Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

А. П. Курулёв

Теория электрических цепей. Справочник

В 3-х частях

Часть 1

Электрические цепи постоянного и переменного тока

Рекомендовано УМО вузов Республики Беларусь по образованию в области информатики и радиоэлектроники в качестве учебно-методического пособия для студентов учреждений, обеспечивающих получение высшего образования по специальностям, закрепленным за УМО

УДК 621.3.011.7(035.5)(076) БКК 31.211я2 К93

Рецензенты:

кафедра электротехники учреждения образования «Военная академия Республики Беларусь», протокол №9 от 23 мая 2011 г.;

доцент кафедры автоматизации технологических процессов и электроники учреждения образования «Белорусский государственный технологический университет» кандидат технических наук, доцент И. Ф. Кузьмицкий

Курулёв, А. П.

К93 Теория электрических цепей. Справочник: учеб.-метод. пособие. В 3-х ч. Ч.1: Электрические цепи постоянного и переменного тока / А. П. Курулёв. – Минск: БГУИР, 2012. – 90 с. ISBN 978-985-488-821-7 (ч. 1).

Учебно-методическое пособие охватывает следующие темы: электрические цепи постоянного и синусоидального токов, трехфазные и избирательные цепи.

Предназначено для студентов специальностей вузов, закрепленных за УМО по образованию в области информатики и радиоэлектроники.

УДК 621.3.011.7(035.5)(076) БКК 31.211я2

ISBN 978-985-488-821-7(ч.1) ISBN 978-985-488-820-0

- © Курулёв А.П., 2012
- © УО «Белорусский государственный университет информатики и радиоэлектроники», 2012

Предисловие

Учебно-методическое пособие представляет собой краткую, без математических выводов и теоретических обоснований систематизированную презентацию основных положений и закономерностей электрорадиотехнических цепей.

Содержание первой части пособия охватывает круг вопросов, предусмотренных типовой программой по курсу «Теория электрических цепей» для электротехнических специальностей вузов: электрические цепи постоянного и синусоидального токов, трёхфазные и избирательные цепи.

Подробно рассмотрены свойства последовательного, параллельного и индуктивно связанных контуров.

При написании пособия автор руководствовался опытом, накопленным им во время многолетнего преподавания курсов «Теория электрорадиоцепей», «Электротехника», «Теория электрических цепей» в Военной академии Республики Беларусь и в БГУИР.

Автор благодарен заведующему кафедрой электротехники Военной академии Республики Беларусь кандидату технических наук, доценту А. Н. Малашину, доценту кафедры автоматизации технологических процессов и электроники Белорусского государственного технологического университета И. Ф. Кузьмицкому, а также доценту кафедры теоретических основ электротехники БГУИР кандидату технических наук, доценту Д. П. Кукину и старшему преподавателю Н. А. Иваницкой за тщательное рецензирование рукописи. Пожелания и замечания просьба направлять по адресу: 220013, г. Минск, ул. П. Бровки 6, БГУИР.

1. Линейные электрические цепи постоянного тока

1.1. Основные понятия и определения теории электрических цепей

Электрическая цепь – совокупность элементов и устройств, образующих путь для электрического тока, электрические процессы в которых могут быть описаны с помощью понятий об электродвижущей силе (ЭДС), токе и напряжении.

Электрический ток	$i(t) = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$
	q Кл , t c , i A , MA , MKA $A \times 10^{-3} \ A \times 10^{-6}$
ЭДС источника электрической энергии	$\xrightarrow{I} \xrightarrow{E} \xrightarrow{i(t)} e(t)$
	$E \ B, \ MB, \ \kappa B, \ MB$ $B \times 10^{-3} \ B \times 10^{3} \ B \times 10^{6}$
Электрическое напряжение	$u(t) = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta q} = \frac{dW}{dq}$
	W Дж , q $K\pi$ u B , mB , κB , MB
	$B \times 10^{-3} B \times 10^{3} B \times 10^{6}$
Электрическое напряжение	$u = \varphi_1 - \varphi_2$
как разность потенциалов	$arphi=rac{A}{q}$ A Дж , q Кл $arphi$ B , κB , MB
	$B \times 10^{-3} B \times 10^{3} B \times 10^{6}$

Элемент электрической цепи — отдельное устройство, входящее в состав электрической цепи и выполняющее в ней определённую функцию. К числу основных элементов электрической цепи относят резистор, катушку индуктивности и конденсатор. Каждый из этих элементов предназначен для использования, соответственно, его электрического сопротивления, индуктивности и ёмкости.

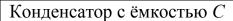
Различают пассивные и активные элементы электрической цепи.

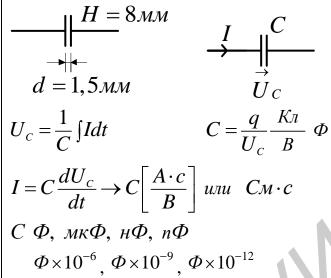
Пассивные элементы – это элементы электрической цепи, в которых рассеивается или накапливается электрическая энергия.

Активные элементы – это источники энергии.

Пассивные элементы электрической цепи				
	тассививе знементы знемтри теской цени			
Линейные	Параметры $(r, L \ u \ C)$ не зависят от приложенного			
<i>r</i>	к ним напряжения и проходящего через них тока			
Нелинейные	Параметры $(r, L \ \text{и} \ C)$ зависят от значения или			
r(i)	направления действующего напряжения и силы проходящего тока			
$\frac{L(i)}{C(i)}$				
Элементы с постоянными параметрами	Параметры $(r, L \ u \ C)$ не зависят от времени			
Элементы с переменными	Параметры $(r, L \ u \ C)$ изменяются во времени по			
параметрами	определённому закону			

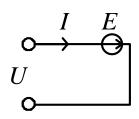
D	.	
R Резистор с сопротивлением	$H = 4_{MM} I R$	
K	, <u>→</u>	
	l = 10мм U	
	$R = \frac{U}{I} \frac{B}{A}$ $R O_M, \kappa O_M, MO_M$ $O_{M \times 10^3} O_{M \times 10^6}$	
	$R - \overline{I} \overline{A}$ $O_M \times 10^3, O_M \times 10^6$	
Проводимость	$G = \frac{1}{R} = \frac{I}{U} \frac{A}{B}$ или $\left[\frac{1}{OM}\right] \rightarrow C_M$ -сименс	
Катушка индуктивности		
с индуктивностью L	\overrightarrow{r} \overrightarrow{U}_L	
	<i>r</i> от 1,5 до 4мм	
	$U_L = L \frac{dI}{dt}$ $L \left[\frac{B \cdot c}{A} \right]$ или Ом $\cdot c$	
	$\lceil \Gamma_H(\Gamma), M\Gamma_H(M\Gamma), M\kappa\Gamma_H(M\kappa\Gamma) \rceil$	
	$\Gamma\mu\times10^{-3}$ $\Gamma\mu\times10^{-6}$	
Взаимная индуктивность	i M i	
	$\frac{I_1}{2}$	
	L_1 E	
	$M = \frac{\psi_{12}}{I_2}$ или $M = \frac{\psi_{21}}{I_1}$	
	$M \lceil \Gamma_H(\Gamma), M\Gamma_H(M\Gamma), M\kappa\Gamma_H \rceil$	
	$\Gamma_{H} \times 10^{-3}$ $\Gamma_{H} \times 10^{-6}$	
Потокосцепление	$\Psi = w \Phi$	
	Φ $B\delta$ – магнитный поток катушки	
	W — число витков катушки	
X)	$\Phi = Bs$	
	В Тл – магнитная индукция	
	$S[M^2]$ — сечение провода катушки	
	$L = \frac{\Psi}{I} = \frac{w \Phi}{I} = \frac{wBs}{I}$	





Независимые (автономные) активные элементы электрической цепи

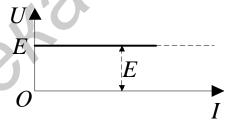
Идеальный источник ЭДС E с внутренним сопротивлением $R_i = 0$



При коротком замыкании идеального источника ЭДС

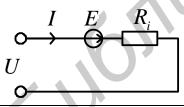
$$I \rightarrow max$$

ВАХ (вольт-амперная характеристика) идеального источника ЭДС

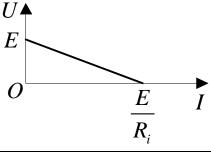


Источник ЭДС с внутренним сопротивлением

$$R_i \neq 0$$

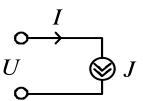


BAX



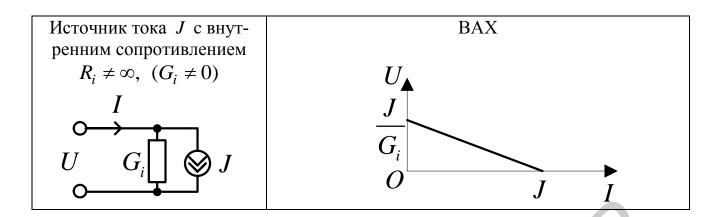
Идеальный источник тока J с внутренним сопротивлением

$$R_i \to \infty, \ (G_i \to 0)$$



При холостом ходе $U \rightarrow max$

BAX



У зависимых (неавтономных) источников электрической энергии напряжение (сила тока) зависит от значений напряжения или силы тока, действующего на входе или выходе источника электрической энергии.

В зависимости от соотношения геометрических размеров l реальной электрической цепи и длины волны λ , воздействующих на цепь, различают:

- цепи с сосредоточенными параметрами($l << \lambda$),
- цепи с распределёнными параметрами($l >> \lambda$).

В электрической цепи с сосредоточенными параметрами r, Lи C сосредоточены на отдельных её участках.

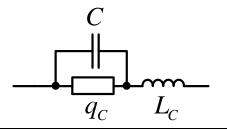
В электрической цепи с распределёнными параметрами r, Lи C распределены вдоль цепи (длинные линии).

Схема электрической цепи — графическое изображение электрической цепи, содержащее условные обозначения её элементов и показывающее их соединение. В схему включают идеализированные элементы, которые являются математической моделью, описывающей физические явления в реальном элементе.

Идеализированная модель резистора — сопротивление r, конденсатора — ёмкость C, катушки индуктивности — индуктивность L.

Эквивалентная схема резистора	r L_r
Эквивалентная схема катушки индуктивности	$\begin{array}{c} C_L \\ \hline L \\ \hline \end{array}$

Эквивалентная схема конденсатора



Элементы топологии (геометрии) электрической цепи

Ветвь – участок электрической цепи, состоящий из одного или нескольких последовательно соединённых элементов, через которые проходит один и тот же ток

Узел – место соединения трёх и более ветвей

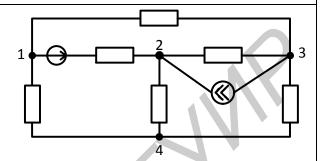
Контур – любой замкнутый путь, образованный несколькими ветвями и узлами

Граф – изображение схемы электрической цепи, в которой ветви схемы представлены отрезками-вет- вями графа, а узлы – точками-узлами графа

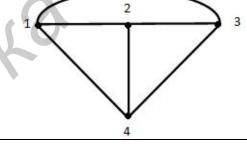
Дерево графа – любая совокупность ветвей графа, соединяющих все его узлы без образования контуров

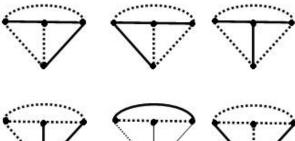
фа, не принадлежащая его дереву
Направленный граф – граф с указанием условно-положительных направлений токов или направлений в виде отрезков со стрелками

Связь (хорда) графа – это ветвь гра-

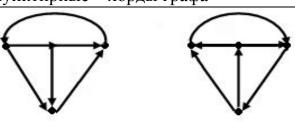


12, 23, 14, 24, 34, 13 – ветви 1, 2, 3, 4 – узлы 123, 124, 234 – контуры



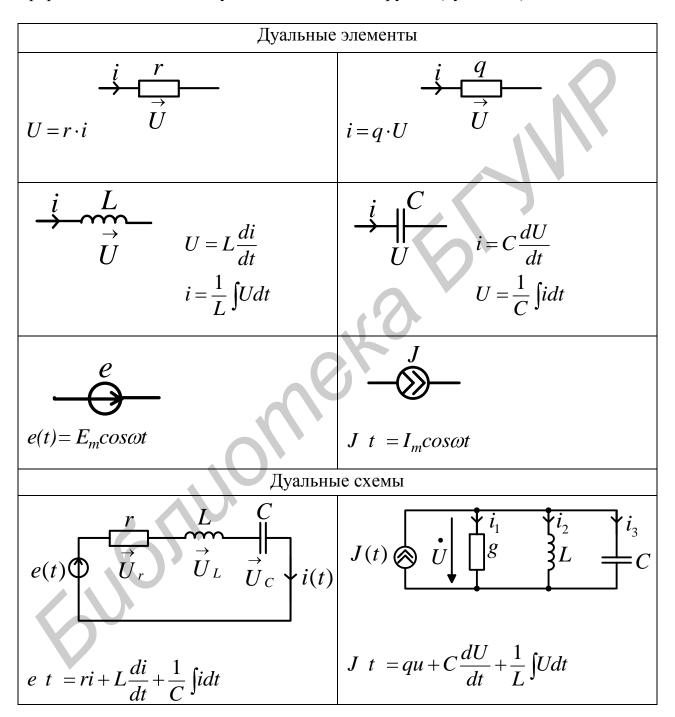


Сплошные линии – деревья графа, пунктирные – хорды графа



Элементы топологии (геометрии) электрической цепи Дуальные элементы и схемы

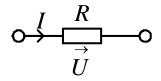
Условие дуальности — закон изменения напряжения на элементе цепи по форме аналогичен закону изменения тока в другом (дуальном) элементе цепи.



1.2. Законы Ома и Кирхгофа в цепях постоянного тока

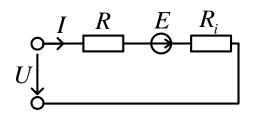
Законы Ома

Закон Ома для участка цепи без ЭДС



$$I = \frac{U}{R}, I = UG$$

Закон Ома для цепи с ЭДС



$$I = \frac{U \pm R}{R + R}$$

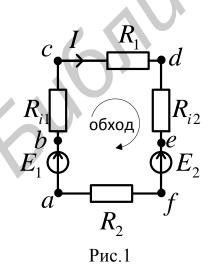
В цепи с неизменными Rи E:

$$I = rac{U \pm \sum\limits_{k=1}^{n} E_k}{\sum\limits_{j=1}^{m} R_j}$$
 , где

 $\sum_{k=1}^{n} E_k$ – алгебраическая сумма ЭДС,

 $\sum_{j=1}^{m} R_{j}$ – арифметическая сумма со-

Закон Ома для замкнутой цепи



$$I = rac{U \pm \sum\limits_{k=1}^{n} E_k}{\sum\limits_{j=1}^{m} R_j}$$
 , где

 $\sum_{k=1}^{n} E_k$ –алгебраическая сумма ЭДС,

 $\sum_{j=1}^{m} R_{j}$ – арифметическая сумма со-

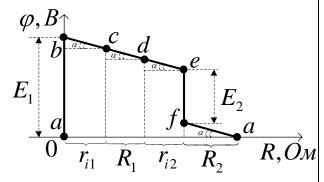
противлений

противлений

Для данной схемы (при $E_1 > E_2$):

$$I = \frac{E_1 - E_2}{R_1 + R_{i1} + R_2 + R_{i2}}$$

Потенциальная диаграмма — это график распределения потенциалов в замкнутой цепи (для рис. 1)

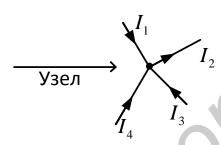


Если
$$\varphi_a=0$$
 – базисная точка, то
$$\varphi_b=\varphi_a+E_1=E_1$$
 $\varphi_c=\varphi_b-R_{i1}I=E_1-R_{i1}I$ $\varphi_d=\varphi_c-R_1I=E_1-R_{i1}I-R_1I$ $\varphi_e=\varphi_d-R_{i2}I=E_1-R_{i1}I-R_1I-R_{i2}I$ $\varphi_f=\varphi_e-E_2=E_1-E_2-I(R_{i1}+R_{i2}+R_1)$ $\varphi_a=\varphi_f-R_2I=0.$

$$arphi_a = arphi_f - R_2 I = 0.$$
 Так как $I = \dfrac{U}{R_{oбuq}} o const$, то
$$I = \dfrac{U}{R_{oбuq}} = tg \, lpha, \; lpha o const$$

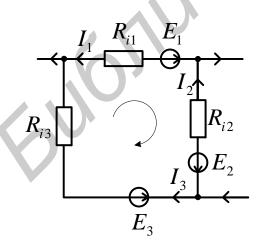
Законы Кирхгофа

Первый закон Кирхгофа



$$\sum_{k=1}^{n} I_k = 0$$

Алгебраическая сумма токов $I_1 - I_2 + I_3 + I_4 = 0$ К узлу – «+», от узла – «-»



$$\sum_{i=1}^{n} E_i = \underbrace{\sum_{k=1}^{n} I_k R_k}_{}$$

алгебраическая алгебраическая сумма сумма

$$\begin{split} E_1 + E_2 - E_3 = -R_{i1}I_1 - R_{i2}I_2 + R_3I_3 \\ \text{ЭДС и ток совпадают} \\ \text{с обходом - «+»} \end{split}$$

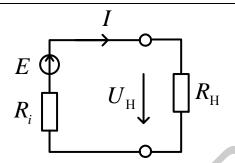
ЭДС и ток направлены навстречу обходу – «—»

Режимы работы цепи

Режим нагрузки

$$I_{\rm H} = \frac{E}{R_i + R_{\rm H}}$$

$$U_{\mathrm{H}} = I_{\mathrm{H}} R_{\mathrm{H}} = \frac{E}{R_i + R_{\mathrm{H}}} R_{\mathrm{H}}$$



Режим холостого хода (XX)

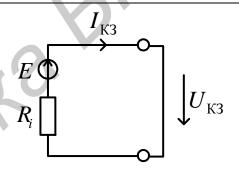
$$I_{XX} = 0$$
$$U_{XX} = E$$

$$E \bigoplus_{R_i \bigcup_{i=1}^{N} U_{XX}} O$$

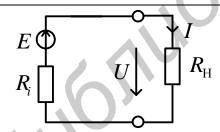
Режим короткого замыкания (КЗ)

$$U_{\rm K3} = 0$$

$$I_{K3} = I_{max} = \frac{E}{R_i}$$



Баланс мощностей



 $egin{aligned} P_{ucm} &= EI \ P_0 &= EI \end{aligned} - \begin{aligned} - \begin{aligned} \begin{align$

