Министерство образования Республики Беларусь Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Кафедра микроэлектроники

И.И. Абрамов

Моделирование МОП-структур

Учебно-методическое пособие к лабораторным работам по дисциплине «Моделирование технологических процессов и элементов интегральных схем» для студентов специальности 41 01 02 «Микро- и наноэлектронные технологии и системы» дневной формы обучения УДК 621.382 (075.8) ББК 32.85 я 73 А 16

Абрамов И.И.

А 16 Моделирование МОП-структур: Учебно-метод. пособие к лаб. работам по дисц.«Моделирование технологических процессов и элементов интегральных схем» для студ. спец. 41 01 02 Микро- и наноэлектронные технологии и системы дневн. формы обуч./ И.И. Абрамов. – Мн.: БГУИР, 2004. – 22 с.: ил. ISBN 985-444-714-6

В учебно-методическом пособии приведены описание двумерной численной модели и задания к циклу лабораторных работ по моделированию МОП-структур.

Пособие предназначено для студентов старших курсов специальностей, связанных с микроэлектроникой, а также может быть полезно аспирантам и инженерам, использующим модели элементов интегральных микросхем в своих исследованиях.

УДК 621.382 (075.8) ББК 32.85 я 73

ISBN 985-444-714-6

© Абрамов И.И., 2004 © БГУИР, 2004

Содержание

Двумерная численная модель МОП-транзистора

Задания к лабораторным работам

Лабораторная работа №1 «Моделирование идеальной МОП-структуры» Лабораторная работа №2 «Моделирование выходных характеристик МОПтранзистора с коротким каналом»

Лабораторная работа №3 «Моделирование передаточных характеристик МОПтранзистора с коротким каналом в подпороговой области»

Лабораторная работа №4 «Моделирование выходных характеристик МОПтранзистора с длинным каналом»

Лабораторная работа №5 «Моделирование влияния концентрации примеси в подложке на выходные характеристики МОП-транзистора с коротким каналом» Лабораторная работа №6 «Моделирование влияния ударной ионизации и эффектов сильного легирования на выходные характеристики МОП-транзистора с коротким каналом»

Лабораторная работа №7 «Исследование влияния точности моделирования на передаточные характеристики МОП-транзистора с коротким каналом» Литература

Двумерная численная модель МОП- транзистора

Диффузионно-дрейфовая модель (ДДМ) МОП-транзистора основывается на фундаментальной системе уравнений (ФСУ) физики полупроводников, а именно:

$$\partial n / \partial t = \nabla \vec{J}_n / q - R;$$

$$(1)$$

$$\partial p / \partial t = -\nabla \vec{J}_p / q - R;$$

$$(2)$$

$$- \nabla \varepsilon \nabla \phi = q \left(p - n + N_A^+ - N_A^- \right);$$

$$\vec{J}_n = -q n \mu_n \nabla \left(\phi + A \Delta \tilde{V}_g \right) + q \phi_T \mu_n \nabla n;$$

$$\vec{J}_p = -q p \mu_p \nabla \left[\phi - (1 - A) \Delta \tilde{V}_g \right] - q \phi_T \mu_p \nabla p,$$

$$(5)$$

где в случае учета эффектов сильного легирования (ЭСЛ)

$$n = n_{i0} \exp\left(A\Delta \tilde{V}_g / \varphi_T\right) \exp\left[(\varphi - \varphi_n) / \varphi_T\right];$$
(6)

$$p = n_{i0} \exp\left[\left(1 - A\right) \Delta \tilde{V}_g / \varphi_T\right] \exp\left[\left(\varphi_p - \varphi\right) / \varphi_T\right].$$
⁽⁷⁾

Здесь (1), (2) – уравнения непрерывности электронов и дырок, (3) – уравнение Пуассона, (4), (5) – уравнения переноса для плотностей токов электронов и дырок.

В (1) – (7) введены следующие обозначения: n, p – концентрации подвижных или свободных электронов и дырок; t – время; \vec{J}_n, \vec{J}_p – векторы плотности токов электронов и дырок; q – заряд электрона; R – превышение скорости рекомбинации над скоростью генерации; ε – диэлектрическая проницаемость материала; ϕ – электростатический потенциал; $N_{\mathcal{A}}^+, N_{\mathcal{A}}^-$ – концентрации ионизированных доноров и акцепторов; μ_n, μ_p – подвижности электронов и дырок; ϕ_T – температурный потенциал, равный $k_b T/q$, здесь k_b – постоянная Больцмана, T – температура; n_{i0} – собственная концентрация;

 ϕ_n, ϕ_p – квазиуровни Ферми электронов и дырок, выраженные в вольтах; A и $\Delta \tilde{V}_g$ – эффективные параметры, описывающие совместное влияние эффектов сильного легирования.

