

Altova
UModel

2.1,
2.4.1

Success Success

Enterprise
Architect

1.1, 2.1 Success Success

MagicDraw 2.1 Success Impossible Only in paid
version

Innovator
Enterprise

2.1 Success Impossible Only in paid
version

modelio 1.1 Success Impossible
StarUML 1.1 Success Impossible
Visual
Paradigm

2.1 Success Success

Figure 4 shows a histogram of the frequency distribution
by use UML in projects. Classification of approaches to the
use of UML borrowed from M. Fowler [8]. M.Fowler offers
to share the use of UML on the way:

1) Sketches are local description of complex parts of
the system. Sketches do not describe the global
behavior of the system, the interaction of components
at current moment;

2) Detailed description of the project represents the non-
trivial part of the project taking into account all
aspects, given the interaction of the system modules.
Detailed description do not contain obvious part of
the project,for example, the properties or fields are
needed to implement the encapsulated class capabil-
ities;

3) A visual programming language provides code gen-
eration designed by class diagram. Visual program-
ming language suggests mandatory accounting of all
aspects of the system, even the most obvious.

115

Би
бл
ио
те
ка

 БГ
УИ
Р

Figure 4. Histogram of the frequency distribution projects by the way of
using UML

IX. CONCLUSION

This research modified and greatly expanded the concept
of the system integration of conceptual models and ontologies.
A new ontology structure consisting of two parts was devel-
oped.These parts are a presentation of a UML meta-model and
domain ontology. Result of research reformulated conversion
rules of uml class diagram elements and a special case of
the conversion elements of the meta-model. We collected data
allow to estimate way to use uml-diagrams.

ACKNOWLEDGMENT

This research are supported by Russian Foundation for
Basic Research, project numbers 16-47-732120 and 16-47-
732033.

REFERENCES

[1] N.Dorodnich i A. Urin, Ispolzovanie diagram klassov UML dlya
formirovaniya produccionnih baz znanii, Programnaya ingeneriya N4,
2015.

[2] M.Grishenko, A. Urin, A. Pavlov,Razrabotka ekspertnih sistem na osnove
transformacii informacionnih modelei predmetnoi oblasti, Programnie
producti i sistemi N3, 2013.

[3] D. Gašević and D. Djurić, V. Devedžić, V DamjanovićConverting UML
to OWL Ontologies,In Proceedings of the 13 th International World Wide
Web Conference , NY, USA, 2004, pp. 488-489 (pdf).

[4] J. Zedlitz, J. Jorke,N. Luttenberger,From UML to OWL 2, In: Proceedings
of Knowledge Technology Week 2011. Springer (2012).

[5] A. Filippov, Formirovanie navigacionnoi structuri electronnogo arhiva
tehnicheskih documentov na osnove ontoogicheskogo predstavleniya,
Avtomatizaciya processov upravleniya. 2013. N 3 (33). p. 61-68.

[6] U.Zagorulko, I Ahmadeeva, A. Serii, V Shestakov, Postroenie tematich-
eskih intellektualnih nauchnih internet-resursov sedstvami semantic web,
Trudi 15 nacionalnoi konferencii po iscusstvennomu intelektu KII-2016,
Smolensk, T2, 2016, p. 47-55.

[7] A.Namestnikov, G.Guskov, Programnaya sistema preobrazovaniya
UML-diagram v ontologii na yazike OWL , Trudi 15 nacionalnoi kon-
ferencii po iscusstvennomu intelektu KII-2016, Smolensk, T3, 2016, p.
270-278.universe

[8] Fowler M. UML. Osnovi, 3e izdanie. - Per. c angl. - Spb: SimvolPlus,
2011.

[9] Dobrov V.B., Lukashevich N. V., Lingvisticheskaya ontologiya po
estestvennim naukam i tehnologiyam: osnovnie principi razrabotki i
tekuwee sostoyanie, // Desyataya nacionalnaya konferenciya po is-
cusstvennomu intellektu s mejdunarodnim uchastiem (Obninsk, 25-28
sentyabrya 2006 g.) – M.: Fizmalit, 2006.

[10] Gavrilova T.A., Horoshevskii V.F., Bazi znanii intellektualnih sistem. –
Spb. : Piter, 2000. – 384 c.

[11] Namestnikov A.M., Subhangulov R.A. Formirovanie informacionih
zaprosov k elektronnomu arhivu konceptualnogo indeksa // Radiotehnika
N7 - 2014 p. 126-129.

[12] Namestnikov A.M. Metauroven informacionnogo obespecheniya SAPR
: ot teorii k praktike/ A.M. Namestnikov. - Ulyanovsk : UlGTU, 2015.

[13] Filippov A.A., Moshkin V.S., Shalaev D. O., Yarushkina N.G. Edi-
naya ontologicheskaya platforma intellectualnogo analiza dannih// Ma-
teriali VI mejgunarodnoi nauchno-tehnicheskoikonferencii OSTIS-2016,
Minsk, Respublica Belarus, 2016.

[14] Almeida Ferreira D., Silva A., UML to OWL Mapping Overview An
analysis of the translation process and supporting tools. Conference: 7th
Conference of Portuguese Association of Information Systems.

[15] OWL 2 Web Ontology Language Document Overview –
https://www.w3.org/TR/owl2-overview/

ИНТЕГРАЦИЯ ОНТОЛОГИЙ И
КОНЦЕПТУАЛЬНЫХ МОДЕЛЕЙ ИС

Гуськов Г.Ю., Наместников А.М.

В статье предлагается методика интеграции концеп-
туальных моделей и онтологии предметной области.
Так же в статье рассмотрена система основанная на
данной методике. Кроме того в статье приведены ос-
новной алгоритм системы интеграции и её поведение
на диаграмме последовательностей. Проведён анализ
подходов к использованию языка UML и частотности
использования его элементов. Разработанная система
позволяет интегрировать концептуальные модели в ви-
де UML-диаграмм с онтологиями в формате OWL[15].
В завершении статьи представлены результаты работы
системы над проектами из открытых репозиториев ис-
ходного кода и пути будущего развития системы.

116

Би
бл
ио
те
ка

 БГ
УИ
Р