 $P_i = R_i I^2$ – мощность потерь

 $P_{\rm H} = R_{\rm H} I^2$ – мощность, потребляемая нагрузкой

$$P_0 = P_i + P_{\rm H}$$

$$EI = R_{\rm H}I^2 + R_iI^2$$

Активная мощность

$$P = UI = \frac{U^2}{R} = U^2G = I^2R$$

P Вт, кВт, МВт

$$Bm \times 10^3 Bm \times 10^6$$

Уравнение баланса мощностей

$$\sum_{i=1}^{n} E_i I_i = \sum_{k=1}^{n} I_k^2 R_k$$

алгебраическая арифметическая сумма сумма

Условие передачи максимальной активной мощности в нагрузку

$$P = R_{
m H} I^2; I = rac{E}{R_i + R_{
m H}}; P = rac{E^2 R_{
m H}}{R_i + R_{
m H}}^2$$
 Экстремум $rac{dP}{dR_{
m H}} = 0$ при $R_i = R_{
m H}$

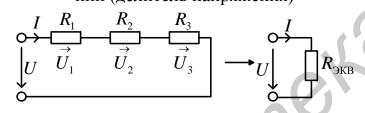
Коэффициент полезного действия (КПД):

$$\eta = \frac{P_{\rm H}}{P_0} = \frac{P_{\rm H}}{P_i + P_{\rm H}} = \frac{R_{\rm H}}{R_i + R_{\rm H}}$$

при
$$R_i = R_{\rm H}$$
, $\eta = 0.5$

1.3. Эквивалентные преобразования электрических цепей

Последовательное соединение сопротивлений (делитель напряжения)



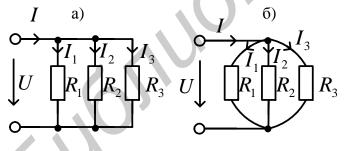
 $U = U_1 + U_2 + U_3$

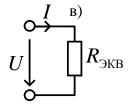
$$R_{\text{9KB}} = R_1 + R_2 + R_3$$

Свойство: напряжение пропорционально сопротивлению

$$U_1 = R_1 I, \ U_2 = R_2 I, \ U_3 = R_3 I$$

Параллельное соединение сопротивлений (делитель тока)

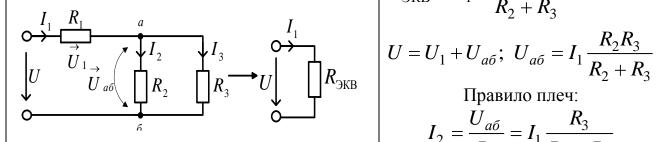




 $I = I_1 + I_2 + I_3$ $\frac{1}{R_{\text{9KB}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $R = \frac{R_1 R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$ $G_{\text{9KB}} = G_1 + G_2 + G_3$

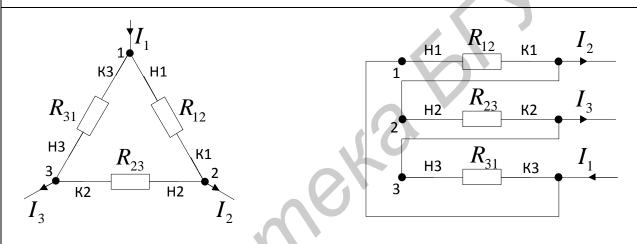
Свойство: ток пропорционален величине, обратной сопротивлению

Смешанное соединение сопротивлений

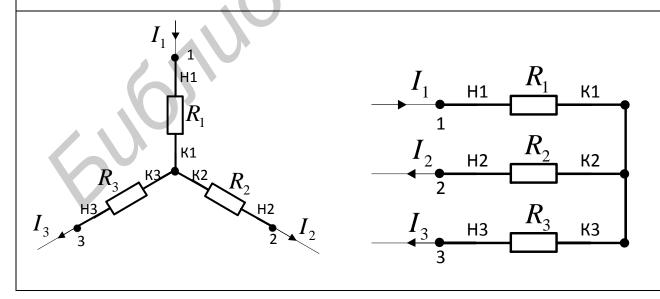


$$R_{
m 3KB} = R_1 + rac{R_2 R_3}{R_2 + R_3}$$
 $U = U_1 + U_{a\delta}; \ U_{a\delta} = I_1 rac{R_2 R_3}{R_2 + R_3}$ Правило плеч:
$$I_2 = rac{U_{a\delta}}{R_2} = I_1 rac{R_3}{R_2 + R_3}$$
 $I_3 = rac{U_{a\delta}}{R_3} = I_1 rac{R_2}{R_2 + R_3}$

«Треугольник» сопротивлений

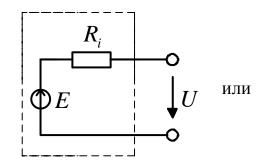


«Звезда» сопротивлений



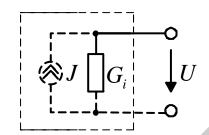
Преобразование	$R_1 = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}}$
$\triangle \longrightarrow oldsymbol{\wedge}$	$R_2 = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$
	$R_3 = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}}$
Преобразование	$R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R}$
↓ →Δ	$R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}$ $R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}$ $R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_2}$
	$R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_3 R_1}$
	еобразования → ∆
R_4	
R_1 R_5 R_2 R_3 R_4	R _{ЭKB}
R_6	•
R_4 R_{12} R_{31}	R
R_{12} R_{23} R_{5}	R'
R_6	↑
R_4	
R_{12} $R_{5,31}$ $R_{6,23}$	R_{12} $R_{5,6,31,23}$
0,23	

Эквивалентные преобразования источников электрической энергии



$$E = \frac{J}{G_i} \qquad R_i = \frac{1}{G_i}$$

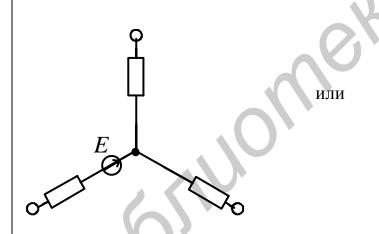
источник напряжения

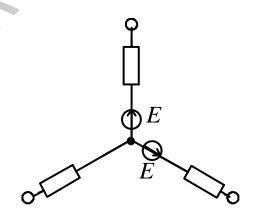


$$J = \frac{E}{R_i} \qquad G_i = \frac{1}{R_i}$$

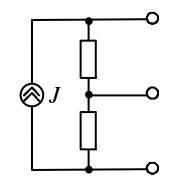
источник тока

Перенос идеального источника напряжения E

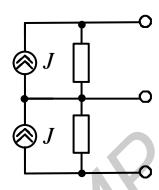


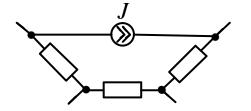


Перенос идеального источника тока J



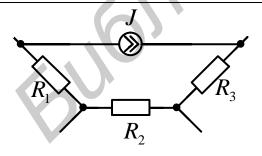
или



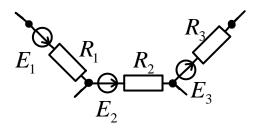


или

Перенос идеального источника тока J с преобразованием в источник напряжения E



 $E_1 = R_1 J$ $E_2 = R_2 J$ $E_3 = R_3 J$



1.4. Методы расчёта электрических цепей постоянного тока

Метод уравнений Кирхгофа

Общее число уравнений равно числу ветвей. По 1-му закону Кирхгофа составляется число уравнений, на одно меньшее, чем число узлов. По 2-му закону Кирхгофа составляется число уравнений, равное количеству независимых контуров в схеме.

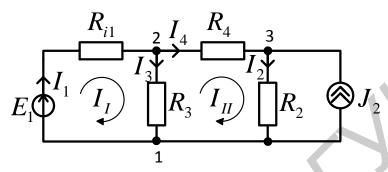


Рис 1.1

1-й закон для 1-го узла:
$$I_1 - I_3 - I_4 = 0$$
;

Кирхгофа для 3-го узла:
$$I_4 - I_2 + J_2 = 0$$
;

2-й закон для I контура:
$$I_1R_{i1} + I_3R_3 = E_1$$
;

Кирхгофа для II контура:
$$-I_3R_3 + I_2R_2 + I_4R_4 = 0$$
.

Баланс мощностей:

$$E_1I_1+J_2U_{31}=I_1^2R_{i1}+I_3^2R_3+I_4^2R_4+I_2^2R_2$$
, где $U_{31}=I_2R_2$

Метод контурных токов

Число уравнений равно числу независимых контуров. Уравнения составляются только по второму закону Кирхгофа.

В общем случае для N независимых контуров система уравнений имеет вид:

В системе $R_{11}, R_{22}, ..., R_{nn}$ — собственные сопротивления независимых контуров; $R_{12}, R_{21}, ..., R_{n1}$ — взаимные сопротивления между независимыми контурами; $I_I, I_{II}, ..., I_N$ — контурные токи.

Взаимные сопротивления положительны при совпадении направлений проходящих через них контурных токов и отрицательны, если контурные токи встречны.

Для схемы, приведённой на рис. 1.1:

$$(R_{i1} + R_3)I_I - R_3I_{II} = E_1;$$

 $-R_3I_I + (R_3 + R_4 + R_2)I_{II} + R_2I_2 = 0;$

По найденным контурным токам находим токи в ветвях:

$$I_1 = I_I, I_3 = |I_I - I_{II}|, I_4 = I_{II}, I_2 = I_{II} + J_2.$$

Метод узловых потенциалов (напряжений)

Число уравнений равно числу узлов. Для схемы, приведённой на рис. 1.1:

$$G_{11}\varphi_{1} + G_{12}\varphi_{2} + G_{13}\varphi_{3} = I_{I};$$

$$G_{21}\varphi_{1} + G_{22}\varphi_{2} + G_{23}\varphi_{3} = I_{II};$$

$$G_{31}\varphi_{1} + G_{32}\varphi_{2} + G_{33}\varphi_{3} = I_{III};$$

В системе G_{11}, G_{33}, G_{33} — собственные проводимости узлов; $\varphi_1, \varphi_2, \varphi_3$ — потенциалы узлов; $G_{12}, G_{21}, G_{13}, G_{31}, G_{23}, G_{32}$ — взаимные проводимости между узлами (взаимные проводимости всегда отрицательны); I_I, I_{II}, I_{III} — узловые токи(как алгебраическая сумма токов в прилегающих к узлу ветвях).

Число уравнений можно сократить, положив равным нулю потенциал одного из узлов. Например, при $\phi_1=0$ из системы удаляется первый столбец и первая строка:

$$G_{21}\varphi_1 + G_{22}\varphi_2 + G_{23}\varphi_3 = I_{II};$$

$$G_{31}\varphi_1 + G_{32}\varphi_2 + G_{33}\varphi_3 = I_{III};$$

или

$$\begin{split} &\left(\frac{1}{R_{i1}} + \frac{1}{R_3} + \frac{1}{R_4}\right) \varphi_2 - \frac{1}{R_4} \varphi_3 = \frac{E}{R_{i1}} \\ &- \frac{1}{R_4} \varphi_2 + \left(\frac{1}{R_2} + \frac{1}{R_4}\right) \varphi_3 = J_2. \end{split}$$

Найдя из последней системы потенциалы узлов φ_2 и φ_3 , определяем токи во всех ветвях (учитывая, что $\varphi_1=0$):

$$\begin{split} \varphi_2 &= \varphi_1 + E_1 - I_1 R_{i1}, \text{ откуда } I_1 = \frac{E_1 - \varphi_2}{R_{i1}};\\ \varphi_2 &= \varphi_1 + I_3 R_3, \text{ откуда } I_3 = \frac{\varphi_2}{R_3};\\ \varphi_3 &= \varphi_1 + I_2 R_2, \text{ откуда } I_2 = \frac{\varphi_3 - \varphi_1}{R_2};\\ \varphi_3 &= \varphi_2 - I_4 R_4, \text{ откуда } I_4 = \frac{\varphi_2 - \varphi_3}{R_4}; \end{split}$$

Метод наложения

Позволяет определить токи в ветвях электрической цепи по закону Ома. Основан на принципе наложения (или суперпозиции): ток в любой ветви ЛЭЦ, содержащей несколько источников ЭДС, определяют как алгебраическую сумму частных токов, созданных в этой ветви каждым источником в отдельности.

Пример: схему, изображённую на рисунке 1.1, считая в ней источники E и J идеальными, используя принцип суперпозиции, разбивают на две (рис. 1.2 и 1.3).

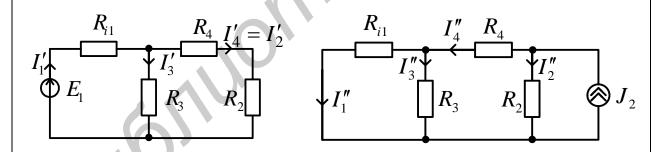


Рисунок 1.2

Рисунок 1.3

Частичные токи в схеме на рис. 1.2:

$$I_{1}' = \frac{E_{1}}{R_{i1} + \frac{R_{3} R_{2} + R_{4}}{R_{2} + R_{3} + R_{4}}}; \quad I_{3}' = I_{1}' \frac{R_{2} + R_{4}}{R_{2} + R_{3} + R_{4}}; \quad I_{4}' = I_{2}' = I_{1}' - I_{3}'.$$

Частичные токи в схеме на рисунке 1.3:

$$I_{2}^{"} = J_{2} \frac{\left(\frac{R_{i1}R_{3}}{R_{i1} + R_{3}} + R_{4}\right)}{R_{2} + R_{4} + \frac{R_{i1}R_{3}}{R_{i1} + R_{3}}}; \quad I_{4}^{"} = J_{2} - I_{2}^{"}; \quad I_{3}^{"} = I_{4}^{"} \frac{R_{i1}}{R_{i1} + R_{3}}.$$

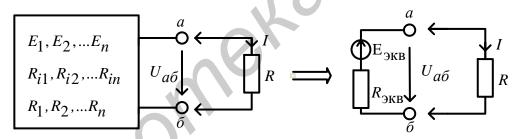
Искомые токи в схеме на рисунке 1.1:

$$I_1 = |I_1' - I_1''|; I_2 = I_2' + I_2';$$

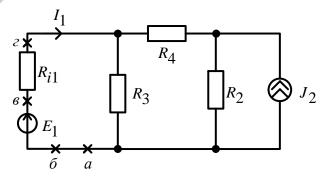
$$I_3 = I_3^{'} + I_3^{''}; \ I_4 = \left| I_4^{'} - I_4^{''} \right|;$$

Метод эквивалентного генератора

Применяется для определения тока в одной из ветвей сложной электрической цепи. Метод основан на теореме об эквивалентном генераторе, которая утверждает, что ток I в любой ветви $a \delta$ не изменится, если остальную часть электрической цепи заменить эквивалентным источником напряжения, ЭДС которого $E_{_{3KB}}$ равна напряжению на зажимах a и δ при условии, что источники ЭДС и тока — идеальны, т.е. могут быть заменены, соответственно, короткозамкнутыми проводниками и разрывами цепи.

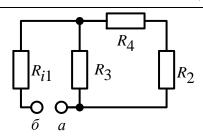


Пример: для нахождения тока в ветви с R_{i1} возможны несколько вариантов её разрыва:

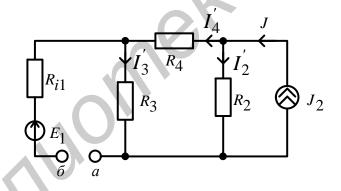


1) а-б	$I_1 = \frac{E_{\text{ЭKB}}}{R_{\text{ЭKB}}} = \frac{U_{a\delta}}{R_{a\delta}}$
2) а-в	$I_1 = \frac{E_{\text{ЭKB}} \pm E_1}{R_{\text{ЭKB}}} = \frac{U_{ae} \pm E_1}{R_{ae}}$
3) а-г	$I_1 = \frac{E_{\text{9KB}} \pm E_1}{R_{\text{9KB}} + R_{i1}} = \frac{U_{az} \pm E_1}{R_{az} + R_{i1}}$
4) в-г	$I_1 = \frac{E_{\text{ЭKB}}}{R_{\text{ЭKB}} + R_{i1}} = \frac{U_{ee}}{R_{ee} + R_{i1}}$

Для варианта а-б:



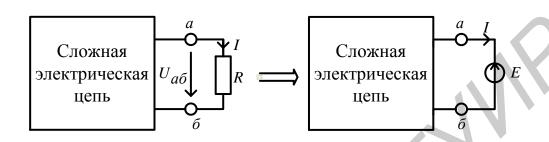
$$R_{\rm 3KB} = R_{i1} + \frac{R_3 R_2 + R_4}{R_3 + R_2 + R_4}$$



$$\begin{split} U_{a\delta} &= \varphi_a - \varphi_{\delta}; \\ \varphi_{\delta} &= \varphi_a + R_3 I_3' - E_1; \\ U_{a\delta} &= E_1 - R_3 I_3', \qquad I_3' = J_2 \frac{R_2}{R_2 + R_3 + R_4}; \end{split}$$

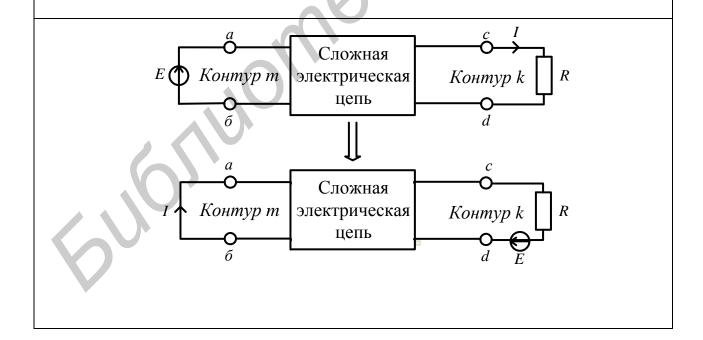
1.5. Теорема компенсации и принцип взаимности

Теорема компенсации утверждает, что любое сопротивление электрической цепи можно заменить идеальным источником ЭДС, у которого значение ЭДС равно падению напряжения на этом сопротивлении, а направление ЭДС противоположно направлению тока, проходящего через это сопротивление.



$$E = U_{a\delta} = RI$$

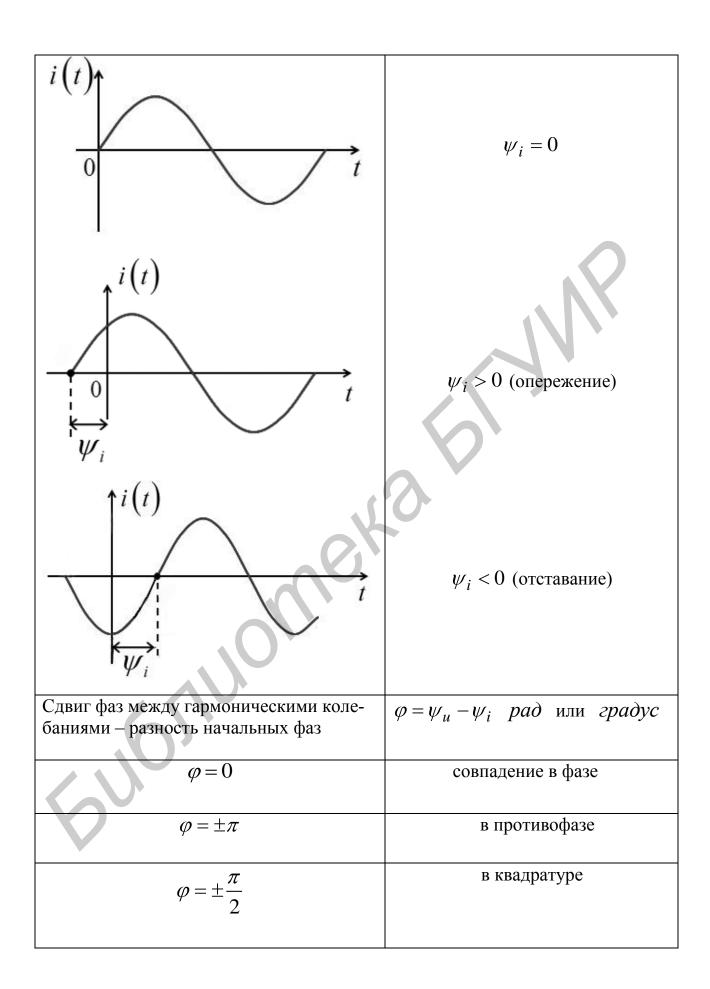
Принцип взаимности утверждает, что если ЭДС E, действуя в ветви $a\delta$ контура m, не содержащего других источников ЭДС, создает в ветви cdc сопротивлением R (контур k) ток I, то эта же ЭДС, действуя в ветви cd, вызывает в ветви $a\delta$ такой же ток I.



