2012

УДК 621.396

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПЛОСКИХ АКТИВНЫХ АНТЕННЫХ РЕШЕТОК С РАЗНОЙ ФОРМОЙ РАСКРЫВА ПО ЭНЕРГЕТИЧЕСКОМУ ПОКАЗАТЕЛЮ

О.А. ЮРЦЕВ, А.П. ЮБКО, Д.В. МОСКАЛЕВ, Н.М. НАУМОВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 22 декабря 2011

Сравниваются активные антенные решетки с прямоугольной, эллиптической и восьмиугольной формами раскрыва по мощности излучения при ограничении на максимальную мощность излучения одного приемо-передающего модуля. Условия сравнения: максимальная мощность излучения одного приемо-передающего модуля, основные параметры диаграммы направленности и коэффициент направленного действия одинаковы в решетках с разной формой раскрыва.

Ключевые слова: активная антенная решетка, форма раскрыва, энергетический показатель, численное моделирование.

Введение

При проектировании антенных решеток задаются требования к электрическим характеристикам и параметрам. Основными из них являются ширина главного лепестка диаграммы направленности (ДН) – 20_{0.5}, уровень максимального бокового лепестка – F_{bm}, средний уровень бокового излучения – F_{bs}, коэффициент направленного действия (КНД). Эти параметры зависят от амплитудного распределения возбуждения излучателей решетки (АР) и формы раскрыва решетки. В активных антенных решетках каждый излучатель в режиме передачи является нагрузкой своего усилителя мощности, и требуемое АР устанавливается изменением коэффициентов усиления усилителей. При спадающем к краям решетки АР, которое используется для уменьшения уровня боковых лепестков, в режиме максимальной мощности работает только один центральный или группа центральных усилителей. Поэтому общая мощность излучения уменьшается по сравнению с максимальной, соответствующей равномерному АР. В работе [1] решена задача синтеза амплитудного распределения возбуждения для линейной решетки, при котором потери мощности на излучение минимальны при заданном уровне боковых лепестков. В настоящей работе рассматривается вопрос об уменьшении потерь мощности путем выбора формы раскрыва решетки. Известно, что в решетках с формой раскрыва, отличной от прямоугольной, уровень боковых лепестков меньше, чем в прямоугольной, при одном и том же АР. В таких решетках заданный уровень боковых лепестков может быть обеспечен амплитудным распределением, более равномерным, что приведет к росту общей мощности излучения. С целью количественной оценки возможного энергетического выигрыша за счет изменения формы раскрыва проведено численное моделирования решеток с разной формой раскрыва – прямоугольной, эллиптической, восьмиугольной и сравнение их по следующему предлагаемому энергетическому показателю $K_e = P_s / P_{1 \max}$, где P_s – полная мощность излучения решетки, $P_{1\,\mathrm{max}}$ – максимальная мощность излучения одного приемо-передающего модуля активной решетки (ППМ).

39

Методика теоретического анализа

Анализ производится численно. Для расчета ДН используется известное выражение [2]:

$$f(\theta,\phi) = f_1(\theta,\phi) \left| \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} \cdot \exp(i\Psi_{mn}) \exp(ik \cdot \delta r) \right|,$$
(1)

где $f_1(\theta, \varphi)$ – ДН одного излучателя; θ, φ – угловые координаты точки наблюдения в пространстве дальней зоны (угол θ отсчитывается от нормали к плоскости решетки); M, N – число строк и столбцов решетки; m, n – номера строк и столбцов решетки; A_{mn} , Ψ_{mn} – нормированная к максимуму амплитуда и начальная фаза возбуждения излучателя, стоящего на пересечении строки с номером m и столбца с номером n; $k = 2\pi/\lambda$ – волновое число свободного пространства; λ – длина волны;

$$\delta r = (m-1)D_m \cdot \sin\theta \cdot \cos\varphi + (n-1)D_n \cdot \sin\theta \cdot \sin\varphi,$$

где D_m , D_n – расстояния между соседними излучателями вдоль строк и столбцов.

