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TORSION FREE AFFINE CONNECTIONS ON
THREE-DIMENSIONAL HOMOGENEOUS SPACES

N.P. MOZHEY

ABSTRACT. The purpose of the work is the classification of three-
dimensional homogeneous spaces with torsion-free invariant affine con-
nections only. In the case considered in the work, a t-equivalence class
contains only one space, i.e., invariant affine connections with coinciding
geodesics do not exist. The local classification of homogeneous spaces is
equivalent to the description of effective pairs of Lie algebras. In this work
we use the algebraic approach for description of connections, methods of
the theory of Lie groups, Lie algebras and homogeneous spaces.
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1. INTRODUCTION

Invariant connections on (mainly, reductive) homogeneous space have been stu-
died-independently by P. K. Rashevskii [1, 2|, M. Kurita [3], E. B. Vinberg [4, 5]
and S. Kobayashi, K. Nomizu [6, 7]. Nguyen van Hai studied existence conditions
of invariant affine connection on (not necessarily reductive) homogeneous space.
His result in [8] generalizes some results of K. Nomizu and is connected with a
problem of studying affine connection which supposes transitive group of affine
transformations. B. Opozda, O. Kowalski, Z. Vlasek, T. Arias-Marco classify all
torsion-free |9, 10] (arbitrary torsion [11]) locally homogeneous connections on two-
dimensional manifolds. B. Dubrov, B. Komrakov, Y. Tchempkovsky [12] describe
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maximal affine pairs (three-dimensional locally homogeneous space, affine connec-
tion) whose symmetry group is transitive and at least five-dimensional.

In this work we consider only spaces, not supposing connections with a nonzero
torsion tensor. Let (G, M) be a three-dimensional homogeneous space, where G is
a Lie group on the manifold M. We fix an arbitrary point o € M and denote by
G = G, the stationary subgroup of o. It is known that the problem of classification
of homogeneous spaces (G, M) is equivalent to the classification (up to equivalence)
of pairs of Lie groups (G, G) such that G C G (for example, [13]). In the study of
homogeneous spaces, it is important to consider not the group G itself, but its
image in Diff (M). In other words, it is sufficient to consider only effective actions
of G on M. Since we are interested in only the local equivalence problem, we can
assume without loss of generality that both G and G are connected. Then we can
put into correspondence the pair (g, g) of Lie algebras to (G, M), where g is the Lie
algebra of G and g is the subalgebra of g corresponding to thesubgroup G. This
pair uniquely determines the local structure of (G, M); that is, two homogeneous
spaces are locally isomorphic if and only if the corresponding pairs of Lie algebras
are equivalent. A pair (g,g) is effective if g contains no non-zero ideals of g; a
homogeneous space (G, M) is locally effective if and only if the corresponding pair
of Lie algebras is effective. An isotropic g-module m is the g-module g/g such that
x.(y+9g) = [x,y]+9g. The corresponding representation A: g'— gl(m) is called an
isotropic representation of (g, g). The pair (g, g) is said to be isotropy-faithful if its
isotropic representation is injective.

We have divided the solution of the problem of classification all three-dimensional
isotropically-faithful pairs (g, g) into the following parts. We classified (up to iso-
morphism) faithful three-dimensional g-modules U. This is equivalent to classifying
all subalgebras of gl(3,R) viewed up to conjugation. For each obtained g-module U
we classified (up to equivalence) all pairs (g, g) such that the g-modules g/g and U
are isomorphic. All of these pairs are described in [17].

Invariant affine connections on (G, M) are in one-to-one correspondence [7] with
linear mappings A: g — gl(m) such that Al; = A and A is g-invariant. We call
this mappings (invariant) affine connections on the pair (g,g). If there exists at
least one invariant connection on (g, g), then this pair is isotropy-faithful [6]. The
curvature and torsion tensors of the invariant affine connection A are given by the
following formulas:

R:mAm= gl(m), (21+g) A (2249) = [A(z1), A@2)] = A([z1, 22));

T:mAm—m, (x1+9) A (x2+9) = A1) (z2+9)—A(z2)(x1+9) — [*1, Z2|m-

We restate the theorem of Wang on the holonomy algebra of an invariant connec-
tion: the Lie algebra of the holonomy group of the invariant connection defined by
At g — gl(3,R) on (g, g) is given by V+[A(), V]+[A(g), [A@), V]]+ .., where V is
the subspace spanned by {[A(z), A(y)]—A([z, y])|z,y € §}. Let ag be the subalgebra
of gl(3,R) generated by {A(z);z € g}. Originally, ag was introduced as such in the
Riemannian case by B. Kostant [14], and has been used by A. Lichnerowicz [15]
and H. Wang [16] under more general circumstances. The basic properties of ag
are given by the following: let h* be the Lie algebra of the holonomy group, then
h* C ag C N(h*), where N(h*) is the normalizer of h* in gl(3,R). We shall say that
a invariant connection is normal if b* = aj.
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As it is known, the set of all affine connections on (g, g) forms an affine space
assosiated with the vector space (m ® m ® m*)%. Really, let A;, Ay be two affine
connections on (g, g). Then Ay — Ay equals 0 on g and, therefore, can be identified
with a mapping A: m — gl(m). Since the mappings A; and As are g-invariant, it
follows that A is also g-invariant. But the set of all g-invariant mappings from m
to gl(m) is canonically isomorphic to (m®m®m*)9. On the other hand, if A is any
affine connection on (g, g) and A: m — gl(m) is g-invariant, then A + A is also an
affine connection on (g, g) (here we identify A with the mapping g — gl(m) which
is equal to 0 on g).