Представление структуры МОП-транзистора в трехмерном и двумерном случаях показано на рисунке, а,б.

При этом в ДДМ в рассматриваемом нами двумерном случае оператор ∇ в (1) – (5) имеет вид

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j},$$

где i, j – единичные векторы вдоль осей х и у соответственно.

Представление структуры МОПтранзистора: а) трехмерный случай; б) двумерный случай. Контакты: И – исток; З – затвор; С – сток; П – подложка

Рассмотрим стационарный случай, т.е.

$$\partial p / \partial t = \partial n / \partial t = 0.$$

<u>Граничные условия</u>. Часто при двумерном моделировании используются следующие граничные условия.

1.На свободных поверхностях AD и BC (см. рисунок, б) справедливы условия

$$\stackrel{\rightarrow}{n_S} \nabla \phi_n = 0 ,$$
 (8)

$$\overrightarrow{n_S} \nabla \phi_p = 0,$$

$$\overrightarrow{n_S} \nabla \phi = 0,$$
(9)
(10)

где n_{S}' – нормаль к поверхности. Соотношения (8) – (10) следуют из предположения, что нормальная составляющая плотности полного тока $\vec{J}_{nолн}$ через поверхность, не покрытую контактом, равна нулю.

2. На омических контактах к полупроводнику (И,С,П) предполагается неограниченная скорость поверхностной рекомбинации, что дает

$$n = n_{0}; \quad p = p_{0}; \quad (11)$$

$$n_{0} \quad p_{0} = n_{ie}^{2} = \left[n_{i0} \; exp\left(\Delta \tilde{V}_{g} / 2\varphi_{T}\right) \right]^{2}, \quad (12)$$

где n_0 , p_0 – равновесные концентрации; n_{ie} – эффективная собственная концентрация. Допускается нейтральность объемного заряда

$$q\left(p - n + N_{\mathcal{A}}^{+} - N_{A}^{-}\right) = 0.$$
(13)

3. На границе раздела полупроводник-диэлектрик справедливы соотношения

$$\overrightarrow{n_S J_n} = 0, \qquad \overrightarrow{n_S J_p} = 0; \tag{14}$$

$$n_S \varepsilon_1 E_1 - n_S \varepsilon_2 E_2 = -\sigma_{nob}, \qquad (15)$$

где индексы 1, 2 обозначают номера областей; \vec{E} – напряженность электрического поля ($\vec{E} = -\nabla \phi$); σ_{nos} – плотность поверхностного заряда. Соотношение (14) следует из предположений, что нормальная составляющая плотности полного тока \vec{J}_{nonh} через границу Si-SiO₂ равна нулю и что отсутствует поверхностная рекомбинация-генерация $R_s = 0$ (так же, как и в п.1). Уравнение (15) – закон Гаусса-Остроградского. Традиционно полагается, что

$$\sigma_{noe} = 0. \tag{16}$$

4. Выходной ток определяется интегралом по площади омического контакта S_{κ} плотности полного тока

$$I_{OM.K.} = \int_{S_K} \overrightarrow{n}_S \overrightarrow{J}_{NOJH} \, ds \,. \tag{17}$$

<u>Предположения.</u> Часто подзатворный диэлектрик предполагается достаточно тонким, так что в нем не решается уравнение Пуассона, а распределение потенциала считается линейным. Наличием зарядов в SiO₂ пренебрегают. В результате введения этих предположений решать уравнения вида (1) – (5) в диэлектрике не надо.

<u>Модели.</u> При моделировании МОП-транзисторов используется, вообще говоря, широкий ассортимент моделей процессов рекомбинации-генерации и моделей подвижностей. Однако обычно привлекаются следующие модели.