Спадающее к краям решетки комбинированное амплитудное распределение *A_{mn}* задавалось в виде [3]:

(2)

$$A_{mn} = \left[\Delta_m + (1 - \Delta_m)\sin^{P_m}\left(\pi\frac{m-1}{M-1}\right)\right] \left[\Delta_n + (1 - \Delta_n)\sin^{P_n}\left(\pi\frac{n-1}{N-1}\right)\right],\tag{3}$$

где $\Delta_m(\Delta_n)$ – уровни возбуждения крайних излучателей в строке (в столбце); $P_m(P_n)$ – числа, характеризующие скорость спада амплитудного распределения от центра решетки к краю строки (столбца).

Фазовое распределение возбуждения излучателей считалось равномерным ($\Psi_{mn}=0$). Сетка расположения излучателей – прямоугольная. Расстояние между соседними излучателями в строке и в столбце одинаково и равно $D_m = D_n = D_0 = 0,57\lambda$, что обеспечивает выполнение условия единственности главного максимума ДН при электронном сканировании в секторе углов $\pm 40^\circ$. В качестве излучателя использован полуволновый симметричный резонансный вибратор с линейным рефлектором. Диаграмма направленности одного излучателя $f_1(\theta, \varphi)$ рассчитана методом моментов с использованием интегрального уравнения Поклингтона для тока в тонком проводнике [4]. При расчете $f_1(\theta, \varphi)$ учтено влияние на активный излучатель с номером (*n*, *m*), стоящий на пересечении строки с номером *m* и столбца с номером *n*, двумя кольцами окружения пассивными излучателями. На рис. 1 возбуждаемый излучатель с номером 13 отмечен жирной точкой. Пассивные излучатели нагружены на согласованные нагрузки.

Рис. 1. Фрагмент решетки для учета взаимодействия

На рис. 2,*а* показана ДН в передней полусфере в плоскостях *E* и *H* с учетом взаимодействия, на рис. 2,*б* – без учета взаимодействия. Как видно, взаимодействие излучателей приводит к расширению главного лепестка ДН излучателя. Вследствие этого увеличиваются боковые лепестки ДН решетки, уменьшается КНД. Геометрические размеры используемого излучателя

оптимизированы по минимуму обратного излучения и обеспечивают на центральной частоте входное сопротивление 75 Ом. Математическая модель излучателя не учитывает наличие элементов крепления.

Рис. 2. ДН излучателя решетки: а – с учетом взаимодействия, б – без учета взаимодействия

Мощность излучения каждого приемо-передающего модуля решетки пропорциональна квадрату амплитуды электрического поля, возбуждающего излучатель. Поэтому энергетический показатель $K_e = P_s / P_{1\text{max}}$ определяется выражением:

$$K_e = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn}^2 \; .$$

КНД решетки (далее обозначается символом *D*) определялся с помощью известного выражения [2, 3]:

$$D = \frac{4\pi}{\int_{0}^{\pi} \int_{0}^{2\pi} F^{2}(\theta, \varphi) \sin \theta \cdot d\varphi \cdot d\theta},$$
(5)

где *F*(θ, φ) – нормированная ДН решетки.

Как уже отмечалось, рассмотрены три формы раскрыва – прямоугольная, эллиптическая и восьмиугольная. Прямоугольный и эллиптический раскрывы задаются числом излучателей M и N (для эллиптического раскрыва вдоль главных диаметров). Восьмиугольная форма задается числом излучателей M и N и числом излучателей в усеченной части в углах прямоугольника вдоль кромки решетки – N_b .

Результаты численного моделирования

Ниже на графиках представлены зависимости энергетического показателя K_e от числа излучателей для решеток с тремя указанными формами раскрыва при N=M и одинаковым амплитудным распределением в строках и в столбцах ($\Delta_m = \Delta_n = \Delta, P_n = P_n = P$). Для эллиптического и восьмиугольного раскрывов M – число излучателей в строке с максимальным числом излучателей.

Сравнение решеток проводилось при условии равенства ширины главного лепестка и уровня максимального бокового лепестка в решетках с разными формами раскрыва. В решетке с эллиптической формой раскрыва задавались параметры амплитудного распределения Δ и *P*. Для обеспечения таких же параметров ДН в решетке с прямоугольной формой раскрыва подбирались новые значения Δ и *P* и число излучателей в строке и в столбце. В решетке с восьмиугольной формой раскрыва использовались те же значения Δ и *P*, что и в решетке с эллиптическим раскрывом, но подбирались значения числа излучателей *N* и *N*_b. При выполнении условия равенства параметров ДН определялся показатель *K*_e и КНД. При указанных условиях КНД почти одинаков в решетках с разными формами раскрыва.

