2011

....

№4 (58)

УДК 539.2:533.9

О ФОРМИРОВАНИИ МАГНИТНЫХ ОДНОДОМЕННЫХ НАНОЧАСТИЦ В ПЛАЗМЕ

В.М. АСТАШИНСКИЙ¹, И.Л. ДОРОШЕВИЧ², Н.Т. КВАСОВ², Ю.А. ПЕТУХОВ², А.В. ПУНЬКО², В.В. УГЛОВ³

¹Институт физики им. Б.И. Степанова Национальной академии наук Беларуси Независимости, 70, Минск, 220072, Беларусь

²Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

> ³Белорусский государственный университет Независимости, 4, Минск, 220080, Беларусь

> > Поступила в редакцию 4 марта 2011

Рассмотрены механизмы образования в компрессионной плазме магнитных нанокластеров размером 5–100 нм, которые используются в современных системах записи и хранения информации. Для описания фазовых переходов предложен новый волновой формализм.

Ключевые слова: плазма, кластеры, фазовые переходы.

Введение

Широкие возможности компрессионной плазмы, используемой для формирования наноразмерных металлических и полупроводниковых объектов, применяемых в микро-, нано- и оптоэлектронике, а также как нового способа создания многокомпонентных материалов с уникальными физико-химическими свойствами ставят этот метод в ряд самых перспективных технологических инструментов в различных областях науки и техники. В ряде публикаций [1, 2] мы приводили результаты соответствующих экспериментальных и теоретических исследований физических процессов в компрессионной плазме, содержащей металлическую и полупроводниковую компоненты, а также закономерности изменения структурно-фазового состояния обрабатываемых материалов.

В настоящей работе предлагается наиболее общий взгляд на процессы формирования кластеров различного уровня, в том числе и самоподобных структур, происходящие в такой плазме. Физические механизмы образования подобных объектов в плазме, газах и жидкостях являются на сегодняшний день предметом интенсивных научных исследований [3, 4].

Модельные представления процессов формирования кластеров различного уровня в компрессионной плазме

При инжекции в плазму, температура которой составляет 2-3 эВ, металлической компоненты (например, Fe, Ni, Co) образуется пар атомов металла, который при определенных термодинамических условиях конденсируется в кластеры первого уровня. Исходя из общих термодинамических соображений, этот процесс можно качественно описать следующим кинетическим уравнением для эволюции числа N атомов кластера [5]:

$$\frac{dN}{dt} = \alpha N^{1/3} S(t) - \beta , \qquad (1)$$

$$\alpha = 3D_{(0)} \left(\frac{4\pi\gamma}{3m}\right)^{2/3}, \ \beta = \frac{8\pi\sigma D_{(0)}\gamma}{kTmn_{\kappa}},$$

где $D_{(0)}$ – коэффициент диффузии атомов металла с учетом атмосферы буферного газа; γ – плотность вещества кластера; m – масса атома металла; k – постоянная Больцмана; T – температура; σ – коэффициент поверхностного натяжения; S(t) – степень пересыщения металлического пара, определяемая как

$$S(t) = \frac{n(t) - n_{\scriptscriptstyle \rm H}}{n_{\scriptscriptstyle \rm K}},\tag{2}$$

где n(t) – концентрация атомов металла в произвольный момент времени, $n_{\rm H}$ – концентрация насыщенного пара, $n_{\rm K}$ – концентрация атомов в кластере.

С учетом функции распределения кластеров по размерам [6] величину *n*(*t*) можно получить из следующего уравнения:

(3)

$$a n^4(t) \cdot t^4 + n(t) = n_0$$
,

где $a = \frac{v N_{\kappa} k_0^4}{81 v_m^{4/3}}$, v – среднее значение числа атомов в кластерах первого уровня, v_m – макси-

мальное число атомов в кластере, N_{κ} – концентрация кластеров, k_0 – константа, характеризующая взаимодействие атомов, n_0 – концентрация металлического пара в момент времени t_0 .

При значениях v, v_m , n_0 , T, n_{κ} , N_{κ} , взятых из эксперимента, получено, что пересыщение S(t) имеет следующую зависимость:

$$S(t) = 6,9 \cdot 10^{-8} t^{-0.95} - 1,33 \cdot 10^{-5}.$$
 (4)

(Все значения физических величин в статье приведены в СИ).