Для описания процессов рекомбинации-генерации используются модели Шокли-Рида-Холла R_{UI-P-X} , рекомбинации Оже R_O и скорости генерации вследствие ударной ионизации

$$R_{III-P-X} = \frac{p \ n - n_{ie}^{2}}{\tau_{p} \ (n + n_{ie}) + \tau_{n} \ (p + n_{ie})};$$
(18)

$$R_{o} = \left(p \ n - n_{ie}^{2}\right) \left(c_{n} \ n + c_{p} \ p\right);$$
⁽¹⁹⁾

$$G_{JI} = \alpha_{n} \left| \vec{J}_{n} \right| + \alpha_{p} \left| \vec{J}_{p} \right|, \qquad (20)$$

где τ_n, τ_p – времена жизни электронов и дырок; c_n, c_p – коэффициенты рекомбинации Оже; G_π – скорость генерации вследствие ударной ионизации; α_n, α_p – коэффициенты ударной ионизации, описываемые моделью Чиновета. Суммарная скорость рекомбинации-генерации имеет вид

$$R = R_{\mu - P - X} + R_0 - G_{\pi} . (21)$$

Электрофизические параметры τ_n , τ_p , c_n , c_p , α_n , α_p задаются исходя из экспериментальных данных.

Для подвижностей используется эмпирическая модель Ямагучи вида:

$$\mu(N_{T}) = \sqrt{1 + \left[N_{T} / \left(N_{T} / S + N_{ref}\right)\right]},$$

$$f_{\Pi}(N_{T}, E_{\perp}, E_{\Pi}) = \left[1 + \left(\frac{\mu(N_{T}, E_{\perp})E_{\Pi}}{v_{C}}\right)^{2} \left(F + \frac{\mu(N_{T}, E_{\perp})E_{\Pi}}{v_{C}}\right)^{-1} + \left(\frac{\mu(N_{T}, E_{\perp})E_{\Pi}}{v_{S}}\right)^{2}\right]^{-1/2},$$

где $N_T = N_A^+ + N_A^-$, а μ_0 , α_B^* , v_C , v_S , S, F, N_{ref} – параметры, которые задаются исходя из экспериментальных данных. Важной особенностью модели Ямагучи является учет в ней зависимостей подвижностей от продольного E_{II} и поперечного E_{\perp} полей инверсионных слоев

$$E_{II} = \left(\vec{E} \cdot \vec{J}_{n \, pos}\right) / \left|\vec{J}_{n \, pos}\right| , \quad E_{\perp} = \left|\vec{E} \times \vec{J}_{n \, pos}\right| / \left|\vec{J}_{n \, pos}\right| , \quad (23)$$

где J_{npob} – ток проводимости ($J_{npob} = J_n + J_p$), который равен J_{nonh} в стационарном случае.

Для описания ЭСЛ традиционно используется эмпирическая модель Слотбума – де Грааффа

$$\Delta \tilde{V}_g = V_c \Big[ln \big(N_T / N_0 \big) + \sqrt{ln^2 \big(N_T / N_0 \big) + A_0} \Big], \tag{24}$$

где $N_0 = 10^{17} \text{ см}^{-3}$; $V_C = 9 \text{ мB}$; $A_0 = 0,5$. Причем A любое в диапазоне [0, 1]. Традиционно полагается A = 0,5.

<u>Переход к дискретной модели.</u> Таким образом, исходная непрерывная ДДМ является системой дифференциальных уравнений в частных производных (1) – (5) со вспомогательными соотношениями (6) – (24). При численном моделировании на предварительном этапе осуществляется переход к дискретной

модели. Для этих целей элемент покрывается сеткой пространственной переменные заменяются дискретизации, a значениями В узлах сетки пространственной дискретизации. После этого производные в ДДМ заменяются конечных аппроксимирующими выражениями ПО методу разностей. В результате исходная непрерывная ДДМ сводится к дискретной модели, которая уже состоит из систем нелинейных алгебраических уравнений в стационарном случае ($\partial p / \partial t = \partial n / \partial t = 0$).

<u>Реализация дискретной модели.</u> После этапа построения дискретной модели следует этап ее реализации. Для этих целей используются два итерационных подхода: одновременный и последовательный. При одновременном подходе получаемые системы нелинейных алгебраических уравнений дискретной модели решаются одновременно. Основным методом здесь является метод Ньютона. В последовательном подходе получаемые системы нелинейных алгебраических уравнений дискретной модели.