We say that two connections Ay, Ay are t-equivalent if Ay — Ay € (A’m ®
m*)9. This definition has the following geometrical meaning: two invariant affine
connections on a homogeneous space are t-equivalent if and only if their geodesics
coincide (see [6]). It follows immediately from the definition that the t-equivalence
classes of affine connections are just parallel affine subspaces in the set of all affine
connections on (g, g) corresponding to the subspace (A’m @ m*)® C (m@m @ m*)?.
Each t-equivalence class of affine connections on g contains a unique torsion-free
connection. Really, let A in the set of all affine connections on (g, g). Let T € (A’m®
m*)? be the torsion tensor of A. Consider the affine connection A’ = A+1/2T'. Then
its torsion tensor 7" has the form: 77: (z1+g)A(x2+g) = [T1, Bo]m— A’ (21)(x2+9)+
N (z2)(z1+0)=T(z1+9) A (w249)— 5T (x1+0) A(w2+8)+ s T(x2+9) A(z1+9) =0,
for all z1, x5 € g. The uniqueness of the torson-free connection can be proved in the
same way. Picking out the unique torsion-free connection subordinate to a family
of parametrized geodesics is known as absorption of torsion, and it is one of the
stages of Cartan’s equivalence method.

In the case considered in the work, a t-equivalence class contains only one space,
i.e. there do not exist affine connections with coincide geodesics.

Also, in particular, if M is a symmetric space, then K. Nomizu showed that there
is a torsion-free affine connection on M whose curvature is parallel. Conversely, a
manifold with such a connection is locally symmetric (i.e., its universal cover is a
symmetric space). Such manifolds can also be described as those affine manifolds
whose geodesic symmetries are all globally defined by affine diffeomorphisms, ge-
neralizing the Riemannian and pseudo-Riemannian case.

We define (g, g) by the commutation table of the Lie algebra g. Here by {eq, ..., e, }
we denote a basis of g (n = dimg), by small Greek letters (A, p and others) we
denote parameters of g (as described in [17]). We assume that the Lie algebra g
is generated by eq,...,e,_3. Let {u; = ep_o,us = €,_1,u3 = e, } be a basis of m.
We describe the affine connection by A(u1), A(uz), A(us), the curvature tensor R
by R(uq,us), R(u1,us), R(ug,us) and the torsion tensor T by T'(uy,us), T(u1,us),
T'(uz, usg). We say that the affine connection is trivial if A(u1) = A(uz) = A(ug) = 0.
To refer to the pair we use the notation d.n.m, where d is the dimension of the
subalgebra, n is the number of the subalgebra of gl(3,R), m is the number of (g, g)
in [17].

The description of three-dimensional isotropically-faithful pairs with torsion-free
invariant affine connections only can be divided into the following parts:

Part I: Classification of all pairs that allow nontrivial affine connections;

a) the curvature tensor is only zero;

— g is nonsolvable (in Theorem 1, g is nonsolvable; in Theorem 2, g is solvable);

— g is solvable (Theorem 3);
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b) the curvature tensor is not only zero;

— g is solvable (Theorem 4);

— @ is nonsolvable (in this case g is solvable for all pairs, Theorem 5);

Part II: Classification of all pairs with only trivial affine connections.

a) the curvature tensor is only zero;

— g is nonsolvable (in Theorem 6, g is semisimple; in Theorem 7, g is not
semisimple, the commutant of the radical of g is noncommutative; in Theorem 8, g
is not semisimple, the commutant of the radical of g is commutative);

— g is solvable (Theorem 9);

b) the curvature tensor is not only zero;

— g is nonsolvable (in Theorem 10, the radical of g is commutative; in Theorem 11,
the radical of g is noncommutative);

— g is solvable (Theorem 12).

Three-dimensional isotropically-faithful pairs with torsion-free invariant affine
connections only, except presented in Theorems 1-12, do not exist.

2. PAIRS OF LIE ALGEBRAS THAT ALLOW NONTRIVIAL AFFINE CONNECTIONS
2.1. The curvature tensor is zero for all connections.

2.1.1. Transformation group is nonsolvable. In this case semisimple transformation
groups do not exist.

Theorem 1. If the pair (g,9) allows nontrivial affine connections, the curvature
and torsion tensors are only zero, § and g are nonsolvable, then (g, g) is equivalent
to the following pair:

Pair Levi decomposition g
6.3.2| {{u1},{—4e1,2es, —2us,—4des, 2e5, —2usz, —4des, —e1 —3eq—uq }}

Pair Levi decomposition g
6.3.2| {{e4,2e5,2e6}, {—4e1+2e5, —dea+2e5, —4des}t}

Pair Connection
2 0 0 0 0 O 0 0 0
6.3.2 0 =2 0 , 1 =2 0 0 |, 0 0 O
0 0 -2 0 0 O -2 0 0

Proof. For the subalgebras g of gl(3,R) in [17], we find the isotropy-faithful pairs
(g,9) and choose the pairs that allow nontrivial affine connections such that the
curvature and torsion tensors are zero for all connections and g is nonsolvable. For
example, let isotropic representation has the form 6.3, let {eq, ea, €3, €4, 5,6} be a
basis of g, where