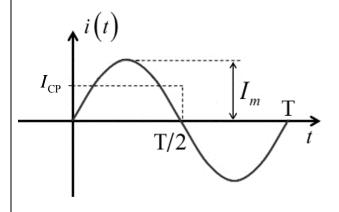
2. Электрические цепи синусоидального тока

2.1. Основные характеристики синусоидального тока

	,
Мгновенное значение синусоидального тока (напряжения) $i \ t = I_m sin\theta \ t = I_m sin(\omega t + \psi_i),$ где $\theta \ t = \omega t + \psi_i$ – полная фаза	$i(t)$ ψ_i T
Амплитуда тока (напряжения, ЭДС) – максимальное значение функции	$I_m[A], U_m B, E_m B$
Период – время, за которое совершается одно полное колебание	T с мс мкс нс $c \times 10^{-3}$, $c \times 10^{-6}$, $c \times 10^{-9}$
Частота – число периодов в секунду	$f = \frac{1}{T} \begin{bmatrix} c^{-1} \end{bmatrix}$ или Γu $\kappa \Gamma u$ $M \Gamma u$ $\Gamma \Gamma u$ $\Gamma u \times 10^3, \Gamma u \times 10^6, \Gamma u \times 10^9$
Угловая (круговая) частота – скорость изменения полной фазы тока (напряжения, ЭДС)	$\omega = 2\pi f = \frac{2\pi}{T} \left[\frac{pa\partial}{c} \right]$ или $\left[c^{-1} \right]$ при $f = 50$ $\Gamma \mu$, $\omega = 314$ c^{-1}
Полная фаза – аргумент синусоидального тока, отсчитываемый от точки перехода тока через нуль (или максимум) к положительному значению	$\theta(t) = \omega t + \psi_i$ рад или градусы
Начальная фаза — значение фазы синусо- идального тока (напряжения, ЭДС) при $t=0$	ψ рад или градусы



Среднее значение тока (напряжения, ЭДС) или средневыпрямленное значение, соответствующее полуволне



$$I_{\rm CP} = 2 \left[\frac{1}{T} \int_{0}^{\frac{T}{2}} i(t) dt \right],$$

при $i(t) = I_m sin(\omega t + \psi_i)$ и

$$I_{\text{CP}} = \frac{2}{T} \int_{0}^{\frac{T}{2}} I_{m} \sin \omega t dt = \frac{4I_{m}}{T\omega} = \frac{2I_{m}}{\pi} \approx 0,637I_{m}$$

Действующее значение тока (напряжения, ЭДС) – среднеквадратичное значение тока за период

$$I_{\mathrm{Д}}(I) = \sqrt{rac{1}{T}}\int\limits_{0}^{T}\!\!i^2(t)dt\;,$$
при $\psi_i = 0$

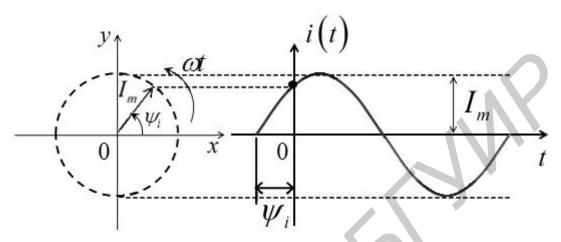
при
$$\psi_i = 0$$

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} \sin^{2} \omega t dt} =$$

$$=\frac{I_m}{\sqrt{2}}\approx 0,707I_n$$

2.2. Представление синусоидального тока проекциями вращающегося вектора и комплексными величинами

$$i(t) = I_m sin(\omega t + \psi_i)$$

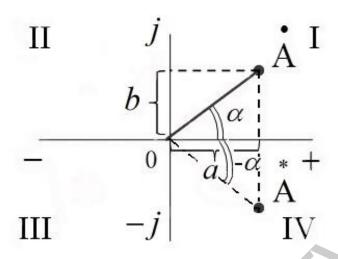


Проекция вектора I_m на вертикальную ось равна $i(t) = I_m sin\psi_i$, что соответствует мгновенному значению тока i(t) при t=0.

Проекция вектора I_m на горизонтальную ось равна $i(t) = I_m cos(\omega t + \psi_i)$, что соответствует мгновенному значению тока i(t) в любой момент времени.

Вычитание векторов $(t) = i_1(t) - i_2(t) = I_m sin(\omega t + \psi)$
$i_1(t) = i_1(t) - i_2(t) = I_{}sin(\omega t + \psi)$
$\sim 10^{\circ}$
$\stackrel{\mathcal{Y}}{\uparrow}$ I .
m^2 ψ_2 ψ_2 ψ_3 ψ_4 ψ_4 ψ_4 ψ_5 ψ_6 ψ_8

Комплексные величины



•	Алгебраическая форма записи
A = a + jb	
$A = Ae^{j\alpha}$ $A = Ae^{-j\alpha}$ $A = Ae^{-j\alpha}$	Показательная форма записи
$\mathbf{A} = \mathbf{A}\cos\alpha + j\mathbf{A}\sin\alpha$	Тригонометрическая форма записи

Основные комплексные величины			
• *	Комплексное и комплексно-		
A,A	сопряженное числа		
$A = \sqrt{a^2 + b^2}$	Модуль комплексного числа		
	Действительная (вещественная) и		
a, b	мнимая части комплексного числа		
α	Аргумент комплексного числа		
$\alpha = \pm arctg \frac{b}{a}$	в I и IV квадрантах		
$\alpha = \pi \pm arctg \frac{b}{a}$	во II и III квадрантах		

• ((at 1))			1.44		Комплексный мгновенный синусои-
$I_m(t) = I_m e^{j(\omega t + \psi_i)} =$			$+\psi_i) =$		дальный ток (комплекс мгновенного
$=I_{m}cc$	$= I_{-}cos(\omega t + \psi_{\cdot}) + iI_{-}sin(\omega t + \psi_{\cdot})$			$+\psi_i)$	значения тока)
$= \underbrace{I_{m}cos(\omega t + \psi_{i})}_{Re\left[\stackrel{\bullet}{I}_{m}(t)\right]} + \underbrace{jI_{m}sin(\omega t + \psi_{i})}_{Jm\left[\stackrel{\bullet}{I}_{m}(t)\right]}$			$Jm \left[\stackrel{\bullet}{I}_{m} \right]$	<u>(t)</u>	Re (Real) – проекция на вещественную ось
					Jm (Imaginary) – проекция на мнимую
					ОСЬ
$I_{m}(t) = \underbrace{I_{m}e^{j\psi_{i}}}_{i} \cdot e^{j\omega t}$ $I_{m} = I_{m} \cdot e^{j\psi_{i}}$			$\cdot e^{j\omega t}$		Комплексная амплитуда тока
$e^{j\omega t}$					Оператор вращения
ωt	0	$\frac{\pi}{2}$	π	$-\frac{\pi}{2}$	
$e^{j\omega t}$	1	j	-1	-j	10
$\frac{I_m}{\sqrt{2}} = \frac{I_m}{\sqrt{2}} \cdot e^{j\psi_i}$					
$I = \frac{I_m}{\sqrt{2}}$					Действующий ток
	$I = I \cdot e^{j\psi_i}$				Комплексный действующий ток

2.3. Законы Ома и Кирхгофа в комплексной форме

Комплексное сопротивление

$$Z = r + jx = z \cdot e^{j\varphi_z} =$$

$$= zcos\varphi + jzsin\varphi$$

$$z = \frac{U_m}{I_m}$$

$$\varphi_z = \psi_u - \psi_i$$

r, x

Модуль комплексного сопротивления

Аргумент комплексного сопротивления

Активная и реактивная части комплексного сопротивления

Комплексная проводимость

$$Y = \frac{1}{Z} = \frac{r}{r^2 + x^2} - j\frac{x^2}{r^2 + x^2} = 0$$
$$= g - jb = y \cdot e^{j\varphi_Y}$$

$$y = \frac{I_m}{U_m} = \sqrt{g^2 + b^2}$$

$$\varphi_{Y} = -\varphi_{z}$$

Модуль, активная и реактивная части комплексной проводимости

Аргумент комплексной проводимости

Закон Ома

$$I_{m} = \frac{U_{m}}{Z}$$

$$Z = z \cdot e^{j\varphi}$$

$$z = \sqrt{r^{2} + jx^{2}}$$

Комплексная амплитуда тока

$$Z = z \cdot e^{j\varphi}$$

Комплексное сопротивление цепи

$$z = \sqrt{r^2 + ix^2}$$

Модуль комплексного сопротивления цепи

Активная и реактивная составляющие комплексного сопротивления цепи

$$I = \frac{U}{Z}$$

Комплекс действующего тока

Законы Кирхгофа

$$\sum_{k=1}^{n} I_{mk} = 0; \ \sum_{k=1}^{n} I_{k} = 0$$

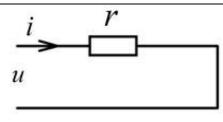
1-й закон Кирхгофа

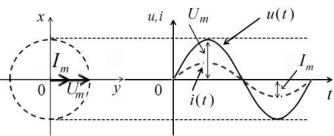
$$\sum_{k=1}^{n} \overset{\bullet}{E}_{mk} = \sum_{l=1}^{m} \overset{\bullet}{U}_{ml} = \sum_{l=1}^{m} \overset{\bullet}{I}_{ml} \cdot \mathbf{Z}_{l}$$

2-й закон Кирхгофа

2.4. Элементы R, L и C в цепи синусоидального тока

Активное сопротивление





$$u(t) = U_m sin(\omega t + \psi_u)$$

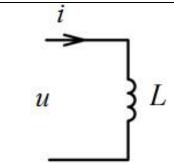
$$i(t) = \frac{U_m sin(\omega t + \psi_u)}{r}$$

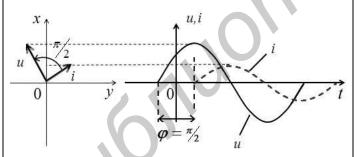
$$\frac{U_m}{r} = I_m, \ Z = r, \ Y = g$$

$$\psi_u = \psi_i$$

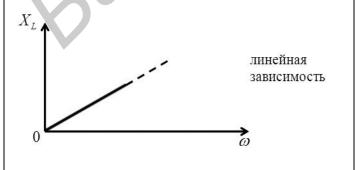
$$\varphi = \psi_u - \psi_i = 0$$

Индуктивность





Частотные свойства



$$i(t) = I_m sin(\omega t + \psi_i)$$

$$u(t) = L \frac{di(t)}{dt} = U_m sin(\omega t + \psi_u)$$

$$U_m = I_m \cdot \omega L$$

$$U_m = I_m \cdot \omega L$$

$$\psi_u = \psi_i + \frac{\pi}{2}$$

$$\varphi = \psi_u - \psi_i = \frac{\pi}{2}$$

Напряжение опережает ток по фазе

на
$$\frac{\pi}{2}$$

$$X_L = \omega L = f(\omega)$$

при $\omega = 0$, $X_L = 0$, X_L эквивалентно короткозамкнутому (КЗ) проводнику

при $\omega \to \infty$, $X_L \to \infty$, X_L эквивалентно холостому ходу (ХХ)

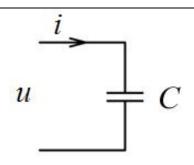
$$Z = \frac{\stackrel{\bullet}{U_m}}{\stackrel{\bullet}{I_m}} = \omega L \cdot e^{j\frac{\pi}{2}} = jX_L$$

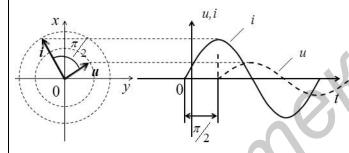
$$Y = \frac{1}{Z} = -j\frac{1}{X_L} = -jb_L$$

Сопротивление индуктивности реактивно и положительно

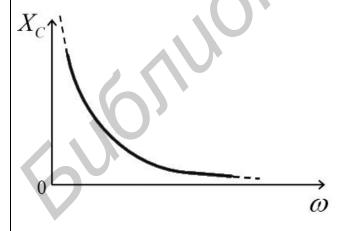
Проводимость индуктивности реактивна и отрицательна

Емкость





Частотные свойства



$$Z = \frac{U_m}{I_m} = \frac{1}{\omega C} \cdot e^{-j\frac{\pi}{2}} = -jX_C$$

$$u_c(t) = U_m \sin(\omega t + \psi_u)$$

$$i_c(t) = C \frac{du_c(t)}{dt} = I_m sin(\omega t + \psi_i)$$

$$I_c = \omega C \cdot U$$

$$I_m = \omega C \cdot U_m$$

$$\psi_i = \psi_u + \frac{\pi}{2}$$

$$\varphi = \psi_u - \psi_i = -\frac{\pi}{2}$$

Напряжение отстает по фазе от тока на $\frac{\pi}{2}$

$$X_C = \frac{1}{\omega C} = f(\omega)$$

при $\omega = 0$, $X_C \to \infty$, X_C эквивалентно холостому ходу (ХХ)

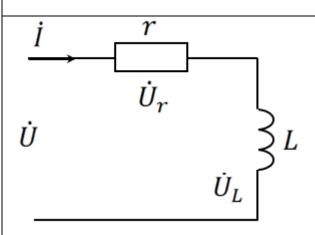
при $\omega = \infty$, $X_C \to 0$, X_C эквивалентно короткозамкнутому (КЗ) проводнику

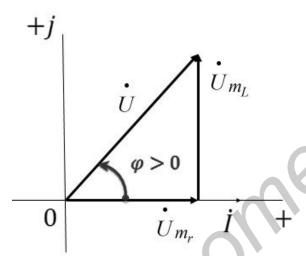
Сопротивление емкости реактивно и отрицательно

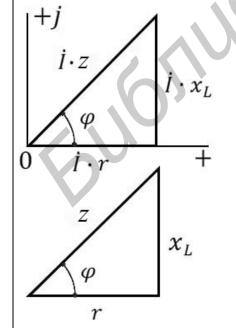
$$Y = \frac{1}{Z} = j\omega C = jb_c$$

Проводимость емкости реактивна и положительна

RL-цепь







$$U_m = U_m sin(\omega t + \psi_u)$$

$$I_{m} = I_{m} sin(\omega t + \psi_{i})$$

$$U_{m} = U_{m_{r}} + U_{m_{L}} =$$

$$= U_{m_{r}} \cdot e^{j\psi_{i}} + U_{m_{L}} \cdot e^{j(\psi_{i} + \frac{\pi}{2})}$$

$$=\underbrace{I_{m}\cdot e^{j\psi_{i}}}_{I_{m}}\underbrace{(r+j\omega L)}_{Z}$$

$$\varphi = \psi_{ii} - \psi_{ii}$$

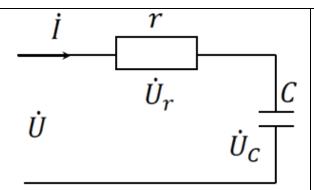
$$0 \le \varphi \le \frac{\pi}{2}$$

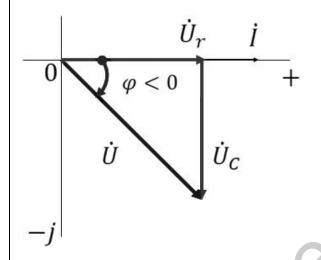
$$z = \sqrt{r^2 + \omega^2 L^2}$$

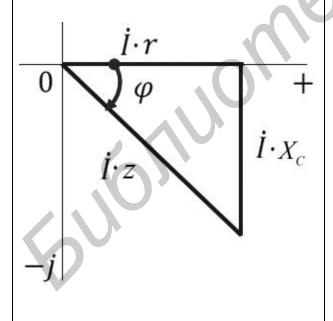
$$\varphi = arctg \frac{X_L}{r}$$

$$I = \frac{U}{\sqrt{r^2 + (\omega L)^2}}$$

RC-цепь





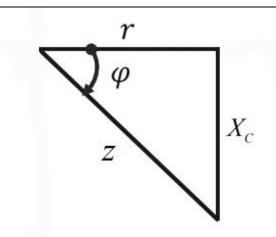


$$\begin{array}{l}
\bullet \\
U_{m} = U_{m_{r}} + U_{m_{L}} = \\
= U_{m_{r}} \cdot e^{j\psi_{i}} + U_{m_{L}} \cdot e^{j(\psi_{i} - \frac{\pi}{2})} = \\
= \underbrace{I_{m} \cdot e^{j\psi_{i}}}_{I_{m}} \underbrace{(r - j\frac{1}{\omega C})}_{Z}
\end{array}$$

$$0 \le \varphi \le -\frac{\pi}{2}$$

$$0 \le \varphi \le -\frac{\pi}{2}$$

$$z = \sqrt{r^2 + \left(\frac{1}{\omega C}\right)^2}$$

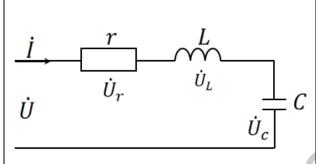


$$\varphi = -arctg \frac{1}{\omega rC}$$

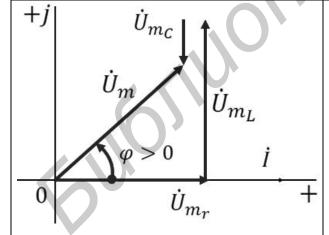
$$\varphi = -arctg \frac{1}{\omega rC}$$

$$I = \frac{U}{\sqrt{r^2 + \frac{1}{\omega^2 C^2}}}$$

Последовательное соединение элементов RLC



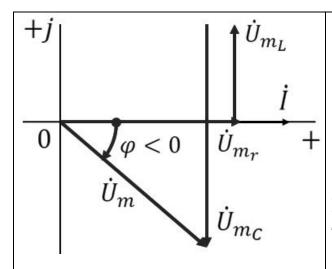
$$\begin{bmatrix} \mathbf{U}_{m} = \mathbf{U}_{m_{r}} + \mathbf{U}_{m_{L}} + \mathbf{U}_{m_{C}} = \mathbf{I}_{m}(r + jX) = \\ = \mathbf{I}_{m} \begin{bmatrix} r + j(X_{L} - X_{C}) \\ X \end{bmatrix} = \mathbf{I}_{m} \cdot Z$$



$$X_L > X_C$$

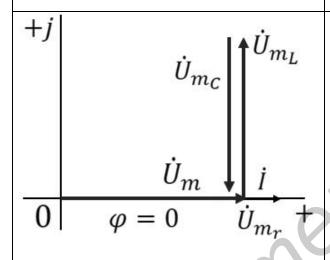
$$\overset{\bullet}{U}_{m_L} > \overset{\bullet}{U}_{m_C}$$