Компьютерный анализ уравнения (1) показывает, что оно удовлетворительно описывает формирование кластеров только первого уровня.

Более общий подход к анализу фазовых переходов предполагает язык параметра порядка η [7], характеризующего эволюцию новой фазы, и который в данном случае может быть представлен следующим образом [1]:

$$\eta(\omega,\vec{\rho}) = 2\sum_{\vec{q}} \frac{A(\vec{q}) \Gamma_{\vec{q}}}{(\omega - \omega_{\vec{q}})^2 + \Gamma_{\vec{q}}^2} \cos\left(\vec{q}\cdot\vec{\rho}\right),\tag{5}$$

где $A(\vec{q})$ – амплитуда волны новой фазы с волновым вектором \vec{q} , ρ – текущий радиус кластера, ра, $\Gamma_{\vec{q}}$ – затухание, связанное с неустойчивостью кластера при $\rho < \rho_{\kappa p}$ (при $\rho = \rho_{\kappa p}$, $\vec{q} = \vec{q}_{\kappa p}$, $\Gamma_{\vec{q}_{\kappa p}} \rightarrow 0$), $\omega_{\vec{q}}$ – характеристическая (резонансная) частота волны новой фазы, ω – текущая частота волны новой фазы.

$$\Gamma_{\vec{q}}^{(\alpha+1)} = D_{(\alpha)}q_{(\alpha+1)}^{2} + \frac{D_{(\alpha)}}{kT}\int \Delta U_{(\alpha)}(\vec{r},\vec{r}') n_{(\alpha)}(\vec{r},t) d^{3}r',
\omega_{\vec{q}}^{(\alpha+1)} = \frac{D_{(\alpha)}}{kT}q_{(\alpha+1)}^{2}\int \vec{\nabla} U_{(\alpha)}(\vec{r},\vec{r}') n_{(\alpha)}(\vec{r},t) d^{3}r',$$
(6)

где $\alpha = 0, 1, 2, ...; (\alpha + 1)$ – уровень кластеризации; коэффициент диффузии определяется из выражения

$$D_{(\alpha+1)} = D_{\alpha} \left(\frac{\rho_{(\alpha)}}{\rho_{(\alpha+1)}} \right)^2, \tag{7}$$

где $\rho_{(\alpha+1)}$ – радиус кластера уровня (α +1), состоящего из кластеров уровня α , имеющих радиус $\rho_{(\alpha)}$; величина $U_{(\alpha)}(\vec{r},\vec{r}')$ определяет потенциальную энергию парного взаимодействия частиц, находящихся в точках пространства \vec{r} и \vec{r}' .

Коэффициент диффузии $D_{(0)}$ атомов металла с учетом атмосферы буферного газа определяли как коэффициент диффузии бинарной смеси в первом приближении методов Чепмена – Каулинга и Кихары:

$$D_{(0)} = \frac{3}{16 n \ell_{12}^2 \Omega_{12}^{(1,1)*}(T^*)} \sqrt{\frac{2 k T}{\pi m_{12}}},$$
(8)

где $m_{12} = \frac{m_1 m_2}{m_1 + m_2}$ – приведенная масса атома металла и молекулы газа; n – концентрация; T –

абсолютная температура; k – постоянная Больцмана; $\Omega_{12}^{(1,1)*}(T^*)$ – приведенный интеграл столкновений для диффузии, значение которого определяется выбором закона межмолекулярного взаимодействия сталкивающихся молекул и температурой $T^* = \frac{kT}{\varepsilon_{12}}$; ε_{12} и ℓ_{12} – характеристи-

ческие энергия и расстояние соответственно, зависящие от выбранного закона межмолекулярных сил между молекулами газа и металла. Для вычисления параметров ε_{12} и ℓ_{12} парного взаимодействия молекулы буферного газа с атомом металла использовались комбинаторные соотношения $\varepsilon_{12} = \sqrt{\varepsilon_1 \varepsilon_2}$ и $\ell_{12} = \frac{\ell_1 + \ell_2}{2}$, устанавливающие значения параметров смеси по параметрам взаимодействия чистых (однокомпонентных) веществ. В расчетах мы не учитывали зарядовое состояние атомов и кластеров в плазме.