На каждом шаге итерационного решения с помощью методов Гуммеля и Ньютона возникают системы линейных алгебраических уравнений (СЛАУ). Для решения СЛАУ используются известные численные методы: Гаусса, последовательной верхней релаксации, Булеева, Стоуна и др. Таким образом, при реализации дискретной модели используются два итерационных процесса, а именно: внешний (Гуммеля или Ньютона) и внутренний (решение СЛАУ).

<u>Краткая характеристика программы SIMOS</u>. SIMOS предназначена для реализации двумерной ДДМ, описанной выше, в стационарном случае. Минимальный объем памяти 150 Кбайт. Расчет одной точки ВАХ в среднем занимает 1-10 мин для IBM PC/AT в зависимости от требуемой точности и режима работы транзистора. При построении дискретной модели используется метод конечных разностей. При реализации дискретной модели используется последовательный метод Гуммеля.

Литература: [1] – [6].

Задания к лабораторным работам

Лабораторная работа №1 «Моделирование идеальной МОП-

структуры»

Цель работы: исследовать характерные особенности распределений ϕ, n, p при различных смещениях на затворе МОП-транзистора.

<u>Основные исходные данные о структуре:</u> Толщина окисла – 0,03 мкм; длина прибора – 2 мкм; координата левого края затвора – 0,4 мкм; координата правого края затвора – 1,6 мкм; ширина прибора – 1мкм; глубина прибора – 3 мкм; максимальная концентрация в истоке, стоке $N_{\mathcal{A}}^+$ max – 2·10¹⁹ см⁻³; концентрация в подложке $N_{\mathcal{A}}^-$ – 10¹⁵ см⁻³.

Avalanche = 0,

Doping = 1.

VGin – начальное напряжение на затворе; VGstep – шаг изменения напряжения на затворе; VGfin – конечное напряжение на затворе; VD – постоянное напряжение на стоке.

Варианты заданий:

1. Рассчитать ϕ, n, p для:

VGin = 0B; VGstep = 1B; VGfin = 12B; VD = 0B

(accuracy = 1).

2. Рассчитать ϕ, n, p для:

VGin = 0B; VGstep = 2B; VGfin = 12B; VD = 0B

(accuracy = 3).

3. Рассчитать ϕ, n, p для:

VGin = 0B; VGstep = 10B; VGfin = 20B; VD = 0B

(accuracy = 3).

Литература: [1 - 4].

Лабораторная работа №2 «Моделирование выходных

характеристик МОП-транзистора с коротким каналом»

Цель работы: a) рассчитать выходные (стоковые) ВАХ МОП-транзистора с коротким каналом; б) показать и объяснить характерные особенности распределений φ , *n*.

Основные исходные данные о структуре те же, что и в лабораторной работе №1.

Avalanche = 0,

Doping = 1.

VG – постоянное напряжение на затворе; VDin – начальное напряжение на стоке; VDstep – шаг изменения напряжения на стоке; VDfin – конечное напряжение на стоке.

Задания:

№1:

a) VG = 0,5B; VDin = 0B; VDstep = 1B; VDfin = 10B;

6) VG = 5,25B; VDin = 0B; VDstep = 2B; VDfin = 12B;

B) VG = 3,0B; VDin = 0B; VDstep = 3B; VDfin = 12B;

№2:

a) VG = 1 B; VDin = 0B; VDstep = 1B; VDfin = 10B;

6) VG = 4,75B; VDin = 0B; VDstep = 2B; VDfin = 12B;

B) VG = 3,25B; VDin = 0B; VDstep = 3B; VDfin = 12B;
№3:

a) VG = 0,75 B; VDin = 0B; VDstep = 1B; VDfin = 10B;
6) VG = 5,0B; VDin = 0B; VDstep = 2B; VDfin = 12B;
B) VG = 2,75B; VDin = 0B; VDstep = 3B; VDfin = 12B;
№4:

a) VG = 0,5B; VDin = 0B; VDstep = 1,25B; VDfin = 12,5B;
6) VG = 5,25B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B;
B) VG = 3,0B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B;

№5:

a) VG = 1 B; VDin = 0B; VDstep = 1,25B; VDfin = 12,5B;
6) VG = 4,75B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B;
B) VG = 3,25B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B;
№6:
a) VG = 0,75 B; VDin = 0B; VDstep = 1,25B; VDfin = 12,5B;
6) VG = 5,0B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B;
B) VG = 2,75B; VDin = 0B; VDstep = 2,5B; VDfin = 12,5B.