Входное сопротивление цепи носит активно-индуктивный характер



$$\overset{\bullet}{U}_{m_L} < \overset{\bullet}{U}_{m_C}$$

Входное сопротивление цепи носит активно-емкостной характер



$$X_L = X_C$$

$$X_L = X_C$$

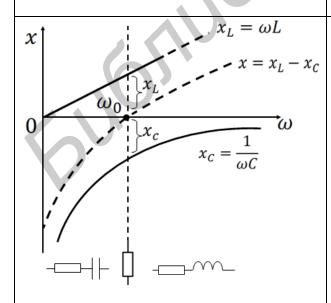
$$U_{m_L} = U_{m_C}$$

Резонанс напряжений

$$\overset{\bullet}{U}_{m} = \overset{\bullet}{U}_{m_{r}}$$

Входное сопротивление цепи носит активный характер

$$I_{m_{max}} = \frac{U_m}{r}$$

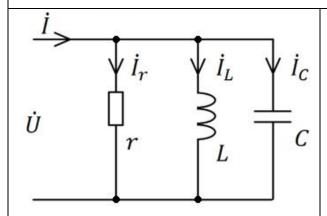


$$X_L = X_C$$
 $\omega_0 L = \frac{1}{\omega_0 C}$

Резонансная частота

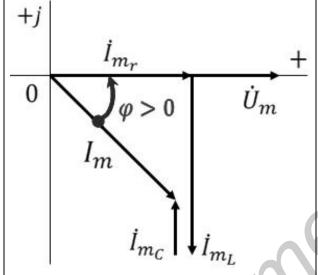
$$\omega_0 = \frac{1}{\sqrt{LC}}, \ f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Параллельное соединение элементов RLC

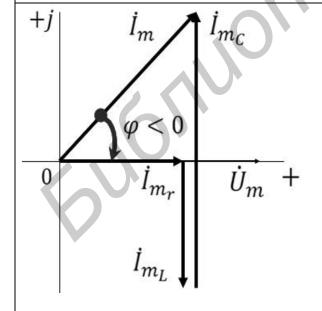


$$\vec{I}_{C} = \vec{I}_{m_{r}} + \vec{I}_{m_{L}} + \vec{I}_{m_{C}} = \vec{U}_{m}(g - jb) = 0$$

$$= U_{m} g - j(b_{L} - b_{C}) = U_{m} Y$$



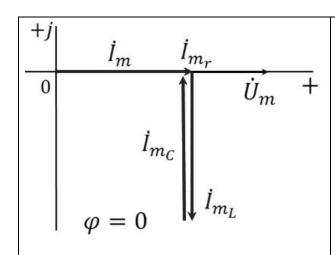
Входная проводимость цепи носит активно-индуктивный характер



$$b_L < b_C$$

$$I_{m_L} < I_{m_C}$$

Входная проводимость цепи носит активно-емкостный характер



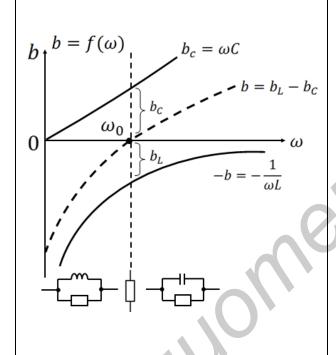
$$b_L = b_C$$

$$\overset{\bullet}{I}_{m_L} = \overset{\bullet}{I}_{m_C}$$

Резонанс токов

$$\overset{\bullet}{I}_m = \overset{\bullet}{I}_{m_r}$$

Входная проводимость цепи носит активный характер



$$b_L = b_C \qquad \frac{1}{\omega_0 L} = \omega_0 C$$

$$\omega_0 = \frac{1}{\sqrt{LC}}, \ f_0 = \frac{1}{2\pi\sqrt{LC}}$$

2.5. Мощность в цепи синусоидального тока

Мгновенная мошность

$$p(t) = u(t) \cdot i(t)$$

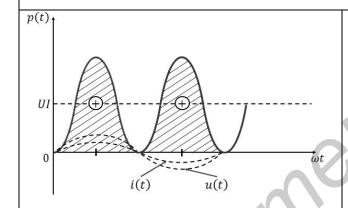
$$u(t) = U_m sin(\omega t + \psi_u)$$

$$i(t) = I_m sin(\omega t + \psi_i)$$

$$p(t) = U_m I_m sin(\omega t + \psi_u) \cdot sin(\omega t + \psi_i)$$

при
$$\psi_u=0$$
 $p(t)=UIcos \varphi-UIcos (2\omega t-\varphi),$ где $U=\frac{U_m}{\sqrt{2}},$ $I=\frac{I_m}{\sqrt{2}},$ $\varphi=\psi_u-\psi_i$

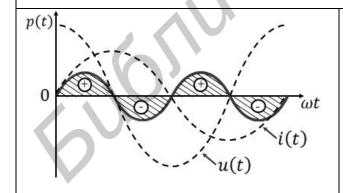
$$\varphi = 0$$
, $\cos \varphi = 1$



$$p(t) = UIcos\varphi - UIcos(2\omega t - \varphi) =$$

$$= UI - UIcos2\omega t$$

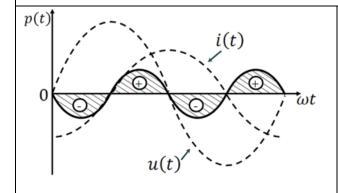
$$\varphi = \frac{\pi}{2}$$
, $\cos \varphi = 0$



$$p(t) = UI\cos\varphi - UI\cos(2\omega t - \frac{\pi}{2}) =$$

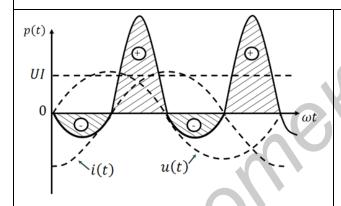
$$= UI\sin 2\omega t$$

$$\varphi = -\frac{\pi}{2}$$
, $\cos \varphi = 0$



 $p(t) = UIcos\varphi - UIcos(2\omega t + \frac{\pi}{2}) =$ $=-UIsin2\omega t$

$$0 \le \varphi \le \frac{\pi}{2}, \ 0 \le \cos\varphi \le 1$$



 $p(t) = UIcos\varphi - UIcos(2\omega t - \varphi)$

Активная мощность

Реактивная мощность

 $P = UIcos \varphi$ Вт , кВт, МВт

 $Q = UIsin\varphi$

$$Q_L = I^2 \omega L$$

$$Q_L = I^2 \omega L$$
$$Q_C = -U^2 \omega C$$

Полная мощность

$$S = \sqrt{P^2 + Q^2} = UI \quad BA$$

$$\cos \varphi = \frac{P}{S}$$

$$cos\varphi = \frac{P}{S}$$

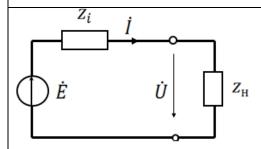
Комплексная мощность

$$\hat{S} = U I = UI \cdot e^{j(\psi_u - \psi_i)} =$$

$$= \underbrace{UI cos \varphi}_{P} + j \underbrace{UI sin \varphi}_{Q} = P + jQ$$

$$|\hat{S}| = \sqrt{P^2 + Q^2} = S$$

Условия передачи максимальной активной мощности в нагрузку



1-е <u>условие</u>: $x_{\rm H} = -x_i$

2-е <u>условие</u>: $r_{\rm H} = r_i$

КПД

Баланс мощности

й активной мощности в нагрузку
$$Z_{i} = r_{i} + jx_{i}$$

$$Z_{H} = r_{H} + jx_{H}$$

$$I = \frac{E}{Z} = \frac{E}{\sqrt{(r_{i} + r_{H})^{2} + (x_{i} + x_{H})^{2}}}$$

$$P_{H} = I^{2}r_{H} = \frac{E^{2} \cdot r_{H}}{(r_{i} + r_{H})^{2} + (x_{i} + x_{H})^{2}}$$

$$P_{H} = \frac{E^{2} \cdot r_{H}}{(r_{i} + r_{H})^{2}}$$

$$P_{H} = \frac{E^{2}}{4r_{i}} = \frac{E^{2}}{4r_{H}}$$

$$\eta = \frac{P_{H}}{P_{0}} = \frac{I^{2} \cdot r_{H}}{I^{2} \cdot (r_{i} + r_{H})} = 0,5$$

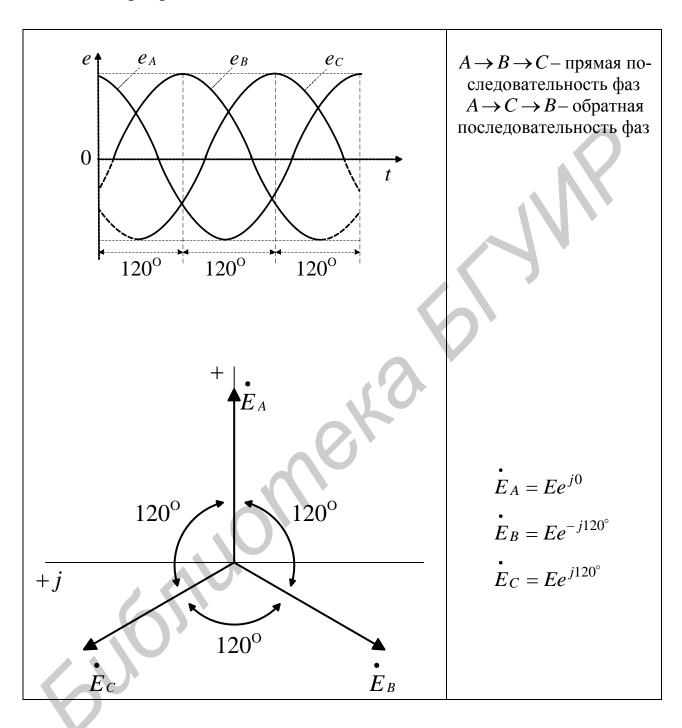
$$\sum_{l=1}^{m} E_{l} I_{l} = \sum_{k=1}^{n} \hat{S}_{k}$$

$$\sum_{l=1}^{m} \hat{S}_{l} = \sum_{k=1}^{n} \hat{S}_{k}$$

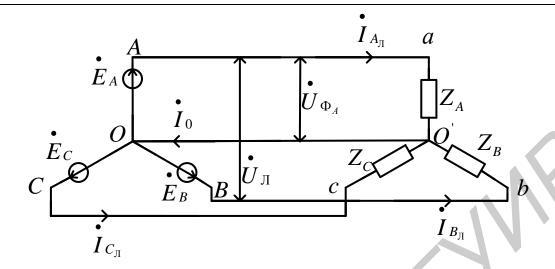
$$\sum_{l=1}^{m} (P_{l} + jQ_{l}) = \sum_{k=1}^{n} (P_{k} + jQ_{k})$$

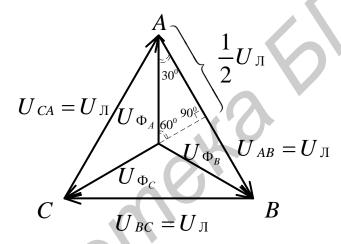
$$\lim_{ucmouthuk} P_{l} \approx P_{k}, Q_{l} \approx Q_{k}$$

2.6. Цепи трёхфазного тока



Соединение сопротивлений нагрузки «звездой»





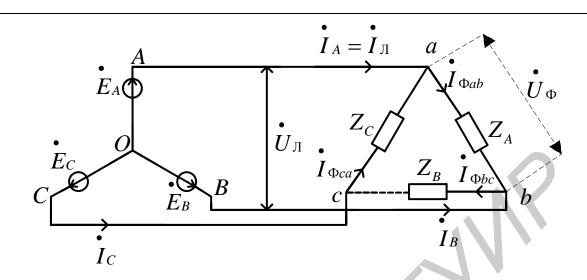
$$\frac{1}{2}U_{\mathrm{II}} = U_{\mathrm{\Phi}} \sin 60^{\circ} = \frac{\sqrt{3}}{2}U_{\mathrm{\Phi}}$$

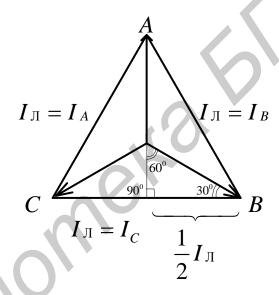
$$U_{\Pi} = \sqrt{3} U_{\Phi} \qquad I_{\Pi} = I_{\Phi}$$

Фазное напряжение U_{Φ} – это напряжение между фазным и нейтральным проводами.

Линейное напряжение $U_{\,\mathrm{J}\hskip-.07em\mathrm{I}}$ – это напряжение между фазными проводами

Соединение сопротивлений нагрузки «треугольником»



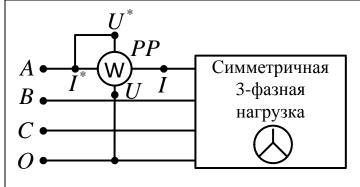


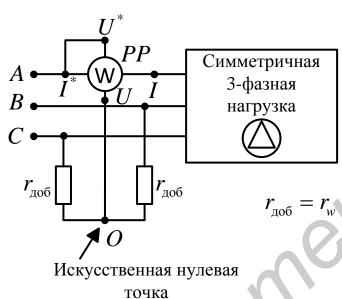
$$\frac{1}{2}I_{\Pi} = I_{\Phi} \sin 60^{\circ} = \frac{\sqrt{3}}{2}I_{\Phi}$$

$$I_{\Pi} = \sqrt{3} I_{\Phi} \qquad U_{\Pi} = U_{\Phi}$$

Мощность в трёхфазной цепи

Симметричная система





Активная мощность

$$P_{\Phi} = P_{\Phi a} + P_{\Phi e} + P_{\Phi c} =$$

$$= 3U_{\Phi}I_{\Phi}cos\varphi_{\Phi} = 3P_{\Phi}$$

$$U_{\Phi} = \frac{U_{\Pi}}{\sqrt{3}}, I_{\Phi} = I_{\Pi}$$

$$P = 3\frac{U_{\Pi}}{\sqrt{3}}I_{\Pi} = \sqrt{3}U_{\Pi}I_{\Pi}cos\varphi_{\Phi}$$

$$I_{\Phi} = \frac{I_{\Pi}}{\sqrt{3}}, U_{\Phi} = U_{\Pi}$$

$$P = 3\frac{I_{\Pi}}{\sqrt{3}}U_{\Pi} =$$

$$= \sqrt{3}U_{\Pi}I_{\Pi}cos\varphi_{\Phi}$$

Реактивная мощность

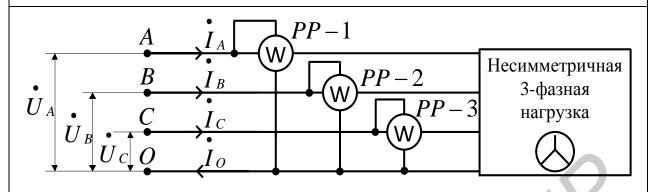
$$Q_{\Phi} = Q_{\Phi a} + Q_{\Phi a} + Q_{\Phi c} =$$

$$= 3U_{\Phi}I_{\Phi}sin\varphi_{\Phi} = 3Q_{\Phi}$$

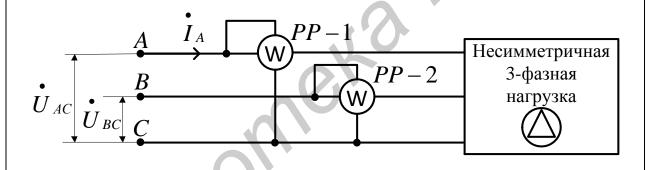
Полная мощность

$$\begin{split} S &= \sqrt{P^2 + Q^2} \\ S &= \sqrt{3U_{\Pi}^2 I_{\Pi}^2 cos^2 \varphi_{\Phi} + 3U_{\Pi}^2 I_{\Pi}^2 sin^2 \varphi_{\Phi}} = \sqrt{3}U_{\Pi}I_{\Pi} \\ S &= \sqrt{9U_{\Phi}^2 I_{\Phi}^2 cos^2 \varphi_{\Phi} + 9U_{\Phi}^2 I_{\Phi}^2 sin^2 \varphi_{\Phi}} = 3U_{\Phi}I_{\Phi} \end{split}$$