0 0 O 0 0O 0 0O
e1=1(0 1 0 |,e0=10 0 1},e5=(0 0 0],
0 0 -1 0 0O 01 0

000 01 0 00 1
ea=10 1 0),es=(0 0 0],es=[0 0 0].
00 1 00 0 000

By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vectors
e1 and ey4.
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Since g{*)(h) = Re; & Rey, g0 (h) = Reg, =29 (h) = Reg, U0 (h) = Ruy,
g I(h) = Res, UTD(h) = Rugy, g1 (h) = Reg, UL (h) = Rug we have
[u1, us] = agus, [u1,us] = Psus, [uz, us] =0, as, B3 € R. Using the Jacobi identity
we see that the pair (g, g) has the form

€1 €2 €3 €4 €5 €6 Ui U2 us3
€1 0 262 7263 0 —€5 €g 0 U2 —Us3
€9 —262 0 €1 0 —€g 0 0 0 (%)
€3 263 —€1 0 0 0 —€5 0 us 0
€4 0 0 0 0 —€5 —€g 0 u9 us
es es e 0 es 0 0 0 per+A  2pes
es | €6 0 e5 e 0 0 0 2pes —pei+A
U1 0 0 0 0 0 0 0 0 0
ug | —us 0 —uz —us —per—A —2pes 0 0 0
u3 us —us 0 —ugz —2pes pe1—A 0 0 0

where A=3pestu;, p € R. If p=0 then the pair (g, g) is equivalent to the trivial pair
6.3.1. If p # 0 then the pair (g, g) is equivalent to the pair (g, g2), i.e. 6.3.2, by
means of the mapping 7 : go — g, where 7(e;)=e;, i=1,6, m(u;)=(1/p)u;, j=1,3.
Since the Lie algebra 6.3.1 is reductive, and 6.3.2 is nonreductive, we see that
the pairs 6.3.1 and 6.3.2 are not equivalent.
If (g,9) is 6.3.1 then Al is the isotropic representation of g. Let

P1,1 P1,2 P1,3 q1,1 91,2 91,3 1,1 71,2 71,3
Aur)=| p2,1 P22 2,3 |, Alu2)=| @21 @2 @3 |, A(us)=| r2,1 r22 r23 |,
P31 P3,2 P3,3 q3,1 43,2 43,3 3,1 732733

Dijs Qijs Tij € R (’L,j = 1,3). A is g-invariant = [A(eg),A(ul)]:A([eg,ul])
[Ae2),A(u1)] =0, p31=p32=p12=0, p3z=p22. [Ale1), A(ur)] = A([e1, u1]
p1,3=p2,1=p23=0. [A(es), A u1)]| =A(les, u1]) = pa2=p11. If [A(e2), A(u2)] =0
then ¢31=¢32=q1,2=0, g3.3=q22: [Ale1), A(uz)] = Alu2), q1,1 =q2,2=q2,3=0.
[A(es), Alu2)|=A(us), r1,1=r13=re 1=r3 2=r2 3="3 2=r3 3=0, r31=¢2.1, '12=—q13.
If [A(eq), Auz)|=A(uz) then r19=0. [A(es5), Aluz)]=A(u1), p1,1=r3,1=0. In this case
the affine connection is trivial, the curvature and torsion tensors are zero.

If (g,g) is 6.3.2 then [A(eg),A(Ul)]:A([GQ,Ul]) = [A(BQ),A(Ul)]:O, P3,1=pP3,2=
p1,2=0, p33=p22. [A(e1),A(u1)]=A([e1,u1]) = p1,3=p2,1=p2,3=0. [A(e5), A(u1)]=
A(les,u1]) = poa=pi1. If [Ae2), A(uz)] =0 then g31=g¢32=¢12=0, ¢33=¢2.2.
[Aler), Aluz)|=A(ug), 11=q22=q2,3=0. [A(e3), A(uz)|=A(u3), rip=riz=ro1=
T2,2="23="g,2=r3 3=0, r31=02,1, 71,2=—q1,3. If [A(es), A(u2)]=A(uz) then ry »=0.
[A(es), A(u2)]=A(u1) + Aler) + 3A(eq), p1,1=r31=—2, affine connection has the
form presented in the theorem, the curvature and torsion tensors are zero.

In other cases are similarly. O

Theorem 2. If the pair (§,9) allows nontrivial affine connections, the curvature
and torsion tensors are only zero, g is nonsolvable and g is solvable, then (g,g) is
equivalent to one and only one of the following pairs:
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Pair Levi decomposition g
5.9.2 {{2u1, 65,7262“1’7_112, €3, 61}7 {*464, U1+4U3, 65+4U2 }}
4.19.2 {{261%2, €o,— U1, 64}7 {—(1/2)U1—U2, 2€3+€4, 2U3}}
4.21.11, p£0,1,1/2 {{—pdes, —2uea—2u%uy, ur, (21/p)er+us },
{—4pPes, pteatpturtdpus, —pPestdpPus ) }
3.6.2 {{UQ,—63—%1,62},{61,’&1,113}}
3.12.2 {{4‘11,1,*63,72614’11,2},{4(1/2)’&17’[1,2,726276377211,3}}
31367:“’7&07 1,-1, 1/2 {{_(21//‘)61"4“2’ (1_/1)#“1’ _N63} )
{(p)p? [ (2(14p) Jur—pPuz, —2pie—pies,—2pus) 1}
3.28.2 {{UQ, —€3, 7’[1,1}, {72617’&27 7262, 72713}}
2.8.7,040,1,—1,1/2 {{uz, —(1/Neatur }, {Ner, Nui, Nuz}}
Pair Connection
5.9.2 0-10 00O 00O
3.12.2 000 , 0-10 , 0 0.0
3.13.6,/1750,1,—171/2 000 001 0-=10
010 00 0 000
4.19.2. 000 |, 010 |, 000
000 00 -1 010
000 00 0 000
4.21.11, p#0,1,1/2 000 , 01 0 , 000
000 00 -1 010
N AN A
2.8.7,040,1,-1,1/2 0 01/2 000 ~1/200
0-10 0-2 0 000
3.28.2 000 N 0-10 , 000
000 00 -1 0-10

The proof is just as above.