Формула (5) представляет собой знакопеременную сумму короткоживущих резонансов (флуктуаций плотности данной конкретной величины, характеризующей фазовый переход) и стабильных резонансов, связанных с формированием устойчивого состояния новой фазы (при $\omega = \omega_{\tilde{d}_{uv}}$).

При анализе процесса формирования кластеров первого уровня взаимодействие атомов с поверхностью описывали функцией Леннард-Джонса:

$$U_{(0)}(\vec{r},\vec{r}') = A_L \left(B_L \left| \vec{r} - \vec{r}' \right|^{-12} - \left| \vec{r} - \vec{r}' \right|^{-6} \right).$$
(9)

В результате расчета параметров Леннард-Джонса для железа получены следующие значения: $A_L = 8,0\cdot 10^{-76}$ Дж · м⁶, $B_L = 3,2\cdot 10^{-58}$ м⁶.

Образование кластеров второго уровня для случая объединения первичных ферромагнитных частиц (Fe, Ni, Co) рассматривали в рамках магнитного диполь – дипольного взаимодействия

$$U_{(1)}(\vec{r},\vec{r}') = -\left(\frac{\mu_0}{4\pi}\right) \frac{2p_1^2 p_2^2}{3kT \left|\vec{r}-\vec{r}'\right|^6},$$
(10)

где μ_0 – магнитная постоянная, p_1 , p_2 – магнитные моменты взаимодействующих ферромагнитных частиц.

С учетом (9) и (10) формулы (6) в сферической системе координат будут иметь следующий вид:

$$\omega_q^{(1)} = \frac{1.5 \cdot 10^{-74} \cdot D_{(0)} q_{(1)} n^{(0)}(t)}{kT \rho_{(1)}^4},\tag{11}$$

$$\Gamma_q^{(1)} = D_{(0)} q_{(1)}^2 - \frac{6 \cdot 10^{-74} \cdot D_{(0)} n^{(0)}(t)}{kT \rho_{(1)}^5}, \qquad (12)$$

51

$$\omega_q^{(2)} = \frac{2,3 \cdot 10^6 \cdot p_1^2 p_2^2 D_{(1)} q_{(2)} n^{(1)}(t)}{k T \rho_{(2)}^4},$$
(13)

$$\Gamma_q^{(2)} = D_{(1)} q_{(2)}^2 - \frac{9.1 \cdot 10^6 \cdot p_1^2 p_2^2 D_{(1)} n^{(1)}(t)}{kT \rho_{(2)}^5}.$$
(14)

Формирование новой фазы начинается с образования устойчивого зародыша кластера радиуса $\rho_{\rm kp}$, определяющего волновой вектор $\vec{q}_{\rm kp}$ и, соответственно, характеристическую частоту $\omega_{\vec{q}_{\rm kp}}$. Это резонансное явление проявляется в резком возрастании параметра порядка $\eta(\omega, \vec{\rho})$ (5). Значение $q_{\rm kp}$ определяется из (12) и (14):

$$q_{(1)\kappa p} = \left(\frac{6 \cdot 10^{-74} n^{(0)}(t)}{kT \rho_{(1)\kappa p}^5}\right)^{1/2},$$

$$q_{(2)\kappa p} = \left(\frac{9.1 \cdot 10^6 \cdot p_1^2 p_2^2 n^{(1)}(t)}{kT \rho_{(2)\kappa p}^5}\right)^{1/2},$$
(15)
(16)

где $n^{(0)}(t)$ – концентрация первичных атомов металла, объединяющихся в кластеры, каждый из которых состоит в среднем из v атомов. Концентрация таких кластеров равна $n^{(1)}(t)$. Интересно, что соотношение между $n^{(0)}$ и $n^{(1)}$ имеет следующий вид [8]:

$$\frac{n^{(1)}}{\left(n^{(0)}\right)^{\nu}} = \frac{\lambda_T^{3\nu} \cdot \nu^{1/2}}{\left(2s+1\right)^{\nu}} \sum_{\mu} e^{-\frac{E_{\nu,\mu}}{kT}},$$
(17)

где $\lambda_T = \left(\frac{2\pi\hbar}{mkT}\right)^{1/2}$, $E_{\nu,\mu}$ – энергия связи по μ внутренним состояниям, *s* – спин частицы, *m* – масса частицы.