Несимметричная система



3 ваттметра: $P = P_{\Phi 1} + P_{\Phi 2} + P_{\Phi 3}$

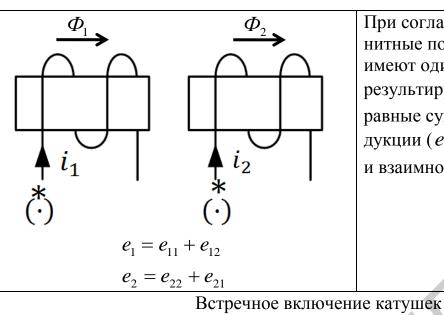


Метод Арона (2 ваттметра):
$$\hat{S} = \overset{\cdot}{U}_A \overset{*}{I}_A + \overset{\cdot}{U}_B \overset{*}{I}_B + \overset{\cdot}{U}_C \overset{*}{I}_C;$$
 так как $\overset{*}{I}_C = -\overset{*}{I}_A - \overset{*}{I}_B$, то
$$\hat{S} = (\overset{\cdot}{U}_A - \overset{\cdot}{U}_C)^*_I + (\overset{\cdot}{U}_B - \overset{\cdot}{U}_C)^*_I = \overset{*}{U}_{AC} \overset{*}{I}_A + \overset{*}{U}_{BC} \overset{*}{I}_B$$

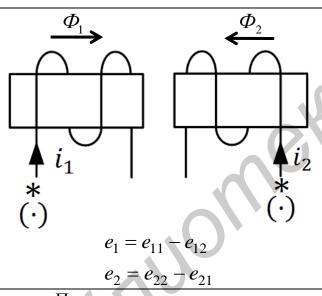
2.7. Цепи с индуктивной связью

Осповина пол	атия	
Основные понятия		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ЭДС самоиндукции: $e_{11} = -L_1 \frac{di_1}{dt}, e_{22} = -L_2 \frac{di_2}{dt}$ ЭДС взаимной индукции: $e_{21} = -M \frac{di_1}{dt}, e_{12} = -M \frac{di_2}{dt}$	
$M = \frac{\psi_{12}}{i_2} = \frac{\psi_{21}}{i_1} [\Gamma H]$	Взаимная индуктивность – отношение потокосцепления к току	
$\psi_{12}(\psi_{21})$	Потокосцепление 1-й (2-й) катушки, обусловленное током i_1 i_2 во 2-й (1-й) катушке	
$k_{21} = \frac{e_{21}}{e_{11}} = \frac{M}{L_1}$	Степень связи 2-й катушки с 1-й	
$k_{12} = \frac{e_{12}}{e_{22}} = \frac{M}{L_2}$	Степень связи 1-й катушки со 2-й	
$k = \sqrt{k_{21}k_{12}} = \frac{M}{\sqrt{L_1L_2}}$	Коэффициент связи	

Согласное включение катушек

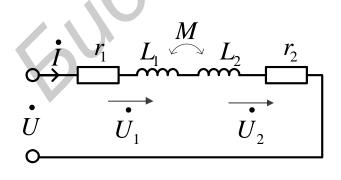


При согласном включении магнитные потоки двух катушек имеют одинаковое направление и результирующие ЭДС (e_1, e_2) , равные сумме их ЭДС самоиндукции (e_{11}, e_{22}) и взаимной индукции (e_{11}, e_{21})



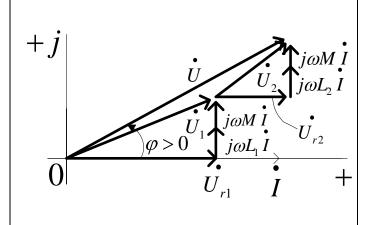
При встречном включении магнитные потоки двух катушек направлены встречно и результирующие ЭДС равны разности их ЭДС самоиндукции и взаимной индукции

Последовательное включение индуктивно связанных катушек



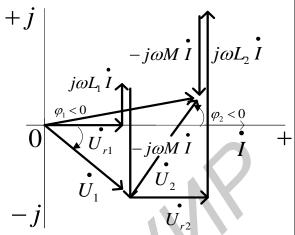
2-й закон Кирхгофа: $\dot{U} = r_1 \dot{I} + j\omega L_1 \dot{I} \pm j\omega M \dot{I} +$ $+r_2 \dot{I} + j\omega L_2 \dot{I} \pm j\omega M \dot{I} =$ $= \left[\underbrace{(r_1 + r_2)}_{r_{\text{DVP}}} + j\omega\underbrace{(L_1 + L_2 \pm 2M)}_{L_{\text{DVP}}}\right]^{\bullet}_{I}$

Согласное включение катушек



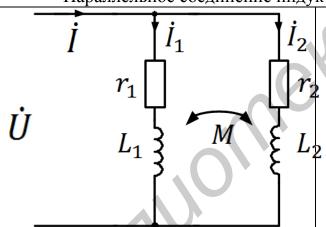
 $L_{\text{SKB}} = L_1 + L_2 + 2M$

Встречное включение катушек



$$L_{\rm ЭКВ} = L_{\rm l} + L_{\rm 2} - 2M$$
 При $L_{\rm l} > L_{\rm 2}$ – ёмкостный эффект

Параллельное соединение индуктивно связанных катушек

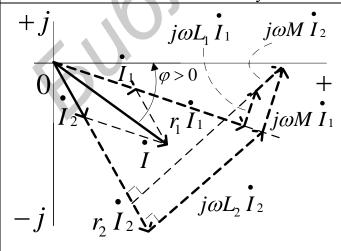


2-й закон Кирхгофа для каждой ветви:

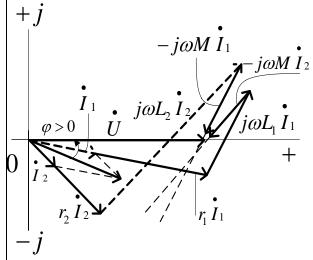
$$U = r_1 I_1 + j\omega L_1 I_1 \pm j\omega M I_2$$

$$U = r_2 I_2 + j\omega L_2 I_2 \pm j\omega M I_1$$

Согласное включение катушек

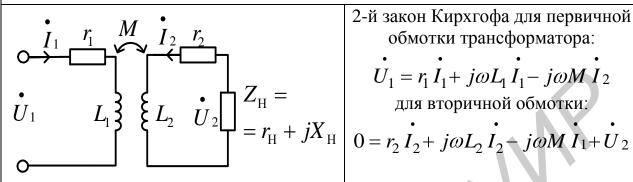


Встречное включение катушек



2.8. Трансформатор

Трансформатор без магнитопровода при встречном включении обмоток



2-й закон Кирхгофа для первичной обмотки трансформатора:

$$\dot{U}_1 = r_1 \, \dot{I}_1 + \, j \omega L_1 \, \dot{I}_1 - \, j \omega M \, \dot{I}_2$$
 для вторичной обмотки:

$$0 = r_2 I_2 + j\omega L_2 I_2 - j\omega M I_1 + U_2$$

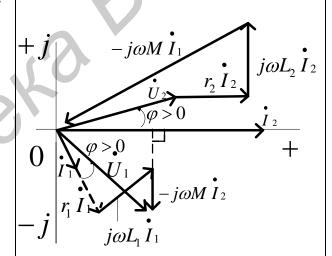
Режимы работы трансформатора

Режимы работы

Векторные диаграммы

Уравнения трансформатора в режиме

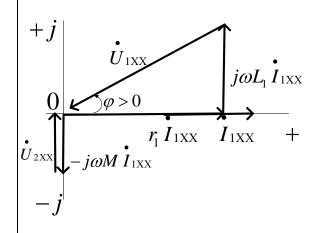
$$\begin{array}{c}
\dot{U}_{1} = r_{1} \dot{I}_{1} + j\omega L_{1} \dot{I}_{1} - j\omega M \dot{I}_{2} \\
\dot{0} = r_{2} \dot{I}_{2} + j\omega L_{2} \dot{I}_{2} - \\
-j\omega M \dot{I}_{1} + \dot{U}_{2}
\end{array} \right\} (2.1)$$



Режим холостого хода ($I_2 = 0$):

$$\dot{U}_{1XX} = r_1 \dot{I}_{1XX} + j\omega L \dot{I}_{1XX}$$

$$0 = -j\omega M \dot{I}_{1XX} + \dot{U}_{2XX}$$



Режим короткого замыкания ($\dot{U}_2 = 0$):

$$\dot{U}_{1K3} = r_1 \dot{I}_{1K3} + j\omega M \dot{I}_{1K3} - j\omega M \dot{I}_{2K3}
0 = r_2 \dot{I}_{2K3} + j\omega L_2 \dot{I}_{2K3} - j\omega M \dot{I}_{1K3}$$

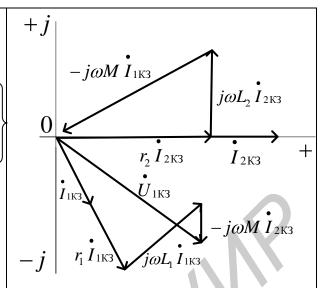


Схема замещения трансформатора

В первое уравнение системы (2.1)

добавим $\pm j\omega M\,I_1$

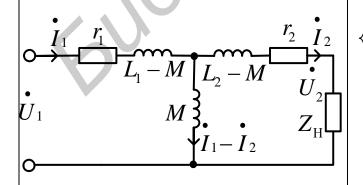
Во второе уравнение системы (2.1) добавим $\pm j\omega M \stackrel{\bullet}{I}_2$

$$\dot{U}_{1} = r_{1}\dot{I}_{1} + j\omega L_{1}\dot{I}_{1} - \frac{1}{2}i\omega M\dot{I}_{2} + j\omega M\dot{I}_{1} - j\omega M\dot{I}_{1}$$

$$-j\omega M\dot{I}_{2} + j\omega L_{2}\dot{I}_{2} - \frac{1}{2}i\omega M\dot{I}_{2} + j\omega M\dot{I}_{2} + \frac{1}{2}i\omega M\dot{I}_{2} + \frac{1}$$

Схема замещения

В схеме замещения отсутствуют индуктивные связи



$$\dot{U}_{1} = r_{1}\dot{I}_{1} + j\omega(L_{1} - M)\dot{I}_{1} +$$

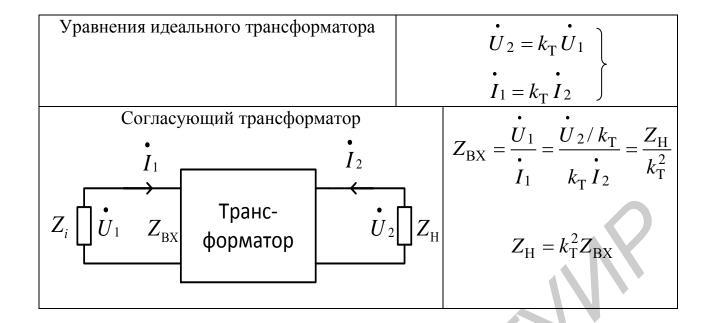
$$+ j\omega M(\dot{I}_{1} - \dot{I}_{2})$$

$$0 = r_{2}\dot{I}_{2} + j\omega(L_{2} - M)\dot{I}_{1} -$$

$$- j\omega M(\dot{I}_{1} - \dot{I}_{2}) + \dot{U}_{2}$$

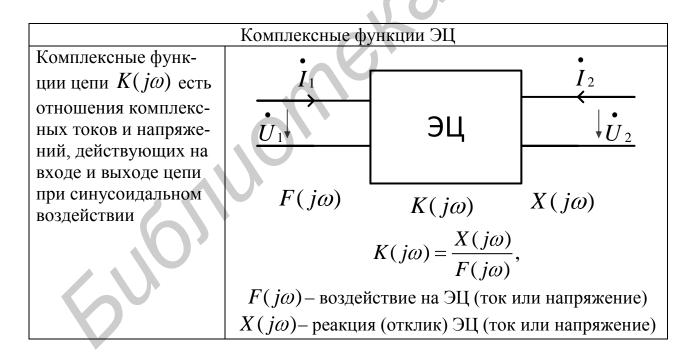
При (L-M) < 0 элемент L-M можно заменить ёмкостью

Идеальный трансформатор	
Режим работы	Уравнения
У идеального трансформатора L_1 и L_2 обмоток велики, r_1 и r_2 – малы, коэффициент связи $k=\frac{M}{\sqrt{L_1L_2}}=1$	Система уравнений (2.1) имеет вид:
Коэффициент трансформации равен от- ношению числа обмоток	$k_{\mathrm{T}} = \frac{e_2}{e_1} = \frac{-w_2}{-w_1} \frac{d\Phi}{dt} = \frac{w_2}{w_1}$
Режим короткого замыкания $\dot{U}_2=0$	Система уравнений (2.2) имеет вид: $U_1 = j\omega L_1 I_1$ $U_2 = j\omega M I_1$ $Oткуда \frac{U_2}{U_1} = \frac{M}{L_1},$ $k = \frac{M}{\sqrt{L_1 L_2}} = 1$ при $M = \sqrt{L_1 L_2},$ $Tогда \frac{U_2}{U_1} = \frac{\sqrt{L_2}}{\sqrt{L_1}} \approx \frac{w_2}{w_1} = k_T$ Второе уравнение системы (2.2) имеет вид: $0 = j\omega M I_2 - j\omega L_2 I_2,$ $Oткуда$ $\frac{I_1}{I_2} = \frac{L_2}{M} = \frac{\sqrt{L_2}}{\sqrt{L_1}} \approx \frac{w_2}{w_1} = k_T$



3. Избирательные электрические цепи

3.1. Комплексные функции и частотные характеристики электрических цепей (ЭЦ)



	• / >
Амплитудно-фазовая	$X(j\omega) = X(j\omega) - X(\omega)e^{j\varphi_X(\omega)}$
характеристика	$K(j\omega) = \frac{X(j\omega)}{F(j\omega)} = \frac{X(\omega)e^{j\varphi_X(\omega)}}{K(\omega)e^{j\varphi_F(\omega)}} =$
(АФХ) цепи $K(j\omega)$	
есть зависимость ам-	$=K(\omega)e^{j\varphi(\omega)}=K(\omega)cos\varphi(\omega)+$
плитуды и фазы про-	$\overbrace{A(\omega)}$
ходящего через ЭЦ	` '
сигнала от частоты	$+\underbrace{jK(\omega)sin\varphi(\omega)}$
	$B(\omega)$
Амплитудно-	$X(\omega)$
частотная характери-	$K(\omega) = \frac{\langle \cdot \rangle}{E(\omega)} = K(j\omega) =$
стика (АЧХ) цепи есть	$K(\omega) = \frac{X(\omega)}{F(\omega)} = K(j\omega) =$
зависимость модуля	$=\sqrt{A^2(\omega)+B^2(\omega)}$
$K(j\omega)$ комплексной	$= \gamma A (\omega) + B (\omega)$
функции цепи от ча-	
стоты.	
Величина $K(j\omega)$	
определяет отношение	
амплитуды реакции	
цепи к амплитуде воз-	
действия	
Фазочастотная харак-	$B(\omega)$
теристика (ФЧХ) цепи	$\varphi(\omega) = \varphi_X(\omega) - \varphi_F(\omega) = arctg \frac{B(\omega)}{A(\omega)}$
есть зависимость ар-	$A(\omega)$
гумента $\varphi(\omega)$ ком-	
плексной функции от	
частоты. Величина	
$\varphi(\omega)$ определяет	
сдвиг по фазе реакции	
цепи относительно	
воздействия	
Вещественная частот-	$A(\omega) = K(\omega)cos\varphi(\omega)$
ная характеристика	
(ВЧХ) цепи есть зави-	
симость вещественной	
части $A(\omega)$ ком-	
плексной функции	
цепи от частоты	

Мнимая частотная ха-	$B(\omega) = K(\omega) \sin \varphi(\omega)$
рактеристика (МЧХ)	·
цепи есть зависимость	
мнимой части $B(\omega)$	
комплексной функции	
цепи от частоты	
Логарифмическая ам-	$lnK(j\omega) = lnK(\omega)e^{j\varphi(\omega)} = \underbrace{lnK(\omega)} + \underbrace{j\varphi(\omega)}$
плитудно-частотная	$m(j\omega)$ $m(\omega)c$ $m(\omega)$
характеристика	$\mathcal{J}\!\!\!A^{\!$
(ЛАЧХ) – натураль-	
ный логарифм от АЧХ	
	Подтотин на мороисториотинен
	Частотные характеристики
АФХ	$K(j\omega) = \frac{X(j\omega)}{F(j\omega)} = K(\omega)e^{j\varphi(\omega)}$
	$F(J\omega)$
АЧХ	$X(\omega)$
	$K(\omega) = K(j\omega) = \frac{X(\omega)}{F(\omega)} = \sqrt{A^2(\omega) + B^2(\omega)}$
	$\Gamma(\omega)$
ФЧХ	$\varphi(\omega) = \varphi_X(\omega) - \varphi_F(\omega) =$ $= argK(j\omega) = arctg \frac{B(\omega)}{A(\omega)}$
	$= araV(i\omega) = arata B(\omega)$
	$= argK(j\omega) = arcig{A(\omega)}$
DIIV	
ВЧХ	$A(\omega) = ReK(j\omega) = K(\omega)cos\varphi(\omega)$
МЧХ	$B(\omega) = ImK(j\omega) = K(\omega)sin\varphi(\omega)$
ЛАЧХ	$lnK(\omega)$
X /	

Единицы измерения усиления или затухания (ослабления) проходящего сигнала через согласованную симметричную ЭЦ

Усилению (затуханию) в 1 непер [Hn]соответствует увеличение (уменьшение) действительного значения напряжения или тока на выходе ЭЦ в e = 2,718 раз больше, чем на входе.

