
Дифференциальные уравнения и их приложения

Using [2 ] we found the Nash’s position optimal control

k* =  ^x4, m* =  ^ x 3, a* =  i x 2, w* =  ^ x ,  p * =  0

for our forest ecosystem model with
Qi =  ax 6  + I  (^x 8  +  x 6 +  x 4 + x 2)  , Q 2 =  ocx6 + i  (x8  +  5 X6  +  x 4  4- x 2) ,
Q3 = a x 6 +  5  (x8 +  x 6  +  \ x 4 +  x2) , Q4, = a x e + i  (ж8  +  x 6  +  x 4  +  | x 2) ,
Q5 =  a x 6  4- 5  (x8  +  x 6  +  x 4  +  x2) .
For this optimal control productivity x  asymptotically tends to  zero with t ->■ +00  , i.e. to characteristic
observed value of productivity in region, but dynamics of forest ecosystem is not asymptotically stable. 
Since u l > 0 for x > 0 , then we have a  slowly degrading forest.

R efe ren ces

1. Guts A., Volodchenkova L. Mathematical model of interrelation "vegetation-soil" in forest ecosystem 
/ / ' Mathemaical Structures and Modelling, 2015. No. 3 (35). 56-60.

2. Lewis F.L., Vrabie D.L., Syrmos V.L. Optimal control. John Wiley & Sons, Inc., 2012. 540 p.

D IF F E R E N T IA L  E Q U A T IO N S  O F  M O T IO N S  O F  M U L T I-A X IS  S Y S T E M S

S. E. Karpovich (Minsk, Belarus), R. Szczebiot (Lomza, Poland), M .M . Forutan (Minsk, Belarus)

The problem of program motion synthesis is generally solved without uniqueness and control functions 
realizing the motion and minimizing a functional must be obtained.

Differential equations of motions of multi-axis systems based on linear spepping motors [1, 2] can be 
represented as

Xi =  pi(x) +  Ui(x)bi(x), i = l , . . . , n .  (1 )

where x  =  ( x i , . . . ,  xn) are generalized device coordinates, u  =  (щ , . . . ,  un) is the control vector.
The problem consists in forming controls и  =  (t, x )  such th a t и 6  R r and corresponding solution of

the system (1 ) satisfies the additional conditions

u k(t ,x )  = 0 , f e = l , . . . , r .  (2)

However, if x  =  x(f) is a solution satisfied the program (2) then Wfc(t,x(t)) =  0, к — 1 , . . .  , r.
Whence

~ u k ( t,x ( t))  = 0 , fc =  l , . . . , r

or

^ ( d u k{t,x ) ( л  d u ik { t,x )\
y y —a i T ^ ) + u'b' ^  + -~m—j 3 ° '

when x  satisfies (2 ).
The last expression is equivalent to the condition

^  +  Uibi№ )  +  = Пк^ ’х ' ШкЪ k = l , . . . , r ,  (3)

where R k is the arbitrary functions such tha t R k{t, x, 0 ) =  0 .
Therefore, the condition (3) is neccessary and sufficient for implementing the program (2 ) along solution 

x  =  x(t) of system (1). It can be used for calculating the neccessary controls щ (t,x ) , i = 1 , . . .  ,r.
As r < n, the system (3) defines the controls ambiguously, and the functional must be minimized on 

free controls additionally. E.g. the control optimization problem with constraints
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u ( t , x ) e U ,  Wfc(i,x) =  0 , k = l , . . . , r

can be considered for each time moment.
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SO M E  G E O M E T R IC A L  A S P E C T S  O F  IN F IN IT E -D IM E N S IO N A L  D Y N A M IC A L
S Y S T E M S

V. U. Savchin (Moscow, Russia)

Denote U = C 2([to, fj], Ui), V  =  C([£o, î]> ^i)> where U \,V\ are normed linear spaces over the field of 
real numbers M.

Let the position of infinite-dimensional dynamical system be described by the function и £ U, satisfying 
the conditions u\t=to =  '«o, = u i, where u,q, ui are elements from U\. In what it follows we will use
the notations and the terminology of papers [1-3]. Let us consider the bilinear form (•, •) : U\ x V\ -»■ К and 
the kinetic energy Т\и,щ] =  | {щ ,А ищ ), where A u is a linear Gateaux differentiable operator, in general 
depending on и  in a nonlinear way.

,
Let us denote A'u{h\g) =  -^ A u+£gh [e=o, jP[m] =  j T[u. u t]dt and let f ( t , u , u t ) be a density of acting

to
forces.

T h e o re m  1 . There is an equality gradF[u] — %{Аи + А 1)ии + ^[А'и (щ-,ги) + А £(щ -,щ ) — А'*(щ;-)щ\, 
where (•••)* is a conjugate operator.

T h e o re m  2. The operator k \u of the kind

~  V't) “b A u A u (lit'^)ut

is an analog of the Christoffel symbols of the first kind.
Let us note tha t the equations of motion of the considered dynamical system can be presented in the

form
1  1
~ (A U + A*u)utt +  -  f ( t , u , u t) = 0 . (1 )

T h e o re m  3. I f  there exists the inverse operator {Au +  A*)-1 , then the operator k^u of the kind

k2u[ut] = (Au + А*и)~1кы [щ]

defines an analog of the Christoffel symbols of the second kind.
T h e o re m  4. Operator -щ defined by

— ■ = utt + (Au + А1У1кы [и1\

is an analog of the covariant derivative of u t with respect to t.
C o n seq u en ce . Evolutionary equation (1) can be written in the form

\ ( A u + K ) ^ - - f ( U u , u t) =  0.

This form of equation has a special interest in connection with Riemannian geometry. 
A k n o w led g em en t. The work is supported by the Russian Foundation for Basic Research (project 

No. 16-01-00450a).
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