Литература: [1 - 4].

Лабораторная работа №3 «Моделирование передаточных характеристик МОП-транзистора с коротким каналом в подпороговой области»

Цель работы: a) рассчитать передаточные (сток-затворные) ВАХ МОПтранзистора с коротким каналом; б) установить основные особенности распределений ϕ, n ; в) определить пороговое напряжение.

Основные исходные данные о структуре те же, что и в лабораторной работе №1.

Avalanche = 0,

Doping = 1,

Accuracy = 3.

VGin – начальное напряжение на затворе; VGstep – шаг изменения напряжения на затворе; VGfin – конечное напряжение на затворе; VD – постоянное напряжение на стоке.

Задания:

№1:

a) VGin = - 0,5B; VGstep = 0,2B; VGfin = 2,1B; VD = 0,1B;

б) VGin = - 0,5B; VGstep = 0,1B; VGfin = 0,7B; VD = 0,5B;

B) VGin = - 0,5B; VGstep = 0,2B; VGfin = 0,9B; VD = 3B;
№2:

a) VGin = - 0,6B; VGstep = 0,2B; VGfin = 2,0B; VD = 0,1B;

б) VGin = - 0,45B; VGstep = 0,1B; VGfin = 0,65B; VD = 0,5B;

B) VGin = - 0,6B; VGstep = 0,2B; VGfin = 0,8B; VD = 3B;

№3:

a) VGin = - 0,5B; VGstep = 0,2B; VGfin = 2,1B; VD = 0,2B;

б) VGin = - 0,5B; VGstep = 0,1B; VGfin = 0,7B; VD = 0,7B;

B) VGin = - 0,5B; VGstep = 0,2B; VGfin = 0,9B; VD = 2,5B; №4:

a) VGin = - 0,6B; VGstep = 0,2B; VGfin = 2,0B; VD = 0,2B;

б) VGin = -0,45B; VGstep = 0,1B; VGfin = 0,65B; VD = 0,6B;

B) VGin = - 0,6B; VGstep = 0,2B; VGfin = 0,8B; VD = 2,5B;

№5:

a) VGin = - 0,5B; VGstep = 0,2B; VGfin = 2,1B; VD = 0,15B;

6) VGin = - 0,5B; VGstep = 0,1B; VGfin = 0,7B; VD = 0,6B;

B) VGin = - 0,5B; VGstep = 0,2B; VGfin = 0,9B; VD = 2,0B;
 №6:

a) VGin = - 0,6B; VGstep = 0,2B; VGfin = 2,0B; VD = 0,15B;

б) VGin = - 0,45B; VGstep = 0,1B; VGfin = 0,65B; VD = 0,7B;

B) VGin = -0,6B; VGstep = 0,2B; VGfin = 0,8B; VD = 2,0B.

Литература: [1 - 4].

Лабораторная работа №4 «Моделирование выходных характеристик МОП-транзистора с длинным каналом»

Цель работы: a) рассчитать выходные (стоковые) ВАХ МОП-транзистора с длинным каналом; б) показать и объяснить основные характерные особенности распределений φ , *n*.

Замена в старых исходных данных о структуре (короткий канал):

XL = 0.20000+01

XG1 = 0.04000+01

XG6 = 0.16000 + 01

XG2 = 0.16000+01

XG3 = 0.15000 + 01

XG4 = 0.13000+01

XG5 = 0.65000 + 01

ADX = 0.06

DN1 = 0.

AN1 = 0.20000+07

Новые исходные данные о структуре (длинный канал):

XL = 0.20000+02XG1 = 0.20000+01XG6 = 0.18000+02XG2 = 0.18000+02XG3 = 0.15000+02

XG4 = 0.13000 + 02

XG5 = 0.65000 + 02

ADX = 0.6

DN1 = 0.

AN1 = 0.

Avalanche = 0

Doping = 1,

Accuracy = 2.

VG – постоянное напряжение на затворе; VDin – начальное напряжение на стоке; VDstep – шаг изменения напряжения на стоке; VDfin – конечное напряжение на стоке.