Для напряжения (тока):

$$a_{Hn}=lnrac{X}{F}\ 1\ Hn$$
 ,
 т.к. $rac{X}{F}=2,718$;
$$lnrac{X}{F}=2,3lgrac{X}{F}.$$
 Лия мошности:

Для мощности:

$$a_{Hn} = 0.5ln \frac{S_{\text{BbIX}}}{S_{\text{BX}}} = 1.15lg \frac{S_{\text{BbIX}}}{S_{\text{BX}}}$$

Усилению (затуханию) в 1 бел [Б] соответствует увеличение (уменьшение) полной мощности на выходе ЭЦ в 10 раз относительно входа (2 B – 100 pa₃)

Для мощности:

$$a_E = lg \frac{S_{\text{BbIX}}}{S_{\text{BX}}}$$
 1E

Для напряжения (тока):

$$a_{E} = lg \frac{U_{2}I_{2}}{U_{1}I_{1}} = lg \left(\frac{U_{2}}{U_{1}}\right)^{2} = lg \left(\frac{I_{2}}{I_{1}}\right)^{2} =$$

$$= 2lg \frac{U_{2}}{U_{1}} = 2lg \frac{I_{2}}{I_{1}} \quad 1E$$

Децибел – единица усиления (затухания), в 10 раз большая (меньшая) бела

 $a_{\partial B} = 20lg \frac{U_2}{U.} \quad 1\partial B$

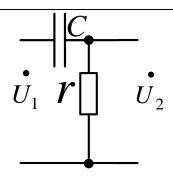
Усилению (затуханию) в $1\partial E$ соответствует увеличение (уменьшение) полной мощности проходящего через ЭЦ тока в 1,26 раза или увеличение (уменьшение) величины напряжения (тока) в 1,12 раза

Из соотношения

$$\frac{a_{\partial E}}{a_{Hn}} = \frac{20lg \frac{F}{X}}{ln \frac{F}{X}} = \frac{20lg \frac{F}{X}}{2,3lg \frac{F}{X}} = 8,686$$

следует, что 1 $Hn \approx 0.8686$ $E \approx 8.686$ ∂E $1 \partial E \approx 0.1 E \approx 0.115 Hn$

3.2. Дифференцирующая цепь



Комплексная функция цепи по напряжению:

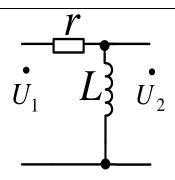
$$K_{U_{Cr}}(j\omega) = \frac{\stackrel{\bullet}{U_{2}}}{\stackrel{\bullet}{U_{1}}} = \frac{\stackrel{\bullet}{Ir}}{\stackrel{\bullet}{I(r + \frac{1}{j\omega C})}} =$$

$$= \frac{1}{1 + \frac{1}{j\omega rC}} = \frac{1}{1 + \frac{1}{j\omega \tau_{u}}} =$$

$$= \frac{j\omega \tau_{u}}{1 + j\omega \tau_{u}}.$$

Постоянная времени цепи Ст-цепи:

$$\tau_{u_{rC}} = rC$$



Комплексная функция цепи по напряжению:

$$K_{U_{rL}} = \frac{\overset{\bullet}{U_{2}}}{\overset{\bullet}{U_{1}}} = \frac{\overset{\bullet}{I} j\omega L}{\overset{\bullet}{I}(r+j\omega L)} = \frac{j\omega \tau_{u}}{1+j\omega \tau_{u}}.$$

 U_1 $T(r+j\omega L)$ $\tau_{urL} = \frac{L}{r}$

RL-цепи характеризует скорость изменения напряжения

Cr-цепь и rL-цепь — дуальны

$$K_{U}(j\omega) = \frac{U_{2}}{U_{1}} = \frac{j\omega\tau_{u}}{1 + j\omega\tau_{u}} = \frac{\omega\tau_{u}}{\underbrace{\sqrt{1 + (\omega\tau_{u})^{2}}}} \cdot e^{\varphi(\omega)}$$

$$K_{U}(j\omega) = \frac{U_{2}}{U_{1}} = \frac{j\omega\tau_{u}}{1 + j\omega\tau_{u}} = \frac{\omega\tau_{u}}{\underbrace{\sqrt{1 + (\omega\tau_{u})^{2}}}} \cdot e^{\varphi(\omega)}$$

ΦΥΧ:
$$\varphi(\omega) = j \cdot (\frac{\pi}{2} - \operatorname{arctg} \omega \tau_{u})$$

или
$$K_{_{U}}(j\omega) = \frac{j\omega\tau_{_{\mathcal{U}}}}{1+j\omega\tau_{_{\mathcal{U}}}} = \frac{j\omega\tau_{_{\mathcal{U}}}(1-j\omega\tau_{_{\mathcal{U}}})}{1+(\omega\tau_{_{\mathcal{U}}})^2} = \frac{\omega\tau_{_{\mathcal{U}}}}{1+(\omega\tau_{_{\mathcal{U}}})^2} + j\frac{(\omega\tau_{_{\mathcal{U}}})^2}{1+(\omega\tau_{_{\mathcal{U}}})^2},$$

откуда АЧХ :
$$K_U(\omega) = \frac{\omega \tau_u}{\sqrt{1 + (\omega \tau_u)^2}} = \frac{1}{\sqrt{1 + \frac{1}{(\omega \tau_u)^2}}},$$

$$\Phi ЧХ: \varphi(\omega) = arctg \left[\frac{(\omega \tau_u)^2}{1 + (\omega \tau_u)^2} \right] / \left[\frac{\omega \tau_u}{1 + (\omega \tau_u)^2} \right] = arctg \frac{1}{\omega \tau_u}$$

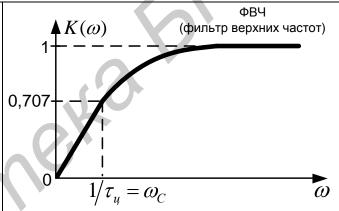
АЧХ дифференцирующей цепи

$$K(\omega) = |K(j\omega)| = \left| \frac{1}{1 + \frac{1}{j\omega\tau_{u}}} \right| = \frac{1}{\sqrt{1 + \frac{1}{\omega^{2}\tau_{u}^{2}}}}$$

При
$$\omega = 0$$
 $K(\omega) \longrightarrow 0$;
при $\omega = \frac{1}{\tau_u} = \omega_C$

$$K(\omega) = \frac{1}{\sqrt{2}} = 0,707;$$

при
$$\omega \longrightarrow \infty$$
 $K(\omega) \longrightarrow 1$



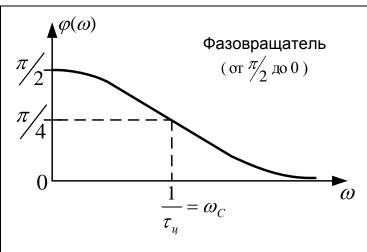
ФЧХ дифференцирующей цепи

$$\varphi(\omega) = arctg \frac{1}{\omega \tau_{u}} = \frac{\pi}{2} - arctg \omega \tau_{u}$$
при $\omega = 0$ $\varphi(\omega) = \frac{\pi}{2}$;

при
$$\omega = 0$$
 $\varphi(\omega) = \frac{\pi}{2}$;

при
$$\omega = \frac{1}{\tau_u} = \omega_C \ \varphi(\omega) = \frac{\pi}{4};$$

при
$$\omega \longrightarrow \infty$$
 $\varphi(\omega) \longrightarrow 0$



Дифференцирующая цепь

При $\omega \tau_{u} << 1$ или $\tau_{u} << T$

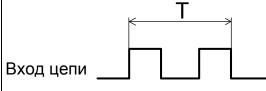
$$K_U(j\omega) = \frac{j\omega\tau_u}{1 + j\omega\tau_u} \approx j\omega\tau_u =$$

$$=\frac{\overset{\bullet}{U_2}}{\overset{\bullet}{U_1}},$$

откуда $\overset{\bullet}{U_2} \approx j\omega \tau_{_{\!\mathit{U}}}\overset{\bullet}{U_1}.$

Умножение на j есть математическая операция дифференцирования,

т.е. при $au_{u} << T$ цепь Cr(rL) — дифференцирующая



Выход диф. цепи

Переходная цепь

При $\omega \tau_u >> 1$

$$2\pi f \tau_u >> 1$$

$$\frac{2\pi\tau_u}{T} >> 1$$

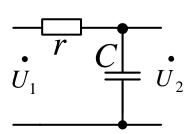
$$\tau_u >> T$$

$$K_{U}(j\omega) = \frac{j\omega\tau_{u}}{1 + \frac{1}{j\omega\tau_{u}}} \approx 1 = \frac{\overset{\bullet}{U_{2}}}{\overset{\bullet}{U_{1}}},$$

откуда $\stackrel{\cdot}{U_2} \approx \stackrel{\cdot}{U_1}$, т.е. при $\tau_u >> T$

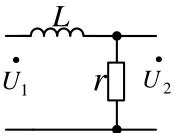
цепь Cr(rL) – переходная, форма сигнала практически не искажается

3.3. Интегрирующая цепь



Комплексная функция *rC*-цепи по напряжению:

напряжению.
$$K_{U_{rC}}(j\omega) = \frac{\overset{\bullet}{U_2}}{\overset{\bullet}{U_1}} = \frac{\overset{\bullet}{I}\frac{1}{j\omega C}}{\overset{\bullet}{I}(r+\frac{1}{j\omega C})} = K_{U_{rL}} = \frac{\overset{\bullet}{U_2}}{\overset{\bullet}{U_1}} = \frac{\overset{\bullet}{I}r}{\overset{\bullet}{I}(r+j\omega Lr)} = \frac{1}{1+j\omega\tau_u}$$
$$= \frac{1}{1+j\omega\tau_u}$$



Комплексная функция *Lr*-цепи по напряжению:

$$K_{U_{rL}} = \frac{\overset{\bullet}{U_{2}}}{\overset{\bullet}{U_{1}}} = \frac{\overset{\bullet}{Ir}}{\overset{\bullet}{I(r+j\omega Lr)}} = \frac{1}{1+j\omega\tau_{u}}$$

Постоянная времени *rC*-цепи:

$$\tau_{u_{rC}} = rC$$

Постоянная времени Lr-цепи:

$$\tau_{u_{Lr}} = \frac{L}{r}$$

rC-цепь и Lr-цепь — дуальны

A4X:
$$K_U(\omega) = |K_U(j\omega)| = \left| \frac{1}{1 + j\omega\tau_u} \right| = \frac{1}{\sqrt{1 + (\omega\tau_u)^2}}$$

ФЧХ:
$$K_U(j\omega) = \frac{1}{1 + j\omega\tau_u} = \frac{1 - j\omega\tau_u}{1 + (j\omega\tau_u)^2} = \frac{1}{1 + (j\omega\tau_u)^2} - j\frac{\omega\tau_u}{1 + (\omega\tau_u)^2},$$

откуда
$$\varphi(\omega) = arctg \left[-\frac{\omega \tau_u}{1 + (\omega \tau_u)^2} \right] / \left[\frac{1}{1 + (\omega \tau_u)^2} \right] = -arctg \omega \tau_u$$

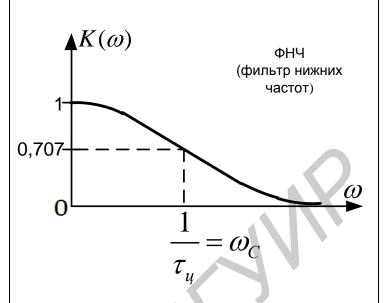
АЧХ интегрирующей цепи

$$K(\omega) = \frac{1}{\sqrt{1 + (\omega \tau_{u})^{2}}}.$$

При
$$\omega = 0$$
 $K(\omega) = 1;$

при
$$\omega = \frac{1}{\tau_u} = \omega_C \ K(\omega) = \frac{1}{\sqrt{2}};$$

при
$$\omega \longrightarrow \infty K(\omega) \longrightarrow 0$$
.



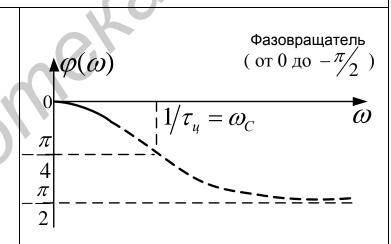
ФЧХ интегрирующей цепи

$$\varphi(\omega) = -arctg\omega\tau_u$$

$$\omega = 0$$
 $\varphi(\omega) = 0$

$$\omega = \frac{1}{\tau_u} = \omega_C \quad \varphi(\omega) = -\pi/4$$

$$\omega \longrightarrow \infty \quad \varphi(\omega) \longrightarrow -\pi/2$$



Интегрирующая цепь

Переходная цепь

При $\omega \tau_u << 1$ или $\tau_u << T$

При
$$\omega au_{_{_{\hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \tau_{_{_{\hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \tau_{_{_{\hspace{-.1em} \hspace{-.1em} \hspace{-.1em$$

$$K_{U}(j\omega) = \frac{1}{1 + j\omega\tau_{u}} \approx 1 = \frac{\dot{U}_{2}}{\dot{U}_{1}},$$

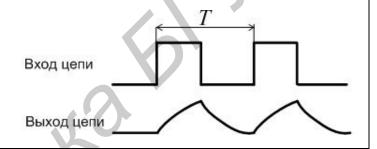
$$K_{U}(j\omega) = \frac{1}{1 + j\omega\tau_{u}} \approx \frac{1}{j\omega\tau_{u}} = \frac{\overset{\bullet}{U_{2}}}{\overset{\bullet}{U_{1}}},$$

откуда
$$\overset{ullet}{U}_2 pprox \overset{ullet}{U}_1$$
, т.е. при $\tau_u << T$

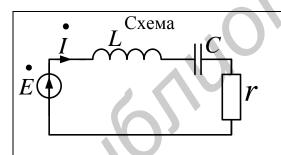
откуда
$$\stackrel{\bullet}{U}_2 pprox rac{\stackrel{\bullet}{U}_1}{j\omega au_{u}}.$$

цепь rC(Lr) – переходная (форма сигнала практически не искажается)

Деление на j есть математическая операция интегрирования, т.е. при $\tau_{u} >> T$ цепь rC(Lr) – интегрирующая



3.4. Последовательный колебательный контур



Параметры

Первичные: r, L, C

Вторичные: $\omega_0, f_0, \rho, Q, d$

Резонансная частота ω_0 — частота, при которой в контуре возникает резонанс напряжений и ток максимален

Резонанс наступает при равенстве нулю реактивного сопротивления контура

$$X = X_L - X_C = 0,$$

откуда
$$\omega_0 L - \frac{1}{\omega_0 C} = 0, \omega_0 = \frac{1}{\sqrt{LC}},$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}, \ I_{m_0} = \frac{E_m}{r}$$

Характеристическое (или волновое) сопротивление ρ – сопротивление индуктивности или емкости на резонансной частоте	$\rho = \omega_0 L \text{ или } \rho = \frac{1}{\omega_0 C},$ т.к. $\omega_0 = \frac{1}{\sqrt{LC}}$, то $\rho = \sqrt{\frac{L}{C}}$ Ом . На практике $\rho \approx 100 \div 500$ Ом	
Добротность Q — отношение напряжения на индуктивности или емкости к напряжению на входе контура при резонансе	$Q = rac{U_{m_{L_0}}}{E_m}$ или $Q = rac{U_{m_{C_0}}}{E_m},$ т.к. $\omega_{m_{L_0}} = rac{I_{m_0} ho}{E_m} = rac{(E_m/r) \cdot ho}{E_m},$ то $Q = rac{ ho}{r}$, или $Q = rac{\omega_0 L}{r},$ или $Q = rac{1}{\omega_0 C r}$	
Затухание d – величина, обратная Q	$d = \frac{1}{Q}$	

Частотные характеристики

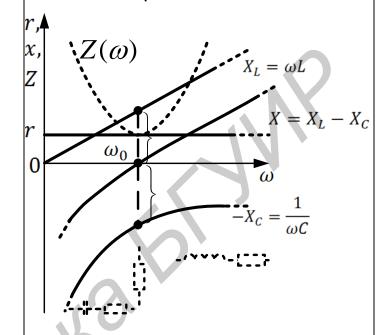
Комплексное входное сопротивление:

$$\begin{split} Z(j\omega) &= r + j(\omega L - \frac{1}{\omega C}) = \\ &= r + j(X_L - X_C) = \\ &= r + jX(\omega) = Z(\omega)e^{j\varphi_Z(\omega)} \\ Z(\omega) &= \sqrt{r^2 + X^2(\omega)}. \end{split}$$

При $\omega < \omega_0$ сопротивление контура $Z(\omega)$ носит активно-емкостный характер, при $\omega > \omega_0 -$ активно-индуктивный, при $\omega = \omega_0 -$ активный

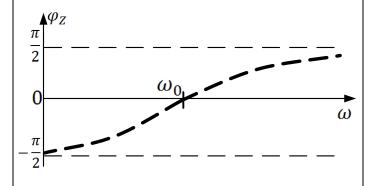
Графики г, Х

A4X:
$$Z(\omega) = \sqrt{r^2 + X^2(\omega)}$$



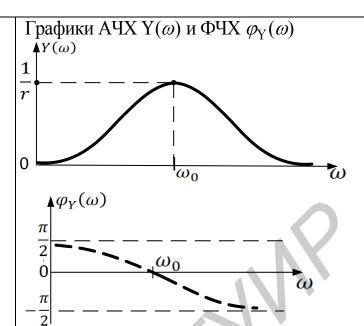
ФЧХ:

$$\varphi_Z(\omega) = arctg \frac{X(\omega)}{r} = arctg \frac{\omega L - 1/\omega C}{r}$$



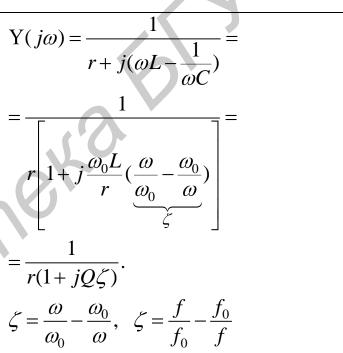
Комплексная входная проводимость:

$$\begin{split} \mathbf{Y}(j\omega) &= \frac{1}{Z(j\omega)} = \\ &= \frac{1}{Z(\omega)} e^{-j\varphi_Z(\omega)} = \mathbf{Y}(\omega) e^{\varphi_{\mathbf{Y}}(\omega)}, \\ \mathbf{Y}(\omega) &= \frac{1}{\sqrt{r^2 + X^2(\omega)}}, \\ \varphi_{\mathbf{Y}}(\omega) &= -\varphi_Z(\omega) \end{split}$$



Фактор расстройки показывает, насколько и в какую сторону частота входного сигнала контура отличается от резонансной частоты ω_0 контура.