Remark. For the sake of simplicity, instead of the notation for parameters u#0
and p#l and p#£1/2 we use the following notation: p£0,1,1/2; instead p=0 or u=1
or p=1/2 we use u=0,1,1/2.

In this case, if g is solvable then the radical of g is noncommutative, the commutant
of the radical of g is commutative for all pairs.

2.1.2. Transformation group is solvable. In this case, g is solvable too. Let curvature
tensor be zero (then holonomy algebra is zero too).

Theorem 3. If the pair (§,9) allows nontrivial affine connections, the curvature
and torsion tensors are only zero, and g is solvable, then (g, g) is equivalent to one
and only one of the following pairs:

4.8.1 (A=0, p=1/2), 4.11.1 (u=0,A=1/2), 4.11.5, 3.7.1 (A\=1/2), 3.8.1 (\=1/2, p=
0), 3.14.1 (u50,2), 3.19.17, 3.20.25 (u£0), 3.20.26 (A#£1/3,1/4), 2.1.1 (A=1/2),
2.8.1 (A=1/2), 2.9.1 (A=1/2 (puz£0, —1/2,1/4); A=2p (£0,1/4,1/3)); 2.19.5, 2.21.1
(A=3/4), 1.2.1 (u=2X (A£1/3,1/4): p=A/2 (\£—2); A=1/2 (u£1/2)), 1.7.1 (A=1/2).
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Pair Connection
4.11.1, p=0, \=1/2 000 000 00 mgs
2.21.1, \=3/4 000 ), 000 ), 00 0
00 0 00 0 00 0
4.8.1, =0, pi=1/2
3.8.1,A\=1/2, u=0 00 0 00 0 00 0
2.8.1, \=1/2 00 01,1000/, 00 rs
2.9.1,A=2u(p£0,1/4,1/3,1/2)| \ 0 0 0 00 0 00 0
1.2.1, u=\/2 (A\£—2)
4115 00 0 0 0 0 0 0 0
3.19.17 0o0o0]|,looo],[oo0.1
3.20.25, 11 £ 0 00 0 00 0 00 0
3TLA=1/2 0 0 o 0 as O o b Y
2.1.1, x=1/2 00 0 0 0 0 0.0 0
121, =1/2 (u#1/2,1) 000l Ve o o Voo
1.7.1,)\=1/2
3,141, 4 £0,2 00 0 0 00 0 0 ris
000],1l00 0], 000 rs
291, =1,u=1/2 0 0 0 QS 4 00 o
0 0 O 0 q1,2 0 0 0 T1,3
2.9.1,\=1/2(pz£0,—1/2,1/4) o000, lo o of,[oo0o o
00 0 0 0 0 00 0
00 0 00 0 00 0
3.20.26,\ # 1/3,1/4 000],00001],]000
0 00 01 0 00 0
00 0 00 0 0 0 rig
2.19.5 0o 00 ],looo],loo0o 1
0.0 0 00 0 00 0
00 0 0 0 0 00 0
1.2.1, 0= 2X (A £ 1/3,1/4) 00o0]|,lo o ol,[oo0o0
00 0 0 gs2 O 00 0
00 0 0 q12 0 00 0
121,A=1/2,=1 000],lo o olf,[oo0o0
00 0 0 gs2 O 00 0

2.2. The curvature tensor is not zero for some connections.

2.2.1. Transformation group is solvable. In this case, g is solvable too.

Theorem 4. If the pair (g,9) allows nontrivial affine connections, the curvature
tensor is not only zero, the torsion tensor is only zero, and § is solvable, then (g, g)
is equivalent to one and only one of the following pairs:

3.20.26 (A = 1/4), 3.20.27, 2.9.1 (A=1/2,u=1/4), 2.9.3 (u = 1/4), 1.2.1 (A=
1/4, u=1/2).
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Pair Connection
000 000 00 ri3
3.20.26, A =1/4 000 |, 00O01]J,] 00 O
000 010 00 O
000 000 000
3.20.27 000 |, 0001],] 00O
000 010 000
291, =1/2,=1/4| [ 000 0 g2 0 00 0
2.9.3, 11— 1/4 000 ],/ 0 0 0], 00 res
000 0 0 O 00 O
000 0 0 O 00 73
1.2.1,\=1/4, u=1/2 0oo0oo0 |, 0 0 O], 00 0
000 0 g32 O 00 O
Pair Curvature tensor
000 000 0-7r130
3.20.26, A =1/4 000 , 000 , 0o 0 O
000 000 0 0 0
000 000 001
3.20.27 000 |, o000 |, 000
000 000 000
000 000 00 q12r23
2.9.1, A=1/2, p=1/4 000 |,{ o000 |,[ 00 o
000 000 00 0
000 000 00 qi,2m2,3—1
293, u=1/4 000 |, 000 |, OO 0
000 000 00 0
000 000 0 —71,393,2 0
1.2.1, A=1/4, u=1/2 000 , 000 , 0 0 0
000 000 0 0 0