Для иллюстрации закономерностей на рис.3 показаны зависимости от числа излучателей M энергетического показателя (K_e) и коэффициента направленного действия (D) для случая, когда в решетках с эллиптическим и восьмиугольным раскрывом амплитудное распределение равномерное (A_{mn} =1 или Δ =1). В решетке с прямоугольным раскрывом амплитудное

(4)

распределение комбинированное, спадающее к краям с параметром P=1. Параметр Δ в зависимости от числа излучателей в строке M меняется от 0,7 до 0,58. Это обеспечивало равенство уровня максимального бокового лепестка F_{bm} в решетках с разной формой раскрыва (уровень F_{bm} отличался на доли децибела в решетках с разной формой раскрыва). Обозначение кривых на рисунках: 1 – эллиптический раскрыв, 2 – прямоугольный раскрыв, 3 – восьмиугольный раскрыв.

Рис. 3. Зависимость параметров решетки от числа излучателей в строке и формы раскрыва

Из рис. З следует, что КНД всех решеток примерно одинаков, но решетка с прямоугольным раскрывом проигрывает по энергетическому показателю. Решетка с прямоугольным раскрывом проигрывает также и по числу излучателей, что иллюстрируется рис. 4,*a*, на котором показана зависимость числа излучателей в решетке N_r от числа *M* излучателей в строке. Обозначение кривых на рисунке такое же, как на рис. 3. Решетка с восьмиугольным раскрывом по рассмотренным критериям имеет преимущества перед решетками с прямоугольной и эллиптической формами раскрыва.

Аналогичные закономерности имеют место в решетках с рассмотренными формами раскрыва и при других параметрах амплитудного распределения. На рис.4 δ показаны зависимости энергетического показателя K_e для решеток с разной формой раскрыва в зависимости от уровня максимального бокового лепестка F_{bm} . В качестве примера зависимости показаны для решеток с M=50. Обозначение кривых на рисунке такое же, как на рис.3.

Решетка с восьмиугольным раскрывом имеет небольшое преимущество и по значению КНД. В то же время решетка с восьмиугольным раскрывом по сравнению с решеткой с эллиптическим раскрывом имеет и недостаток. Усечение прямоугольного раскрыва до восьмиугольного имеет смысл только в том случае, когда выполняется условие

$$N_b \le \frac{\sqrt{2}}{4} M \quad \text{или} \quad N_b \le \frac{\sqrt{2}}{4} N \,, \tag{6}$$

где N_b – число излучателей на усеченной части на кромке раскрыва вдоль оси X(Y). На рис. 5 для пояснения этого показаны три восьмиугольных раскрыва при N=M=32. Это связано с тем, что с увеличением N_b уменьшается уровень боковых лепестков в главных плоскостях XZ ($\phi=0$) и YZ ($\phi=90^\circ$) и возрастает в диагональной плоскости ($\phi=45^\circ$). При условии $N_b = \frac{\sqrt{2}}{4}M$ уровень боковых лепестков в главных и диагональных плоскостях становится одинаковым. При этом все стороны восьмиугольника становятся одинаковыми. При $N_b > \frac{\sqrt{2}}{4}M$ уровень боковых лепестков в диагональных плоскостях становится больше, чем в главных плоскостях. Рис. 6 иллюстрирует сказанное. На нем показаны формы решеток и соответствующие им ДН.

На графиках ДН в диагональной плоскости (φ =45°) показаны серым цветом, в плоскости XZ – черным цветом. Как видно, при N_b =0,5M (рис. 7, δ) плоскость XZ становится диагональной, и боковые лепестки в этой плоскости становятся минимальными.