Задания:

№1:

a) VG = 0,5B; VDin = 0B; VDstep = 1B; VDfin = 15B;

6) VG = 1,25B; VDin = 0B; VDstep = 1B; VDfin = 15B; <u>№</u>2: a) VG = 0.55B; VDin = 0B; VDstep = 1B; VDfin = 15B; 6) VG = 1,20B; VDin = 0B; VDstep = 1B; VDfin = 15B; **№**3: a) VG = 0.6B; VDin = 0B; VDstep = 1B; VDfin = 15B; 6) VG = 1,15B; VDin = 0B; VDstep = 1B; VDfin = 15B; **№**4: a) VG = 0,65B; VDin = 0B; VDstep = 1B; VDfin = 15B: 6) VG = 1,10B; VDin = 0B; VDstep = 1B; VDfin = 15B; **№**5: a) VG = 0.7B; VDin = 0B; VDstep = 1B; VDfin = 15B; 6) VG = 1,05B; VDin = 0B; VDstep = 1B; VDfin = 15B; №6: a) VG = 0.75B; VDin = 0B; VDstep = 1B; VDfin = 15B; 6) VG = 1,00B; VDin = 0B; VDstep = 1B; VDfin = 15B. Литература: [1 - 4].

После окончания работы установить первоначальные исходные данные о структуре (короткий канал).

Лабораторная работа №5 «Моделирование влияния концентрации

примеси в подложке на выходные характеристики МОП-

транзистора с коротким каналом»

Цель работы: a) оптимизировать технологический процесс, в частности выбрать требуемую по заданию концентрацию примеси в подложке; б) объяснить установленные закономерности.

Старые исходные данные о структуре: AN1 = 0.20000+07 AN = 0.10000+06

Новые исходные данные о структуре:

AN1 = 0.

Вариант 1: AN = 0.10000+06

Вариант 2: AN = 0.10000+07

Вариант 3: AN = 0.10000+08

Avalanche = 0,

Doping = 1.

VG – постоянное напряжение на затворе; VDin – начальное напряжение на стоке; VDstep – шаг изменения напряжения на стоке; VDfin – конечное напряжение на стоке.

Задания:

№1:

a) определить AN, соответствующую минимальному току стока в режиме насыщения;

б) VG = 2,9B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой AN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

№2:

a) определить AN, соответствующую среднему значению тока стока в режиме насыщения;

δ) VG = 2,9B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой AN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

<u>№</u>3:

a) определить AN, соответствующую максимальному току стока в режиме насыщения;

6) VG = 2,9B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой АN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

<u>№</u>4:

a) определить AN, соответствующую минимальному току стока в режиме насыщения;

б) VG = 3,1B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой AN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

№5:

a) определить AN, соответствующую среднему значению тока стока в режиме насыщения;

б) VG = 3,1B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой AN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

№6:

a) определить AN, соответствующую максимальному току стока в режиме насыщения;

б) VG = 3,1B; VDin = 0B; VDstep = 1B; ...

в) рассчитать ВАХ МОП-транзистора при требуемой AN в диапазоне

VDin = 0B; VDfin = 15B; Accuracy = 2.

Литература: [1 - 4].

После окончания работы установить первоначальные исходные данные о структуре.

Лабораторная работа №6 «Моделирование влияния ударной ионизации и эффектов сильного легирования на выходные

характеристики МОП-транзистора с коротким каналом»

Цель работы: a) расчет ВАХ с учетом ударной ионизации; б) исследование влияния ударной ионизации на ВАХ; в) расчет ВАХ с учетом ЭСЛ; г) исследование влияния ЭСЛ на ВАХ; д) объяснить характерные особенности в поведении φ , *n*.

Doping = 1,

Accuracy = 1.

VG – постоянное напряжение на затворе; VDin – начальное напряжение на стоке; VDstep – шаг изменения напряжения на стоке; VDfin – конечное напряжение на стоке.

Задания:

№1:

$$VG = 3,0B$$
; $VDin = 0B$; $VDstep = 1,5B$; $VDfin = 15B$.

```
a) с учетом ударной ионизации: AVALANCHE = 1.
```

б) с учетом ЭСЛ: ITI = 1.

№2:

VG = 3,25B; VDin = 0B; VDstep = 1,5B; VDfin = 15B.

a) с учетом ударной ионизации: AVALANCHE = 1.

б) с учетом ЭСЛ: ITI = 1.

№3:

VG = 2,75B; VDin = 0B; VDstep = 1,5B; VDfin = 15B.

a) с учетом ударной ионизации: AVALANCHE = 1.

б) с учетом ЭСЛ: ITI = 1.