287
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Holonomy algebra

3.20.26, A = 1/4

3.20.27

291, A=1/2,up=1/4

2.9.3, p=1/4

121, A=1/4,u=1/2

71,3 7£ 0

1,3 = 0

q1,272,3 # 0

q1,2m72,3 =0

q1,2m2,3 # 1

qi2r2,3 =1

71,332 7 0

71,3G3,2 = 0

0 D1 0
0 0 O
0 0 O
is equal to zero

is equal

0 0 O
is equal to zero
0 Pi1 0
0 00
0 0 O
is equal to zero

2.2.2. Transformation group is nonsolvable. In this case, g is not semisimple and g

is solvable for all pairs.

Theorem 5. If the pair (g,g) allows nontrivial affine connections, the curvature
tensor is not only zero, the torsion tensor is only zero, and g is nonsolvable, then
(g,9) is equivalent to one and only one of the following pairs:

Pair Levi decomposition g
4.21.11, /.LZI/Q {{(—1/2)62, (—1/2)1},1, (—1/8)64, de1+us, ul},
{(-1/2)e3,(1/16)eaH(1/16)ur+(1/2)us,(—1/8)estust}
3136, M:1/2 {74261 + Uz, Uy, 63}, {ul + 2U2, 262 + €3, Ug}}
987, A=1/2 | {{uz,~2es +ur}, (1/8)er, (1/4)ur, (1/8)us}}
Pair Connection
0 0 O 0 0 O 0 0 7
4.21.11, p=1/2 00 0], 01 O ,1 0 0 O
0 0 O 0 0 -1 01 0
-1 0 0 0 O 0 0 ris
3.13.6, u=1/2 o 0 O0],{0 =1 0}, 0 O 0
0 0 O 0 0 1 0O -1 0
-1/20 0 000 0 00
2.8.7, \=1/2 0 00 000 0 Omra3
0 01/2 000 -1/20 0
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Pair Curvature tensor
0 0 0 0 0 O 0 0 3r3
42111, p=1/2 00 0], 0 0O0O1],l 00O 0
0 0O 0 0O 0 0 0
0 0 O 0 0O 0 0 —3ri3
3.13.6, u=1/2 0 00]J,l0O0O],l 00 0
0 0 O 0 0 O 0 0 0
0 0 O 0 0 0 0 0 O
287, A=1/2 00 O0],{ 00 —=3re3/2 |, 000
0 0 O 0 0 0 0 0 O
Pair Holonomy algebra g
42111, = 1/2 0 pi pe
3136, u=1/2 | 370 0 00
0 0 O
ri3=0 is equal to zero
0 0 O
2.8.7, A= 1/2 2,3 75 0 D1 0 P2
0 0 O
ro3 =10 is equal to‘zero

3. PAIRS OF LIE ALGEBRAS WITH ONLY TRIVIAL AFFINE CONNECTIONS

That means A(u;) = A(uz2) = A(ug) = 0. The torsion tensor is zero for all
connections here.

3.1. The curvature tensor is zero for all connections.

3.1.1. Transformation group is nonsolvable. In this case semisimple transformation
groups are not exist.

Theorem 6. If the pair (g,g) has only trivial affine connection, the curvature
and torsion tensors are only zero, § is nonsolvable, g is semisimple, then (g,g) is
equivalent to the following pair:

Pair Levi decomposition g
8.1.1 | {{~ug, —ug,u1},{2e3, €4, —2e5—2uz, —eg, —e7—us, €5, €1+u1, e1+eatur}}

Proof. If, for example, (g, g) is the three-dimensional homogeneous space 8.1.1 [17],
Alg=A then A is g-invariant = [A(e1), A(ur)]=A([e1, u1]) = [A(e1), Alur)]=A(u1)
and p11 =p1,2 =p2,1 =p22=p23=p3,1=p33=0. If [A(e2), A(ur)]=A([e2, u1]) =
[A(e2), A(u1)]=0, then p1 3=p3 2=0. If [A(e5), A(u1)|=A([es, u1]) then [A(es), A(ur)]=
A(u2), q1,1=01,2=q1,3=G2,1=02,2=42,3=q3,1=43,2=q3,3=0. If [A(e7), A(u;)]=A(u3) then
7“171:7“172:7“173:7"271:7“272:7“273:7“371:7“372:7“3,3:0. We have A(ul):A(UQ)ZA(U3):O,
the curvature and torsion tensors are zero. In other cases, g is not semisimple. [

Theorem 7. If the pair (§,8) has only trivial affine connection, the curvature
and torsion tensors are only zero, g is nonsolvable, g is not semisimple, and the
commutant of the radical of g is noncommutative, then (g, g) is equivalent to one
and only one of the following pairs:
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Pair Levi decomposition g
7.2.1 {{Ug, U2, U1, 264%5, €3, €2, 61}, {(1/2)62765,‘634’2667 267}}
6.2.1 {{’LLg, €1, (8)\—8)64, (—8)\+8)€6, (4A—4)U1, (4)\—4)’&2},
{32637—3265+(8—8)\)UQ, 16€2+(4/\—4)U1}}
6.3.1 {{U37 Ug, U1, €6, €5, 64}, {—461 +265,—462+266,—4€3}}
6.4.1, /\751/2 {{U3, Uz2,U1, €6, €5, 61}, {—462+(2—2)\)65,
*4634’(272)\)667*464}}
Pair Levi decomposition g
7.2.1 {{e2,—€3,€1,2e4+es5}, {(1/2)ea—e5,—e3+2¢4, 27 }}
6.2.1 {{e1, A +1)eq, (2A—2)es}, {Hea+(2A—2)eq,—des,
—des+(2A—2)eg}}
6.3.1 {{2e5, 2eq, e4 }, {—4e1 +2e5,—dea+2e6,—des}}
6.4.1, \#£ 1/2 {{65, €6, 61}, {—4€2+(2—2)\)€5,—4€3+(2—2)\)€6,—464}}

The proof is just as above.