Рис. 5. Восьмиугольные решетки с разным числом излучателей на усеченной части:

$$a - N_b < \frac{\sqrt{2}}{4}M; \ \ \delta - N_b = \frac{\sqrt{2}}{4}M; \ \ \delta - N_b > \frac{\sqrt{2}}{4}M$$

При усечении углов решетки на величину $N_b = \frac{\sqrt{2}}{4}M$ раскрыв становится восьми-

угольным с равными сторонами. В этом случае в плоскостях $\varphi=0$ и $\varphi=45^{\circ}$ боковые лепестки в множителе системы решетки одинаковые. В диаграмме направленности различие будет за счет отсутствия осевой симметрии ДН одного излучателя (рис. 2). На рис. 7 показан этот случай: на рис. 7,*a* показан раскрыв решетки, на рис. 7,*b* – ДН решетки.

Рис. 6. ДН решетки с N=M=32 и равномерным амплитудным распределением: $a - N_b = 0; \ o - N_b = 16$

Рис. 7. Антенная решетка с $N_b = \frac{\sqrt{2}}{4}M$ и равномерным амплитудным распределением: *a* – раскрыв решетки; *б* – ДН решетки

Усечение углов решетки на величину $N_b = \frac{\sqrt{2}}{4}M$ приводит к уменьшению уровня бо-

ковых лепестков в главных плоскостях. Например, при равномерном исходном амплитудном распределении возбуждения излучателей и N=M (раскрыв квадратный) уровень боковых лепестков уменьшается с -13,2 дБ до -18,9 дБ. В решетке с круглой формой раскрыва уровень боковых лепестков составляет -17,3 дБ. В этом случае восьмиугольная решетка имеет преимущества перед решеткой с круглой апертурой. Если раскрыв прямоугольный ($N\neq M$) преимущество решетки с восьмиугольной формой раскрыва теряется по сравнению с решеткой с эллиптической формой раскрыва. Так, при N=0,5M в решетке с $N_b=0,5N$ (решетка шестиугольная – рис. 8) боковые лепестки снижаются только до значения -16,5 дБ при равномерном АР. При таком же АР в решетке с N=0,5M и эллиптической формой раскрыва (рис.8) уровень боковых лепестков составляет по-прежнему -17,2 дБ. При соотношении M/N=0,25 и $N_b=0,5N$ в решетке с шестиугольным раскрывом при равномерном АР уровень F_{bm} снижается всего на 0,6 дБ по сравнению с прямоугольным раскрывом, а в решетке с эллиптическим раскрывом – на 3,5 дБ. Примерно такие же закономерности наблюдаются и при других амплитудных распределениях.

Рис. 8. Решетки с шестиугольной и эллиптической формами раскрыва

Заключение

Рассмотрен энергетический показатель эффективности активной антенной решетки при ограничении на максимальную мощность излучения одного приемо-передающего модуля – ко-эффициент K_e , равный отношению полной мощности излучения решетки к максимальной мощности излучения одного приемо-передающего модуля. Коэффициент K_e характеризует степень использования потенциальной мощности активной решетки. Исследовано влияние на K_e формы раскрыва, амплитудного распределения возбуждения излучателей решетки, числа излучателей. Показано, что по этому показателю решетка с прямоугольной формой раскрыва уступает решеткам с эллиптической и восьмиугольной формами раскрыва. При равенстве числа излучателей вдоль главных сторон (или диаметров) раскрыва решетка с восьмиугольным раскрывом имеет преимущества перед решеткой с круглым раскрывом. Однако это преимущество исчезает при увеличении отношения числа излучателей вдоль главных сторон (или диаметров) раскрыва, т.е. с увеличением отношения ширины главного лепестка в главных плоскостях.

COMPARATIVE ANALYSIS OF FLAT PHASED ARRAY ANTENNAS WITH VARIOUS APERTURE FORMS ON ENERGY CRITERION

O.A. YURTSEV, A.P. YUBKO, D.V. MOSKALIOV, N.M. NAUMOVICH

Abstract

Active antenna array antennas with rectangle, elliptical and octagonal aperture forms are compared on radiation power criterion, if maximum power of each element is limited. Comparison conditions: maximum radiation power of each transmitter-receiver module (TRM) and main radiation pattern parameters are equal for all investigated array antennas.

Список литературы

1. Гостюхин В.Л., Трусов В.Н., Гостюхин А.В. // Антенны. 2009. №3. С. 10.

2. Сазонов Д.М. Антенны и устройства СВЧ. М., 1988.

3. Ямайкин В.Е Антенные устройства. Мн., 1965.

4. Митра Р. Вычислительные методы в электродинамике. М., 1977.