№4:

VG = 3,0B; VDin = 0B; VDstep = 2,5B; VDfin = 15B.

- a) с учетом ударной ионизации: AVALANCHE = 1.
- б) с учетом ЭСЛ: ITI = 1.

№5:

VG = 3,25B; VDin = 0B; VDstep = 2,5B; VDfin = 15B.

a) с учетом ударной ионизации: AVALANCHE = 1.

б) с учетом ЭСЛ: ITI = 1.

№6:

VG = 2,75B; VDin = 0B; VDstep = 2,5B; VDfin = 15B.

a) с учетом ударной ионизации: AVALANCHE = 1.

б) с учетом ЭСЛ: ITI = 1.

Литература: [1 - 6].

Восстановить параметр ITI = 0.

Лабораторная работа №7 «Исследование влияния точности моделирования на передаточные характеристики МОП-

транзистора с коротким каналом»

Цель работы: а) исследовть влияние точности моделирования на рассчитанные подпороговые характеристики МОП-транзистора; б) установить отличия в распределениях ϕ , n; в) исследовать влияние точности на пороговое напряжение.

Avalanche = 0,

Doping = 1.

VGin – начальное напряжение на затворе; VGstep – шаг изменения напряжения на затворе; VGfin – конечное напряжение на затворе; VD – постоянное напряжение на стоке.

Задания:

№1:

VGin = - 0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,2B; a) accuracy = 1; б) accuracy = 3; в) accuracy = 2.

№2:

VGin = -0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,3B;

a) accuracy = 1; 6) accuracy = 3; B) accuracy = 2.

№3:

VGin = - 0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,4B;

a) accuracy = 1; 6) accuracy = 3; B) accuracy = 2.

№4:

VGin = - 0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,5B;

a) accuracy = 1; 6) accuracy = 3; B) accuracy = 2.

№5:

VGin = - 0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,6B;

a) accuracy = 1; 6) accuracy = 3; B) accuracy = 2.

№6:

VGin = - 0,5B; VGstep = 0,1B; VGfin = 1,5B; VD = 0,7B;

a) accuracy = 1; 6) accuracy = 3; B) accuracy = 2.

Литература: [3,5,6].

Полный файл исходных данных

к программе SIMOS

WFILE.DAT RFILE.DAT UISIMOS.DAT		
15	NX	- число узлов по оси Х
5	NX1	- ЧИСЛО УЗЛОВ НА КОНТАКТЕ ИСТОКА
5	NX2	- ЧИСЛО УЗЛОВ НА КОНТАКТЕ СТОКА
10	NY	- число узлов по оси У
0	IR	- не используется
0	IMESH	- задание сетки О-равномерная, 1-по точкам
1	IMU	- подвижность
1	INP	- не используется
0	IPRINT	- печать (0,1,2)
0	ITI	- сильное легирование (0,1)
0	IG	- лавина (0,1)
0	NG	- не используется
0	IEH	- не используется
.03000+00	HD1	- толщина окисла 1-го затвора
.02000+00	HD2	- толщина окисла 2-го
.02000+00	HD3	- толщина окисла 3-го
.10000+01	HW	- ширина прибора
.30000+01	YL	- глубина
.02000+00	HY0	- шаг под затвором вглубь
.20000+01	XL	- длина прибора
.04000+01	XG1	- координата левого края затвора
.16000+01	XG6	- координата правого края затвора
.16000+01	XG2	- координата правого края 1-го затвора
.15000+01	XG3	- координата левого края 2-го затвора
.13000+01	XG4	- координата правого края 2-го затвора
.65000+01	XG5	- координата левого края 3-го затвора
.10000+01	DLDD	- сдвиг маски для LDD-транзистора
.06000+00	ADX	- параметр Гаусса истока-стока по поверхности
.08000+00	ADY	- параметр Гаусса истока-стока в глубину
.10000+00	ADXLD	- параметр Гаусса LDD поверхностный
.30000+00	ADYLD	- параметр Гаусса LDD в глубину
.00000+00	YD	- положение максимума LDD по глубине
.05000+00	AA1	- параметр 1-го Гаусса подлегирования подложки
.10000+00	AA2	- параметр 2-го Гаусса подлегирования подложки
.00000+00	YA1	- положение 1-го максимума подлегирования по глубине
.35000+00	YA2	- положение 2-го максимума подлегирования по глубине
.10000+00	XQS	- не используется