Theorem 8. If the pair (g,9) has only trivial affine connection, the curvature
and torsion tensors are only zero, g is nonsolvable, g is not semisimple, and the
commutant of the radical of g is commutative, then (g,9) is equivalent to one and
only one of the following pairs:

Pair Levi decomposition g
9.1.1 {{eg,—us3,—2u9,—2uq }, {4e; —8u1,—2e4, 2eg,—des, 2eq,
—e1 —ey—2uy, 2e7+4ugz,—des —8ug }}
7.1.1 {{—867, us, €3, €1, 4dus, 4, 866}, {32€4+1666,—3285,
1662—867}}

5.1.1 {{Ul, €3, 61+62,7U2,4‘LL1}, {464,—465+U2, 461 74627’[1,1}}
4.2 L2 #1/2| {{us,e1,8 u1,—8Aug}, {32e3+16Au1,—32¢e4, 16ea—8Aus}}

4.3.1 {{~u1, us, us,ei}, feat+ur,—e3,—e4+u1 }}
4.5.1 {{ul,U3,—UQ7€1},{62—U1,€3,€4—U2}}
Pair Levi decomposition g
9.1.1 {{us}, {H4e1,—2eyq, 2eg,—es, 2e5,—€1 — e, 2e7,—des } }
7.1.1 {{61, €3,—€6, 267}7 {—462+2€6,—464,—4€5+287}}
5.1.1 {{63,61-‘1-62},{—€1+€2,—264,—2€5}}

421,, A#l/Q {{61}, {*4627*463,*464}}
4.3.1 {{er}, {-e2,—e3,—ea}}
4.5.1 {{61},{62,63,64}}

The proof just as above.

3.1:2. Transformation group is solvable. Then the stationary subgroup is solvable
too.

Theorem 9. If the pair (§,g) has only trivial affine connection, the curvature and
torsion tensors are only zero, g and g are solvable, then (g,g) is equivalent to one
and only one of the following pairs:

6.5.1,5.4.1,5.5.1,5.6.1,5.7.1,5.8.1,5.9.1, 5.10.1 (A2 4% # 0, A—=1)2+(u+1)% #
0),4.4.1,4.6.1,4.7.1, 4.8.1 (A+1)>+(u—1)% # 0, N2+ (u—1/2)% # 0, \2+u? #0),
4.9.1 (N +p? #0), 4101 (N +p? #0, (p+1)2+(A=1)% #0, p? +(A—1/2)? £ 0),
4.12.1,4.13.1, 4.14.1 (1 —2)2+ A2 #0), 4.15.1, 4.16.1, 4.17.1, 4.18.1, 4.19.1, 4.20.1
(MN#0,-1),4.21.1 (u#0,u#1—X),4.22.1,3.1.1, 3.2.1, 3.6.1, 3.7.1 (A # 0,1/2),
381 (N24+pu2 #0, A=1/2)2+p2 £ 0, A+1)2+(u—1)% £ 0, A—=1)2+(up+1)% # 0),
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3.9.1, 3.10.1, 3.11.1, 3.12.1, 3.13.1 (u # O, 0 # 1 — A\, u # X — 1), 3.16.1, 3.17.1
(A#0), 3.18.1,3.19.1 (A #0,—1), 3.20.1 (A # 0, u # 0, u # 1 — \), 3.21.1 (A # 0),
3.22.1 (A # 2u), 3.23.1 (X # 2/3,1/2), 3.24.1, 3.26.1, 3.27.1 (X # 0,1/2), 3.28.1,
3.29.1 (1 # 0), 3.30.1, 3.31.1, 2.1.1 (X # 0,1/2), 2.2.1 (A —1)2 + (u — 1)% # 0),
231,241 (A2 + 2 #0, A2+ (n—2)2 #£0), 25.1,2.6.1,2.8.1 (A #0,1/2,1,-1),
291 N#E1/2, N F0, N FE 1 —p, A #2u, A # p+ 1, p#0), 2.10.1, 2.11.1, 2.12.1,
2.14.1, 2.16.1 (X # 0,1/2), 2.19.1 (A # 0), 2.21.1 (X # 0,1/2,2/3,3/4), 2.22.1,
120 (u # N+ 1 #2200 # 1 =M\ # N2, X # 1/2), 1.4.1 (n # 2)), 1.71
(A#0,2,1/2), 1.9.1.

Remark. In the cases 5.10.1 (A =1/2,p=0),4.21.1 (1 =1/2),3.81 (A=0,u =
1/2), 3.13.1 (u = 1/2, p = A/2), 3.20.1 (A = 1/2 or p = 1/2), 3.23.1 (A = 3/4),
3291 (p=1/2),291 AN#A1/2, N A0, AN # 1 —p, X # 2u, A # u+ 1, u # 0),
2.19.1 (A = 1/2) the connection is trivial after basis replacement.