При
$$\omega = \omega_0$$
 $\zeta = 0$; при $\omega > \omega_0$ $\zeta > 0$; при $\omega < \omega_0$ $\zeta < 0$



Обобщенная расстройка

Абсолютная расстройка

Относительная расстройка

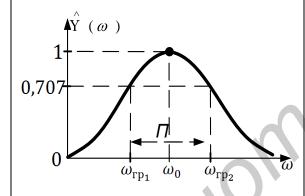
Нормированная АЧХ:

$$\hat{\mathbf{Y}}(\omega) = \frac{1}{\sqrt{1 + Q^2 \zeta^2}}$$

Полоса пропускания контура Π – диапазон частот, в пределах которого AЧХ (например $Y(\omega)$)

не ниже уровня $\frac{1}{\sqrt{2}} \approx 0,707$ от

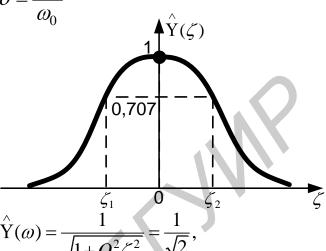
максимального значения



$$Q\zeta$$

$$\Delta\omega = \omega - \omega_0$$

$$\delta = \frac{\Delta \omega}{\omega_0}$$



откуда
$$1+Q^2\zeta^2=2, \ \zeta=\pm\frac{1}{Q},$$

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \mp \frac{1}{Q} = 0$$
 или

$$\omega^2 \mp 2 \frac{\omega_0}{2O} \omega - \omega_0^2 = 0.$$

Решение уравнения:

$$\omega_{\text{rp}_{1,2}} = \pm \frac{\omega_0}{2Q} \pm \sqrt{\frac{\omega_0^2}{4Q^2} + \omega_0^2}.$$

Полоса пропускания

$$ec{\Pi} = \omega_{\mathrm{rp}_2} - \omega_{\mathrm{rp}_1} = \frac{\omega_0}{Q}$$
 или

$$\Delta F = \frac{2\pi f_0}{O}.$$

Относительная полоса

пропускания

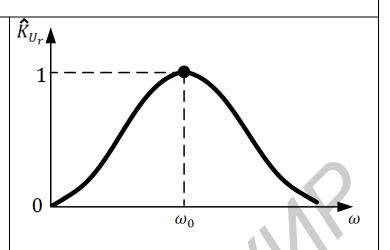
$$\Pi_0 = \frac{\Pi}{\omega_0} = \frac{1}{Q} = d$$

Комплексные передаточные функции контура

Комплексная передаточная функция по напряжению на активном сопротивлении:

$$K_{U_{r}}(j\omega) = \frac{\overset{\bullet}{U_{r}}}{\overset{\bullet}{U_{\text{BX}}}} = rY(j\omega) =$$

$$= \frac{r}{\sqrt{r^{2} + X^{2}(\omega)}}$$



Комплексная передаточная функция по напряжению на емкости:

$$K_{U_C}(j\omega) = \frac{\overset{\bullet}{U_C}}{\overset{\bullet}{U_{\mathrm{BX}}}} = \mathrm{Y}(j\omega) \cdot \frac{1}{\omega C}.$$

Максимальное значение АЧХ:

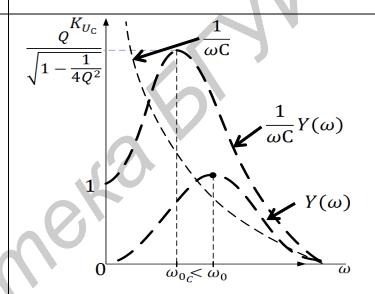
$$K_{U_C}(\omega) = \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}}$$

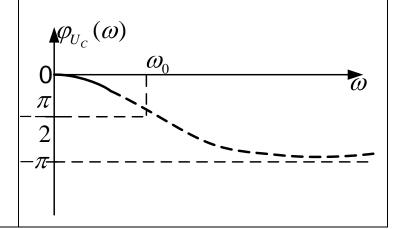
на частоте $\omega_{0C} = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} \approx$

$$\approx \omega_0 (1 - \frac{1}{4Q^2}).$$

$$\Phi \Psi X^{*}$$

ФЧХ:
$$\varphi_{U_C}(\omega) = -\pi/2 + \varphi_{Y}(\omega)$$





Комплексная передаточная функция по напряжению на индуктивности:

$$K_{U_L}(j\omega) = \frac{\overset{\bullet}{U_L}}{\overset{\bullet}{U}_{BX}} = Y(j\omega) \cdot \omega L.$$

Максимальное значение АЧХ:

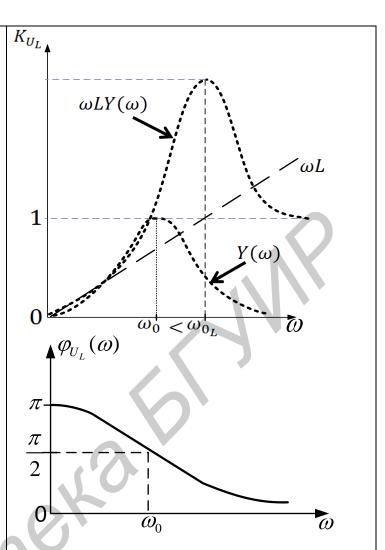
$$K_{U_L}(\omega) = \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}}$$

на частоте

$$\omega_{0_L} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2Q^2}}} \approx \omega_0 (1 + \frac{1}{4Q^2})$$

ФЧХ:

$$\varphi_{U_L}(\omega) = \pi/2 + \varphi_{Y}(\omega)$$

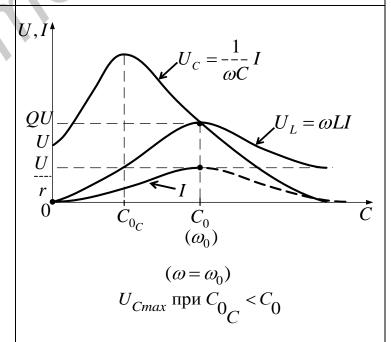


Настроечные кривые:

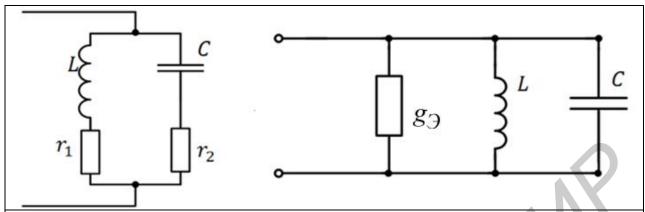
$$I = \frac{U}{\sqrt{r^2 + (\omega L - \frac{1}{\omega C})^2}},$$

$$U_L = I\omega L = \frac{U\omega L}{\sqrt{r^2 + (\omega L - \frac{1}{\omega C})^2}},$$

$$U_C = I\frac{1}{\omega C} = \frac{U}{\omega C\sqrt{r^2 + (\omega L - \frac{1}{\omega C})^2}}$$



3.5. Простой параллельный колебательный контур



Вторичные параметры

Входная проводимость Y при $r_1 << \omega L$,

$$r_{2} << \frac{1}{\omega C}.$$

$$\dot{Y} \approx \frac{r_{1}}{\omega^{2} L^{2}} + \frac{r_{2}}{1/\omega^{2} C^{2}} + \frac{1}{\omega^{2} C^{2}} + \frac{1}{\omega C} + \frac{1}{\omega C} = \frac{1}{\omega L} = \frac{1}{\omega C}$$

$$\approx g_{\mathfrak{I}} + jb_{\mathfrak{I}}$$

$$\dot{Y} = \dot{Y}_1 + \dot{Y}_2 = \frac{1}{r_1 + j\omega L} + \frac{1}{r_2 - j / \omega C} =$$

$$= \frac{r_1}{r_1^2 + \omega^2 L^2} + \frac{r_2}{r_2^2 + \frac{1}{\omega^2 C^2}} + \frac{r_3}{g_3}$$

$$+j\left(\frac{1}{\omega C} - \frac{\omega L}{r_1^2 + 1/\omega^2 C^2} - \frac{\omega L}{r_1^2 + \omega^2 L^2}\right) = \frac{1}{\omega^2 C^2}$$

$$=g_{\mathfrak{I}}+jb_{\mathfrak{I}}$$

Резонансная частота \mathcal{O}_p

при
$$r_1 \ll \omega L$$
,

таппа

$$r_1 << \rho$$

$$r_{2} \ll \rho$$

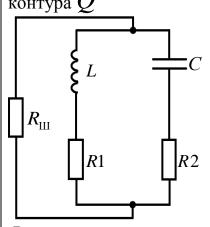
$$\frac{\frac{1}{\omega_{p}C}}{r_{2}^{2} + \frac{1}{\omega_{p}^{2}C_{2}}} - \frac{\omega_{p}L}{r_{1}^{2} + \omega_{p}^{2}L^{2}} = 0$$

$$\omega_{p} = \omega_{0}\sqrt{\rho^{2} - r_{1}^{2} \rho^{2} - r_{2}^{2}},$$

$$\omega_p \approx \omega_0 \approx \frac{1}{\sqrt{LC}}$$

Характеристическое сопро-	\overline{L}
тивление $ ho$	$ ho = \omega_0 L$, или $ ho = rac{1}{\omega_0 C}$, или $ ho = \sqrt{rac{L}{C}}$
Активная проводимость (сопротивление) на резонансной	$g_{_{\mathcal{H}\mathcal{B}}}$ \mathscr{O}_0 или
частоте	$\begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix}$
$g_{\mathcal{I}_0}(R_{0_{\mathcal{I}}})$	$g_{90} = \frac{r_1}{\omega_0 L^2} + \frac{r_2}{\left(\frac{1}{\omega_0 C}\right)^2} = \frac{r_3}{\rho^2},$
	где $r_3 = r_1 + r_2$ – суммарное активное со-
	противление потерь.
	$R_{0_9} = \frac{1}{g_{9_0}} = \frac{\rho^2}{r_9}$ при $\omega \approx \omega_0$,
	g_{Θ_0} g_{Θ_0} g_{Θ_0}
	$ R_{0_2} \approx Z_{0_2}$
Добротность контура	$Q = rac{I_{C_0}}{I_0}$ или $Q = rac{I_{L_0}}{I_0}$
Q – отношение тока на ин-	$Q = \frac{C_0}{I}$ или $Q = \frac{L_0}{I}$
дуктивности I_{L_0} или ёмко-	I_0 I_0
сти I_{C_0} к силе тока контура	$Q = \frac{I_{C_0}}{I_{C_0}} = \frac{U/\rho}{\rho} = \frac{\rho}{\rho} = \frac{R_{0_e}}{I_{C_0}}$
на резонансной частоте I_0	$I_0 \qquad U/g_{\partial_0} \qquad r_{\partial} \qquad \rho$
Затухание d	$d = \frac{1}{}$
	Q

Ухудшенная добротность контура Q^\prime



 R_{III} — шунтирующее сопротивление

$$Q' = \frac{R'}{\rho}$$

$$R' = \frac{R_{0_{\mathfrak{I}}} R_{III}}{R_{0_{\mathfrak{I}}} + R_{III}}$$

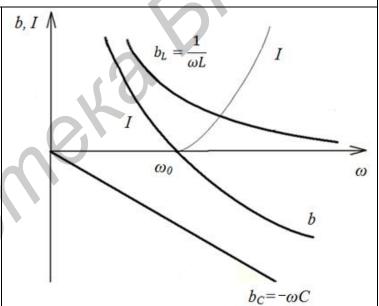
$$Q' = Q \frac{1}{1 + \frac{R_{0_{\mathfrak{I}}} R_{0_{\mathfrak{I}}}}{R_{III}}}$$

Частные характеристики простого параллельного контура

Частотные характеристики проводимостей ветвей

$$b_L$$
и b_C .

Сила тока I = |b|U , поэтому кривая |b| в соответствующем масштабе есть резонансная кривая тока I ω



$$b = b_L + b_C$$

Входное сопротивление контура Z $j\omega$ и его нормиро-

ванное значение $\hat{Z}\;\omega\;$:

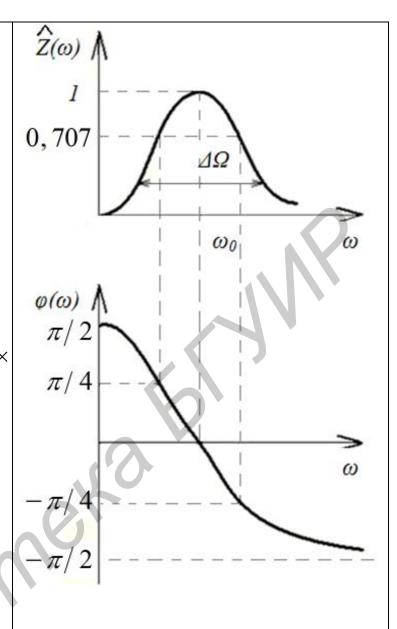
$$Z \quad j\omega = \frac{\dot{U}}{\dot{I}} = \frac{1}{Y} = \frac{1}{g_{\theta_0} + j\left(\omega C - \frac{1}{\omega L}\right)} = \frac{1}{1}$$

$$=\frac{1}{\left[1+j\frac{R_{0_{9}}}{\rho}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right]}\times$$

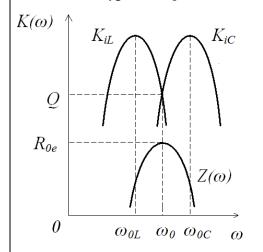
$$\times \frac{1}{g_{\mathcal{I}_0}} = \frac{R_{0\mathcal{I}}}{1 + jQ\xi}$$

$$\hat{Z} \omega = \sqrt{1 + Q^2 \xi^2}$$

 $\varphi \omega = -\operatorname{arctg} Q \xi$



Комплексная передаточная функция контура по току в индуктивности K_{iL} $j\omega_0$ и емкости K_{iC} $j\omega_0$



$$\omega_{0_L} = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$$

$$\omega_{0_C} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2Q^2}}}$$

$$K_{i_L}$$
 $j\omega = \frac{I_L}{I} = Z$ $j\omega \frac{1}{j\omega L}$

или

$$K_{i_L}$$
 $j\omega =$

$$= \frac{1}{j\omega L g_{\theta_0} + j \omega C - \frac{1}{\omega L}}$$

откуда

$$K_{i_L} \omega = \frac{1}{\omega L \sqrt{g_{\beta_0}^2 + \omega C - \frac{1}{\omega L}^2}}$$

$$K_{i_C} j\omega = \frac{I_C}{I} = Z j\omega j\omega C$$

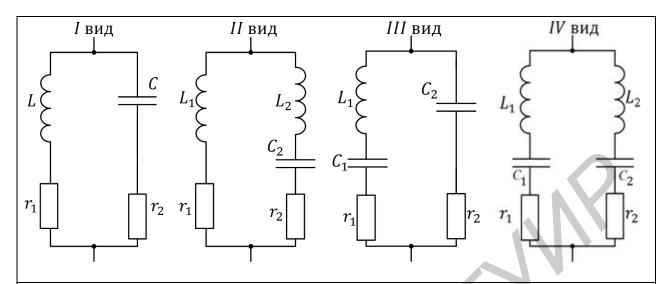
ИЛИ

$$K_{i_C}$$
 $j\omega = \frac{j\omega C}{g_{\partial_0} + j \omega C - \frac{1}{\omega L}}$

откуда

$$K_{i_C} \omega = \frac{\omega C}{\sqrt{g_{\beta_0}^2 + \omega C - \frac{1}{\omega L}^2}}$$

3.6. Сложные параллельные колебательные контуры



Последовательный резонанс

Контур II вида

$$\omega_{0_2} L_2 - \frac{1}{\omega_{0_2} C_2} = 0$$
 $\omega_{0_2} = \frac{1}{\sqrt{L_2 C_2}}$

Контур III вида

$$\omega_{0_1} L_1 - \frac{1}{\omega_{0_1} C_1} = 0$$
 $\omega_{0_1} = \frac{1}{\sqrt{L_1 C_1}}$

$$\omega_{0_1} = \frac{1}{\sqrt{L_1 C_1}}$$
 $\omega_{0_2} = \frac{1}{\sqrt{L_2 C_2}}$

Параллельный резонанс				
Контур II вида	$Z_{3_{II}} = \frac{x_{1}x_{2}}{x_{1} + x_{2}} = \frac{\omega L_{1} \left(\omega L_{2} - \frac{1}{\omega C_{2}}\right)}{\omega L_{1} + L_{2}} - \frac{1}{\omega C_{2}}$ $L_{3} = L_{1} + L_{2}$ При $r_{1} << \omega L_{1}$ и $r_{2} << \frac{1}{\omega C_{2}}$			
Контур III вида	$Z_{3_{III}} = \frac{x_1 x_2}{x_1 + x_2} =$ $= \frac{\omega L_1 - \frac{1}{\omega C_2} \left(-\frac{1}{\omega C_2} \right)}{1 + \frac{1}{\omega C_2} \left(-\frac{1}{\omega C_2} \right)}$			
	$\omega L_1 - \frac{1}{\omega C_1} - \frac{1}{\omega C_2}$ $C_3 = \frac{C_1 C_2}{C_1 + C_2}$ При $r_1 << \omega L_1$ и $r_2 << \omega L_2 - \frac{1}{\omega C_2}$ $\omega_0 = \frac{1}{\sqrt{L.C_1}}$			

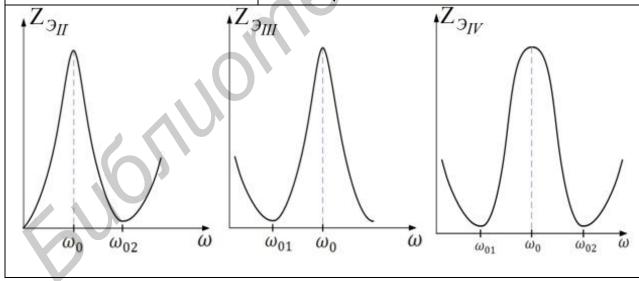
Контур IV вида

$$Z_{3_{IV}} = \frac{x_{1}x_{2}}{x_{1} + x_{2}} =$$

$$= \frac{\left(\omega L_{1} - \frac{1}{\omega C_{2}}\right)\left(\omega L_{2} - \frac{1}{\omega C_{2}}\right)}{\omega L_{1} - \frac{1}{\omega C_{1}} + \omega L_{2} - \frac{1}{\omega C_{2}}}$$

$$L_{3} = L_{1} + L_{2}, C_{3} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$$
При $r_{1} << \omega L_{1} - \frac{1}{\omega C_{1}}$ и
$$r_{2} << \omega L_{2} - \frac{1}{\omega C_{2}}$$

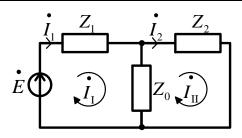
$$\omega_{0} = \frac{1}{\sqrt{L_{3}C_{3}}}$$



Коэффициент включения <i>р</i>				
Контур II вида	$p_{II} = \frac{ x_{10} }{\rho_{3}} = \frac{ x_{20} }{\rho_{3}}$ $p_{II} = \frac{\omega_{0}L_{1}}{\rho_{3}} = \frac{ \omega_{0}L_{2} - \frac{1}{\omega_{0}C_{2}} }{\rho_{3}} = \frac{ \omega_{0}L_{2} - \frac{1}{\omega_{0}C_{2}} }{\rho_{3}} = \frac{ \omega_{0}L_{1} }{ \omega_{0}L_{2} } = \frac{ \omega_{0}L_{1} }{ $			
Контур III вида	$p_{III} = \frac{1/\omega_{0}C_{2}}{1/\omega_{0}C_{2}} = \frac{C_{1}}{C_{1} + C_{2}}$ $Z_{03_{III}} = Z_{03}p_{III}^{2}$ $Q_{III} = Qp_{III}$			
Контур IV вида	$p_{IV} = rac{\omega_0 L_1 - rac{1}{\omega_0 C_1}}{ ho_\Im} = rac{L_1}{L_\Im} - rac{C_\Im}{C_1}$ или $p_{IV} = rac{\omega_0 L_2 - rac{1}{\omega_0 C_2}}{ ho_\Im} = rac{L_2}{L_\Im} - rac{C_\Im}{C_2}$ $Z_{0 \Im_{IV}} = Z_{0 \Im} p_{IV}^2$ $Q_{IV} = Q p_{IV}$			