Учитывая, что сумма (5) представляет собой знакопеременный ряд малых величин (так как $\Gamma_{\vec{q}}$ велико), то параметр порядка $\eta(\omega, \vec{\rho})$ определяется только «резонансным» слагаемым при $\omega = \omega_{\vec{q}_m}$ и $\Gamma_{\vec{q}} \to 0$.

леп со странных конкретных условий ~3,5 · 10⁵ м/с.

Для кластера с уровнем кластеризации ($\alpha + 1$) $\geq 2 - \phi$ рактала – произведен расчет фрактальной размерности *D*:

$$D = \frac{d\left(\ln N(R)\right)}{d\left(\ln R\right)},\tag{18}$$

где N – число находящихся внутри сферы радиусом R кластеров уровня (α), из которых состоит фрактал (кластер уровня (α + 1)).

С этой целью по результатам электронно-микроскопических исследований (рис. 1,*a*) строилась зависимость $\ln N(\ln R)$ (рис. 2). Фрактальная размерность определялась как угловой коэффициент линейной линии тренда. Полученное значение D = 2,49.

На основании этого определена зависимость средней плотности вещества $\gamma_{(\alpha+1)}(R)$ фрактала (кластера с уровнем кластеризации $(\alpha+1) \ge 2$) внутри сферы радиусом R, центр которой совпадает с центром фрактала:

$$\gamma_{(\alpha+1)}(R) = \gamma_{(\alpha)} \left(\frac{\rho_{(\alpha)}}{R}\right)^{3-D},$$
(19)

где $\gamma_{(\alpha)}$ – плотность первичных кластеров радиуса $\rho_{(\alpha)}$, из которых состоит фрактал (рис. 3).

Заключение

В статье показано, что фазовые превращения в компрессионной плазме, содержащей металлическую компоненту, приводят к формированию сложных структур различного уровня. И если формирование кластеров первого уровня, состоящих из определенных атомов металла, можно удовлетворительно описать в рамках кинетического подхода, то процесс образования фрактальных объектов (кластеров второго, третьего и т.д. уровней) требует разработки нового подхода, учитывающего физику взаимодействия первичных элементов.

Предложенный в работе физико-математический формализм, в рамках которого фазовый переход представлен резонансным откликом системы взаимодействующих элементов на соответствующие термодинамические условия, позволяет непрерывным образом «пройти» точку фазового перехода и описать его специфику.

ABOUT THE FORMATION OF MAGNETIC HOMODOMAIN NANOPARTICLES IN PLASMA

V.M. ASTASHYNSKI, I.L. DOROSHEVICH, N.T. KVASOV, YU.A. PETUKHOU, A.V. PUNKO, V.V. UGLOV

Abstract

The article regards the mechanisms of magnetic nanoclasters' formation in compression plasma. Nanoclasters of 5-100 nm size are used in the modern systems of recording and storage of information. The undulatory formalism is proposed for the description of phase transitions.

Литература

1. Квасов Н.Т., Данилюк А.Л., Пунько А.В. и др. // Докл. БГУИР. 2006. №2 (14). С. 94–102.

2. Квасов Н.Т., Пунько А.В., Дорошевич И.Л. и др. // Докл. БГУИР. 2010. №2 (48). С. 59-64.

3. Белко А.В. // Веснік ГрДУ. 2003. Серия 2. №2 (22). С. 67-70.

4. Смирнов Б.М. // Успехи физических наук. 1986. Т. 149, Вып. 2. С. 177–219.

5. *Квасов Н.Т., Пунько А.В., Дорошевич И.Л. и др. //* Тез. докл. XL Международной конференции по физике взаимодействия заряженных частиц с кристаллами. Москва. 2010. С. 168.

6. Каштанов П.В., Смирнов Б.М., Хиппер Р. // Успехи физических наук. 2007. Т. 177, №5. С. 473–510.

7. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М., 1979.

8. Репке Г. Неравновесная статистическая механика. М., 1990.