Proof. If, for example, (g,g) is the three-dimensional homogeneous space 5.10.1
(A=1/2,1=0) then Ay is the isotropic representation of g. A is g-invariant =
[A(esq), Alur)]=A([es, u1]) = [A(es), A(uy)]=0. We have p3 1=p3 2=p2,1=0, p3,3=p1.1.
[Ales), Alur)|=A([es, u1]) = [A(es), A(ur)]=0 = p1,2=0, p1,1=p2,2. [Ale3), A(u1)]=
A(les,u1]) = [A(es), A(u1)]=0 then pe3=0. If [A(e1), A(u1)] =A(u1) then p1 1=
p1,3=0. [A(es), A(u2)]=0, ¢3,1=032=¢21=0, g33=q1,1. [A(es), A(u2)]=0, we have
Q1,2=0, Q171=QQ72. If [A(eg),A(UQ)]:A(Ul) then QQ73=0. [A(el),A(’U,Q)]:O, q1,3:0.
[A(€2)7A(UQ)] :A(Ug), q1,1 =0. If [A(€4),A(U3)] :A(ul) then T3, 1=T32=T21 :0,
7’3’3:7'171. [A(€5),A(U3)]:A(UQ), 7”1,2:0, 7’171 :7’2,2. [A(€3)7A(U3)]:0, 7”2,3:0. If
[A(e1), A(ug)]=(1/2)A(us) then r; 1=0, the affine connection there exists and has
the form

0 00 0 0 ris
Aw) =Alug) =10 0 0 |, Afug)=| 0 0 O ;
00 0 0 0 O

if r1 3 = 0 then the connection is trivial; if r; 3 # 0 then the affine connection is
equivalent to the trivial connection by means of the mapping 7 : g’ — g, where
m(e;)=e;, i=1,5, m(u1)=(1/71 3)u1, m(u2)=(1/r1,3)ue, m(uz)=(1/r13)us — eq, the
curvature and torsion tensors are equal to zero.

Similarly we obtain the results in the other cases. O

3.2. The curvature tensor is not zero for some connections.

3.2.1. Transformation group is nonsolvable.

Theorem 10. If the pair (§,g) has only trivial affine connection, the curvature
tensor is not only zero, the torsion tensor is only zero, g is nonsolvable and the
radical of § is commutative, then (g,g) is equivalent to the following pair:

Pair Levi decomposition g
2.9.12] {{u1, —ea}, {—2uz,2uy + 2uz, —e; —ea}}

Pair Curvature tensor

0 0 -1 0 0 O 1 0 O
2.9.12 0 0 O , 0 0 O , 0 -2 0
0 0 O 0 0 O
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Pair Holonomy algebra
pe O D1
2.9.12 0 —2p, O

0 0 2p2

Proof. Let, for example, (g, g) is the three-dimensional homogeneous space 2.9.12
[17], A is g-invariant = [A(ez2), A(u1)]=A([e2, u1]) = [A(ez2), A(u1)]=0, we have p3 1=
P3,2=p2,1=p3,1=0,p33=p1,1. [Aler), Alur)]=A([er,u1]) = [Aler), Aur)]=A(uz),
P1,1=p1,2=D1,3=P2,2=p2,3=0. If [A(e2), A(uz)]=A([e2,uz2]) then [A(ez), A(ug)]=0,
3,1=0¢32=q2,1=0, g33=q1,1- If [A(e1), A(uz)]=AA(uz) then q11=q12=q1 3=q2,2=
q2,3=0. [A(e1), A(us)|=pA(ug), m1,1="1,0="13="r21=r22="23="31="32="33=0.
[A(e2), Aluz)|=A(u1), Alur)=A(u2)=A(us)=0. V={[A(z), A(y)|-A([z,y])|z,y € g},
A(g)=A(g) and [A(g), V]=[A(g), V]=V, A(g) is equal to V. In this case, ag=A(g)
and the holonomy algebra h*=ag, i.e. the connection is normal. [l

Theorem 11. If the pair (g,g) has only trivial affine connection, the curvature
tensor is not only zero, the torsion tensor is only zero, g is monsolvable and the
radical of § is not commutative, then (g, g) is equivalent to one and only one of the
following pairs:

Pair Levi decomposition
4.11.2 {{—es,e1,e3,u1},{—€2 —e4, —ug,u; —uz}}
4.13.2 {{61,—62,63,’&1},{64—62,U2,U1 +U3}}
4.13.3 {{61,62,—63,’&1},{—62 — €4, — U2, U] —U3}}
3.8.8 {{763, —Uy, 61}, {61 — 262 <k (1/2)63, 72U2, —Uyp — 2U3}}
2.1.2 {{U3,62},{U1,7UQ,61}}
2.3.2 {{us,eaty{=uz2,u1,e1}}
2.3.3 {{us, ea}, {—ua,us, —e1 }}
Pair Curvature tensor
0 0 -1 0 -1 0 0O 0 O
4.11.2 00 O , 0O 0 0 , 0 -1 0
0 0 0 0O 0 O 0O 0 1
0 -1 0 0 0 -1 0 0 O
4.13.2 0O 0 O , 0 0 O , 0 0 —1
0 0 O 0 0 O 0 1 0
01 0 0 0 1 0 0 O
4.13.3 0 0 O , 0 0 O , 0O 0 1
0 0 O 0 0 O 0 -1 0
0 0 -1 0 0 O 1 0 0
3.8.8 0 0 O , 0 0 O , 0 -2 0
0 0 O 0 0 O 0O 0 2
-1 0 0 0 0 O 0 0 O
2.1.2 0 1 0 , 0 0 O , 0 0 O
0 0 O 0 0 O 0 0 O
93.9 0 =F1 0 0 0 O 0 0 O
93.3 +1 0 O , 1] 0 0 0 , 0 0 O
0 0 0 0 0 O 0 0 O
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Pair Holonomy algebra Pair | Holonomy algebra