3.7. Связанные колебательные контуры

Обобщенная схема системы двух связанных контуров Вносимые сопротивления



Контурные уравнения:

$$Z_{11}I_{1} + Z_{12}I_{11} = E$$

$$Z_{21}I_{1} + Z_{22}I_{11} = 0$$

$$Z_{11} = Z_{1} + Z_{0},$$

$$Z_{22} = Z_{2} + Z_{0},$$

$$Z_{12} = Z_{21} = -Z_{0}.$$

$$\Delta = \begin{vmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{vmatrix}$$

$$\Delta_{1} = \begin{vmatrix} E & Z_{12} \\ 0 & Z_{22} \end{vmatrix}$$

$$\Delta_{2} = \begin{vmatrix} Z_{11} & E \\ Z_{21} & 0 \end{vmatrix}$$

 Z_0 — сопротивление связи (индуктивное, емкостное, резистивное, комбинированное) Коэффициент связи:

 $k=Z_{0}/\sqrt{Z_{11}^{'}\cdot Z_{22}^{'}}$, в $Z_{11}^{'}$ и $Z_{22}^{'}$ включают только элементы, однотипные сопротивлению связи. Ток в первом контуре:

$$I_{1} = I_{II} = \frac{\Delta_{1}}{\Delta} = \frac{E}{Z_{13}},$$
 $Z_{13} = Z_{11} - \frac{Z_{0}^{2}}{Z_{22}} = Z_{11} + Z_{1BH}.$
 $Z_{1BH} = -\frac{Z_{0}^{2}}{Z_{22}} -$ вносимое сопро-

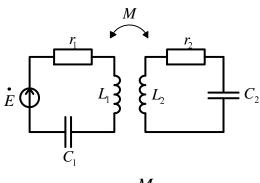
тивление первого контура, учитывающее влияние второго контура на ток в первом контуре. Ток во втором контуре:

$$egin{aligned} {f I}_1 &= {f I}_{\Pi} = rac{\Delta_2}{\Delta} = rac{\stackrel{ullet}{E} \cdot Z_0}{Z_{2 ext{-}} \cdot Z_{11}}, \ Z_{2 ext{-}} &= Z_{22} - rac{Z_0^2}{Z_{11}} = Z_{22} + Z_{2 ext{BH}} \ Z_{2 ext{BH}} &= -rac{Z_0^2}{Z_{11}} - _{ ext{BHOCUMOe}} \ conposition &= -rac{Z_0^2}{Z_{11}} - _{ ext{BHOCUMOe}} \ \end{array}$$

тивление второго контура, учитывающее влияние первого контура на ток второго контура

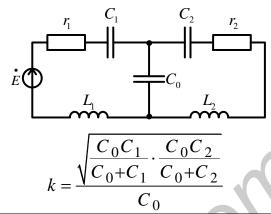
Виды связи между контурами

Индуктивная связь (трансформаторная)

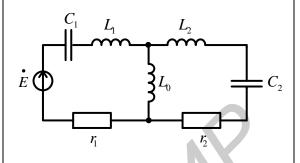


$$k = \frac{M}{\sqrt{L_I L_2}}$$

Емкостная связь (внутренняя)

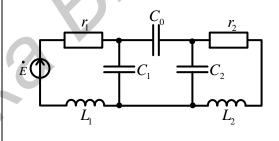


Индуктивная связь (автотрансформаторная)

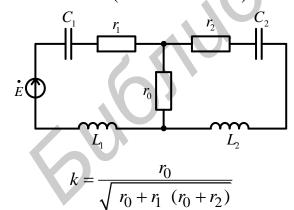


$$k = \frac{L_0}{\sqrt{L_1 + L_0 (L_2 + L_0)}}$$

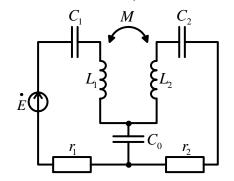
Емкостная связь (внешняя)



Резистивная (гальваническая) связь



Комбинированная (индуктивно-емкостная связь)



Условная оценка связи между контурами $0 \le k \le 0.01$ очень слабая связь $0.01 \le k \le 0.05$ слабая связь $0.05 \le k \le 0.9$ сильная связь $0.9 \le k \le 1$ очень сильная связь

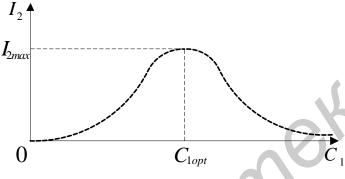
Настройка системы двух индуктивно связанных контуров

Настройка в резонанс

Настройка в частный резонанс

Настройка в целях получения максимального тока во втором контуре. Настройка, при которой обеспечивается максимальный ток во втором контуре, но этот ток меньше максимально возможного

Первый частный резонанс



$$I_{2max} = \frac{E \cdot X_0}{Z_{22}(r_1 + \frac{r_2 \cdot X_0^2}{Z_{22}^2})}$$

Максимум тока во втором контуре достигается изменением реактивного сопротивления первого кон-

тура
$$X_1 = \omega L_1 - \frac{1}{\omega C_1}$$
 при

неизменном реактивном сопротивлении второго

контура
$$X_2 = \omega L_2 - \frac{1}{\omega C_2}$$
 и

сопротивлении связи

$$X_0 = \omega M$$

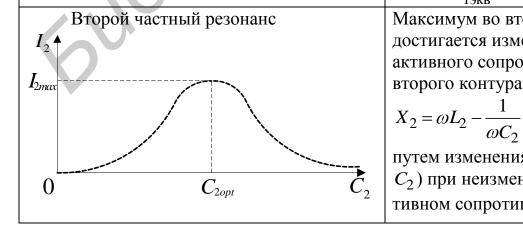
(например, путем изменения емкости C_1).

Условие первого частного резонанса: $X_{13KB} = X_1 + X_{1BH} = 0$

Максимум во втором контуре достигается изменением реактивного сопротивления

$$X_2 = \omega L_2 - \frac{1}{\omega C_2}$$
 (например,

путем изменения емкости C_2) при неизменном реактивном сопротивлении пер-



	T
	вого контура $X_1 = \omega L_1 - \frac{1}{\omega C_1}$
	и сопротивлении связи
	$X_0 = \omega M$.
	Условие второго частного резо-
	нанса:
	$X_{29KB} = X_2 + X_{2BH} = 0$
Основной (индивидуальный) резо-	При неизменном сопро-
нанс	тивлении связи
$I_{2max} = \frac{E_0 \cdot X_0}{r_1 r_2 + X_0^2}$	$X_0 = \omega M = const$ макси-
$r_1 r_2 + X_0^2$	мум тока во втором конту-
	ре достигается последова-
	тельно:
	сначала изменением реак-
	тивного сопротивления
	первого контура до $X_1 = 0$,
	$Z_{11} = r_1$ и $I_1 = I_{1max}$, затем
	изменением реактивного
	сопротивления второго
	контура до $X_2 = 0$,
	$Z_{22} = r_2$ и $I_2 = I_{2max}$. Про-
	цесс настройки повторяет-
	ся (т. е. возвращаются к
	настройке первого конту-
	ра, потом второго контура и т. д.) до получения мак-
	симально возможного тока
	во втором контуре.
	Условия основного (инди-
	видуального) резонанса:
. () ?	$X_{12KB} = X_1 + X_{1BH} = 0,$
	$X_{29KB} = X_2 + X_{2BH} = 0$
	ZJND Z ZDN
Сложный резонан	HC
Сложный резонанс	Максимум тока во втором
	контуре достигается по-
	следовательным изменени-
	ем реактивного сопротив-

Первый способ получения сложного резонанса

$$I_{2max max} = \frac{E}{2\sqrt{r_1 r_2}}$$

$$X_{0opt1} = Z_{22}\sqrt{\frac{r_1}{r_2}}$$

$$M_{0opt1} = \frac{Z_{22}}{\omega}\sqrt{\frac{r_1}{r_2}}$$

ления одного из контуров и сопротивления связи между контурами

Максимально возможный ток во втором контуре достигается последовательно: вначале первый контур настраивается в первый частный резонанс путем изменения реактивного сопротивления X_1 (при $X_0 = min$), затем изменяется сопротивление связи X_0 , снова первый контур настраивается в первый частный резонанс, и опять изменяем сопротивление связи X_0 и т. д. до получения

 $I_{2maxmax}$.

Условия первого способа получения сложного резонанса:

$$X_{19KB} = X_1 + X_{1BH} = 0$$

 $X_0 = X_{0opt1}$

Второй способ получения сложного резонанса

$$I_{2\max\max} = \frac{E}{2\sqrt{r_1 r_2}}$$

$$X_{0opt2} = z_{11}\sqrt{\frac{r_1}{r_2}}$$

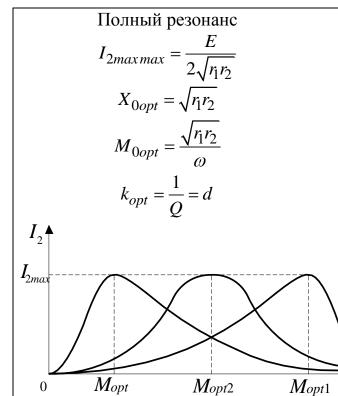
$$M_{0opt2} = \frac{z_{11}}{\omega}\sqrt{\frac{r_1}{r_2}}$$

Максимально возможный ток во втором контуре достигается последовательно: вначале второй контур настраивается во второй частный резонанс путем изменения реактивного сопротивления X_2 (при $X_0 = \min$), затем изменяется сопротивление связи X_0 , снова второй контур настраивается во второй частный резонанс, и опять изменяется сопротивление связи X_0 и т. д. до получения $I_{2\max\max}$.

Условия второго способа получения сложного резонанса:

$$X_{29KB} = X_2 + X_{2BH} = 0$$

 $X_0 = X_{0opt2}$



Максимум тока во втором контуре достигается последовательным изменением реактивных сопротивлений контуров и сопротивления связи между контурами: при $X_0 = min$ изменением реактивных сопротивлений контуров получают первый и второй частные резонансы, затем X_0 изменяется до увеличения тока I_2 , и снова контуры настраивают в первый и второй частные резонансы и т. д. до получения $I_{2max\,max}$

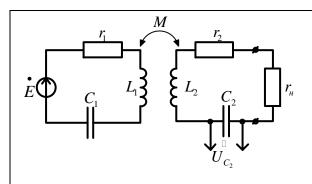
Условия получения полного резонанса:

$$X_{13KB} = 0, \ X_{23KB} = 0,$$

 $X_{0opt} = X_{0opt}$

M

3.8. Частотные характеристики индуктивно связанных контуров



Комплексная передаточная функция по напряжению на емкости

$$K_{\mathrm{U}}(j\omega) = rac{U_{c2}}{\overset{ullet}{E}} = rac{\overset{ullet}{I_2} \cdot \dfrac{1}{j\omega \, C}}{\overset{ullet}{E}},$$
 где $I_2 = rac{\overset{ullet}{E} \cdot Z_0}{Z_{11} \cdot Z_{22} - Z_0^2}.$

При
$$r_1 = r_2 = r$$
, $L_1 = L_2 = L$, $C_1 = C_2 = C$

$$Z_{11} = Z_{22} = r + j \left(\omega L - \frac{1}{\omega C} \right), \ Z_0 = j \omega M,$$

 $k=rac{M}{L}\,,\; d=rac{r}{\omega_0 L}$ и вблизи резонансной частоты $\omega L pprox \omega_0 L pprox
ho$

$$K_U(j\omega) = \frac{k}{(d+j\xi)^2 + k^2} = \frac{k^2}{k^2 + d^2 - \xi^2 + j2d\xi}$$

Амплитудно-частотная характеристика

$$K_U(\omega) = \frac{k}{\sqrt{k^2 + d^2 - \xi^2 + 4d^2 \xi^2}} = \frac{k}{\sqrt{\xi^4 + 2(d^2 - k^2)\xi^2 + (d^2 + k^2)^2}}$$

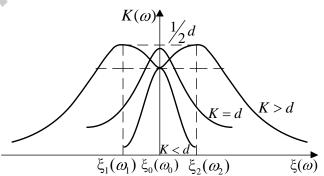
Фазочастотная характеристика

$$\varphi(\omega) = -\arctan \frac{2d\xi}{k^2 + d^2 - \xi^2}:$$

при
$$k < d$$
 $K(\omega) = \frac{k}{k^2 + d^2}$;

при
$$k = d$$
 $K(\omega) = \frac{1}{2d}$;

при k > d $K(\omega)$ имеет два экстремума (первый — min и второй — max), т.е. AYX — «двугорбая»



 $\xi_0 = 0$ — соответствует резонансной частоте контура,

$$\xi_1 = \sqrt{k^2 - d^2}$$

$$\xi_2 = -\sqrt{k^2 - d^2}$$
 - cootbetctbyiot

резонансным частотам связи:

$$\omega_1 = \frac{\omega_0}{\sqrt{1 + \sqrt{k^2 - d^2}}},$$

$$\omega_2 = \frac{\omega_0}{\sqrt{1 - \sqrt{k^2 - d^2}}}$$

Полоса пропускания индуктивно связанных контуров

$$\stackrel{\wedge}{K}(\omega) = \frac{K(\omega)}{K_{max}(\omega)} = \frac{\frac{1}{\sqrt{\xi^4 + 2(d^2 - k^2)\xi^2 + (d^2 + k^2)^2}}}{1/2d} = \frac{1}{\sqrt{2}}.$$

Биквадратное уравнение:

$$\xi_{\rm rp}^4 + 2\xi_{\rm rp}^2(d^2 - k^2) + (d^2 + k^2)^2 - 8k^2d^2 = 0.$$

Корни биквадратного уравнения:

$$\xi_{\text{rp1,2}} = \pm \sqrt{k^2 - d^2 \pm 2kd} = \pm d\sqrt{\frac{k^2}{d^2} - 1 \pm \frac{2k}{d}}.$$

При
$$k = d$$
 $\xi_{\text{гр1,2}} = \pm d\sqrt{2}$.

При $k > d(k_{\rm гр} \approx 2,41d)$ $\xi_{\rm гр1,2} \approx 3,1d$

Связь расстройки ξ с полосой пропускания

$$\dfrac{\xi_{
m rp}pprox \dfrac{\Delta\Omega}{\omega_{
m o}}}{\omega_{
m o}}$$
 или $\dfrac{\Delta\Omega=\xi_{
m rp}\omega_{
m o},}{\Delta F=\xi_{
m rp}f_{
m o}.}$

При k < d — очень слабая связь.

При k = d – слабая связь.

При k > d – сильная связь

При k < d $\Delta\Omega \approx 0.6\omega_0 d$,

 $\Delta F \approx 0.6 f_0 d$.

При k = d

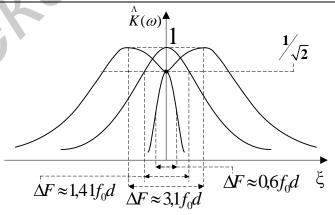
 $\Delta\Omega \approx 1.41\omega_0 d$,

 $\Delta F \approx 1.41 f_0 d$.

При k > d

 $\Delta\Omega \approx 3.1\omega_0 d$,

 $\Delta F \approx 3.1 f_0 d$



Литература

- 1. Атабеков, Г. И. Основы теории цепей / Г. И. Атабеков. СПб., 2006.
- 2. Батура, М. П. Теория электрических цепей / М. П. Батура, А. П. Кузнецов, А. П. Курулев; под общ. ред. А. П. Курулева. Минск, 2007.
- 3. Белецкий, А. Ф. Теория линейных электрических цепей / А. Ф. Белецкий. М., 1986.
- 4. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи / Л. А. Бессонов. М., 2006.
- 5. Основы теории цепей / Г. В. Зевеке [и др.]. M., 1989.
- 6. Мурзен, Ю. М. Электротехника / Ю. М. Мурзен, Ю. И. Волков. СПб., 2007.
- 7. Попов, В. П. Основы теории цепей / В. П. Попов. М., 1985.
- 8. Теоретические основы электротехники. В 3 т. Т 2 / К. С. Демирчан [и др.]. СПб., 2006.
- 9. Шебес, М. Р. Задачник по теории электрических цепей / М. Р. Шебес, Н. В. Каблукова. – М., 1991.
- 10. Электротехника / Н. В. Бараш [и др.]; под общ. ред. И. А. Федоровой. Минск, 1990.

Содержание:

П	реди	словие	1
1.	Ли	нейные электрические цепи постоянного тока	4
	1.1.	Основные понятия и определения теории электрических цепей	4
	1.2.	Законы Ома и Кирхгофа в цепях постоянного тока	. 11
	1.3.	Эквивалентные преобразования электрических цепей	. 14
	1.4.	Методы расчёта электрических цепей постоянного тока	. 19
	1.5.	Теорема компенсации и принцип взаимности	. 24
2.	ЭлС	ектрические цепи синусоидального тока	. 25
	2.1.	Основные характеристики синусоидального тока	. 25
	2.2. векто	Представление синусоидального тока проекциями вращающегося ора и комплексными величинами	. 28
	2.3.	Законы Ома и Кирхгофа в комплексной форме	. 31
	2.4.	Элементы R, L и C в цепи синусоидального тока	. 33
	2.5.	Мощность в цепи синусоидального тока	. 41
	2.6.	Цепи трёхфазного тока	. 44
	2.7.	Цепи с индуктивной связью	. 49
	2.8.	Трансформатор	. 52
3.	Из	бирательные электрические цепи	. 55
		Комплексные функции и частотные характеристики электрических й (ЭЦ)	. 55
	3.2.	Дифференцирующая цепь	. 59
	3.3.	Интегрирующая цепь	. 62
	3.4.	Последовательный колебательный контур	. 64
	3.5.	Простой параллельный колебательный контур	. 71

3.6.	Сложные параллельные колебательные контуры	76
3.7.	Связанные колебательные контуры	80
3.8.	Частотные характеристики индуктивно связанных контуров	86
Литера	атура	88

Учебное издание

Курулев Александр Петрович

Теория электрических цепей

Справочник

В 3-х частях

Часть 1

Электрические цепи постоянного и переменного тока

Учебно-методическое пособие

Редактор *И. П. Острикова*Корректор *И. П. Острикова*Компьютерная верстка *Ю. Ч. Клочкевич*

Подписано в печать 20.02.2012. Формат 60х84 1/16. Бумага офсетная. Гарнитура «Таймс». Отпечатано на ризографе. Усл. печ. л. Уч.-изд. л. 4,6. Тираж 100 экз. Заказ 449.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ №02330/0494371 от 16.03.2009. ЛП №02330/0494175 от 03.04.2009. 220013, Минск, П. Бровки, 6