.10000+00	AQS	-	не используется
.20000+10	DN	-	максимальная концентрация в истоке-стоке
.00000+06	DN1	_	максимальная концентрация в LDD
.10000+06	AN	_	концентрация в подложке
.20000+07	AN1	_	максимум 1-го подлегирования
.00000+00	AN2	_	максимум 2-го подлегирования
.00000+00	VS	-	напряжение на истоке
.00000+01	VD	_	напряжение на стоке
.00000+00	VB	-	напряжение на подложке
55400+00	VG1	-	напряжение на 1-ом затворе
.00000+02	VG2	-	напряжение на 2-ом затворе
.00000+02	VG3	-	напряжение на 3-ом затворе
.00000+00	HVS	-	шаг по напряжению на истоке
.00000+01	HVD	-	шаг по напряжению на стоке
.00000+00	HVB	-	шаг по напряжению на истоке
.00000+01	HVG1	-	шаг по напряжению на 1-ом затворе
.00000+00	HVG2	-	шаг по напряжению на 2-ом затворе
.00000+00	HVG3	_	шаг по напряжению на 3-ом затворе
.00000+00	VSF	-	конечное напряжение на истоке
.00000+01	VDF	-	конечное напряжение на стоке
.00000+00	VBF	-	конечное напряжение на подложке
.00000+01	VGF1	-	конечное напряжение на 1-ом затворе
.00000+00	VGF2	-	конечное напряжение на 2-ом затворе
.00000+00	VGF3	-	конечное напряжение на 3-ом затворе
00000+01	VFB1	-	не используется
.00000+00	VFB2	-	не используется
.00000+00	VFB3	-	не используется
.00000+00	VBAV	-	не используется
.10000-04	TN	-	время жизни электронов
.20000-04	TP	-	время жизни дырок
.00000+01	QSH	-	поверхн.концентрация однородн. QSS 1e10/см2
.00000+00	QSG	-	не используется
.14000+04	UMN	-	подвижность электронов
.48000+03	UMP	-	подвижность дырок
.09000+05	RSUB	-	сопротивление подложки
.42500+01	FIM	-	работа выхода металла затвора
.40500+01	FIS	-	работа выхода полупроводника
.11200+01	EG	-	ширина запрещенной зоны

Автор выражает благодарность аспирантке Н.В. Коломейцевой за набор текста данного учебно-методического пособия.

Литература

- 1. Зи С. Физика полупроводниковых приборов. В 2 кн. М.: Мир, 1984. Кн. 1: 456 с.; Кн. 2: 456 с.
- 2. Ферри Д., Эйкерс Л., Гринич Э. Электроника ультрабольших интегральных схем. М.: Мир, 1991. 327 с.
- 3. Абрамов И.И. Курс лекций «Моделирование элементов интегральных схем». Учеб.пособие. – Мн.: БГУ, 1999. – 92 с.
- 4. Абрамов И.И. Курс лекций «Моделирование элементов интегральных схем». Ч.2 : Учеб. пособие. – Мн.: БГУИР, 2000. – 72 с.
- 5. Абрамов И.И., Харитонов В.В. Численное моделирование элементов интегральных схем. Мн.: Выш. шк., 1990. 224 с.
- 6. Абрамов И.И. Моделирование физических процессов в элементах кремниевых интегральных микросхем. Мн.: БГУ, 1999. 189 с.

Учебное издание

Абрамов Игорь Иванович

Моделирование МОП-структур

Учебно-методическое пособие к лабораторным работам по дисциплине «Моделирование технологических процессов и элементов интегральных схем» для студентов специальности 41 01 02 «Микро- и наноэлектронные технологии и системы» дневной формы обучения

Редактор Т.Н. Крюкова Компьютерная верстка М.В. Шишло

Подписано в печать 13. 10. 2004. Гарнитура «Таймс». Уч.-изд. л. 1,2. Формат 60х84 1/16. Печать ризографическая. Тираж 100 экз. Бумага офсетная. Усл. печ. л. 1,51. Заказ 373.

Издатель и полиграфическое исполнение: Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Лицензия на осуществление издательской деятельности №02330/0056964 от 01.04.2004. Лицензия на осуществление полиграфической деятельности №02330/0133108 от 30.04.2004. 220013, Минск, П. Бровки, 6