0 pe ps 0 pr D2

4.11.2 0 —Ps3 0 i}gg 0 0 —DPs
0 0 ps o 0 ps O

D2 0 —D1 pr 0 0

3.8.8 0 —2ps 0 2.1.2 0 —p; O

0 0 2p2 0 0 0

0 —psr O 0 —-p; O

2.3.2 D1 0 0 2.3.3 D1 0 O

0 0 O 0 0 O

The proof is just as above.
3.2.2. Transformation group is solvable.

Theorem 12. If the pair (g,9) has only trivial affine connection, the curvature
tensor is not only zero, the torsion tensor is only zero, g and g are solvable, then
(9,9) is equivalent to one and only one of the following pairs:

5.10.2, 4.8.10, 4.11.4, 4.20.2, 4.21.2 (A # 1), 3.8.9, 3.13.2 (u# 0), 3.13.4, 3.14.2,
3.19.16, 3.20.4 (A # 0), 3.20.5 (1 # 1/2), 3.23.2, 3.27.2, 2.8.6,2.9.3 (11 # 0,1/2,1/4),
2.16.2.

Pair Curvature tensor
5.10.2,4.11.4,4.20.2,
4.21.2(\ #1),3.8.9,
3.13.2(u # 0),3.13.4,3.14.2, 8 8 0 8 8 8 8 8 _01
3.19.16,3.20.5(u # 1/2),3.23.2, 0 00 ! 00 0 ’ 00 0
3.27.2,2.8.6,
2.9.3(n#0,1/2,1/4),2.16.2
00 O 0 0 O 0 0 O
4.8.10, 3.13.4 00 0|, 00 —-11],1000
0 0 0 0 0 O 0 0 O
000 000 0-10
3.20.4 (A #£.0) 000 |, 000 J, OO0O
000 000 000
Pair Holonomy algebra
5.10.2,4.11.4,4.20.2,4.21.2(\ # 1), 3.8.9, 0 0 py
3.13.2(p #0),3.14.2,3.19.16, 3.20.5(u # 1/2),3.23.2, 3.27.2, 0 0 O
2.8.6,2.9.3(n #£0,1/2,1/4),2.16.2 0 0 O
0 0 O
4.8.10, 3.13.4 0 0 py
0 0 O
0 Pi1 0
3.20.4 (\£0) 000
000
Remark. In the cases 4.21.2 (A =0), 3.13.2 (1 # 0), 3.13.4, 3.20.4 (A # 0), 3.20.5

(1 # 1/2) the connection is trivial after basis replacement.

Proof. Just as earlier, in case, for example, 3.13.2 (u # 0) we have
1 0 0 0 00 0 0 1
Aler)=| 0 1-2u 0 |),A(e2)=| 0 0 1 |,A(e3)=( 0 0 O
0 0 u 0 00 0 00
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A is g-invariant = [A(es), A(u1)] = A([es, w1]) = [A(es), A(uq)] = 0; hence p3 1 =
P32 =0,p33 =p1,1,p2,1 = 0. From [A(e2), A(u1)] = A([e2, u1]) = [Ale2), Aur)] =
0 we have p12 =0, p1,1 = p22. [Ae1), A(u1)] = A(ur); then p1 1 =pa 3 =p1,3=0.
If [A(es), A(uz)] = 0 then g31 = g32 = q21 = 0, g33 = q1.1. [A(e2), A(uz)] = 0,
qi1,2 = 07 q1,1 = ¢2,2- [A(el),A(UQ)] = (1 — QM)A(U,Q), we have (—1 + Q,U)qu =
q1,3 = 42,3 = 0. If [A(€3),A(U3)] = A(’U,l) then 31 = T32 =T2,1 = 07 3,3 = T1,1-
[Ale2), Alusg)] = A(ug), 11 = r12 = 0, 111 = ro2. [Aler), Alus)] = pA(ug), we
have r11 = r3(1 —2u) = ra3(1 —4p) = 0, ie. r13 = 0 (p # 1/2), r23 =0
(u # 1/4); in the cases p = 1/2,1/4 after basis replacement the parameters are
equal to zero too.
Curvature tensor R(u1,us) = R(ui,us) =0,

0 0 -1
R(uz,uz) = [A(uz), A(us)] = Afug,us]) = | 0 0 0
0 0 O

Torsion tensor is equal to zero.
Holonomy algebra coincides with the algebra generated by

V = {[A(x), A(y)] = A([z,y])|z,y € g} = b* =

oo o
oo o
col

Really, [A(g), V] C V, hence bh* = V. The connection is not normal (A(g) D A(g),
dimag > 3 and bh* # ag).
Similarly we obtain the results in the other cases. O

We describe all invariant affine connections with only zero torsion tensor on
three-dimensional homogeneous spaces together with their curvature tensors and
holonomy algebras. In this work we use the algebraic approach for description of
connections, methods of the theory of Lie groups, Lie algebras and homogeneous
spaces.
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