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Decomposition of Boolean functions is an e�ective technique to obtain the most compact circuits. The ternary

matrix cover approach is a powerful method in two-block disjoint decomposition. Before constructing the desired

superposition, this method needs to encode a table. To �nd a better solution, it is important to use a particular

approach for encoding, because its result has a direct in�uence on the obtained functions. We present an e�cient

algorithm to encode this table. It uses the approach connected with the assembling Boolean hyper cube method. The

bene�ts and impacts of the suggested technique are discussed.

Introduction

To decompose a system of completely speci�ed
Boolean functions, �rst of all, one should search for
an appropriate partition [1]. The suitable partition
is supposed that already has been prepared.
The goal of the current paper is minimizing
the total number of terms in disjunctive normal
forms (DNFs) of the obtained superposition. This
minimization will decrease the size of a PLA
(Programmable Logic Array) which is practically
important [2].

Various methods for decomposition of Boolean
functions are based on representations of functions.
A Boolean function can be given in the form of the
compact table [3], [4] that is a two-dimensional table
as a Karnaugh map or decomposition chart, but
may have the less size. The ternary matrix cover
approach for decomposition of a system of Boolean
functions is used [4]. Cover map and compact table
are the key features of this approach. To obtain
the systems of Boolean functions as a result of
decomposition, one must encode the columns and
rows of the compact table according to the obtained
covers of the ternary matrices. They should be
encoded by values of the subsets of arguments
separated in a certain way.

In addition, each column should be encoded
by binary codes in optional manner. But the result
of this encoding and consequently its method has
the direct in�uence on the obtained superposition.
A novel method for encoding of the columns
is suggested that leads to lowering the number
of terms of DNFs. The encoding process in the
suggested method is described as a constructing
an n-dimensional Boolean hypercube. It is like
assembling a simple mechanical structure. Here n
is related to the number of distinguished columns
of the compact table. The formal de�nition of the
problem is as follows.

Given a system of completely speci�ed
Boolean functions y = f (x ), the superposition
y = ϕ(w , z 2), w = g(z 1) must be found where
z 1 and z 2 are vector variables whose components
are Boolean variables in the subsets Z1 and Z2 of

the set X = {x1, x2, . . . , xn} of the arguments,
respectively such that X = Z1∪Z2 and Z1∩Z2 = ∅.
At that, the number of components of the vector
variable w must be less than that of z 1. Such a
kind of decomposition is called two-block disjoint
decomposition [2], [5].

I. Constructing a Boolean hypercube

The process of constructing the Boolean
hypercube can be represented as the sequence of
n steps. At the sth step, the set of (s − 1)-
dimensional hypercubes are considered. They join
into pairs, and s-dimensional hypercube is obtained
from each pair by adding edges properly. After n
steps, an n-dimensional Boolean hypercube will be
constructed. The n-component Boolean vectors are
assigned to the vertices of the hypercube where the
neighborhood relation between the vectors should
be represented by the edges of the hypercube.

At the �rst step of this process, 1-dimensional
hypercubes in the form of 2n−1 nonadjacent edges
are composed of 0-dimensional hypercubes which is
represented by 2n isolated vertices. At the last, nth
step, an n-dimensional hypercube is assembled from
two (n−1)-dimensional ones by adding 2n−1 edges.

Let us consider the formation of s-dimensional
hypercubes on sth step more in details. The form
of representation of hypercubes is very important
here. Any k-dimensional hypercube is represented
by a sequence S of 2k vertex indices which is taken
from the set {1, 2, . . . , 2n}. The edges are speci�ed
implicitly; two vertices are connected with an edge
if and only if their places in S correspond to the
places of neighbor codes in the Gray codes sequence
of the same length as the length of S.

Before the performance of any step, the
number of hypercubes is always even. More exactly,
for sth step it is equal to 2n−s, 0 ≤ s < n.
The current situation is that some set Cs of
s-dimensional hypercubes (Cs = ∅ before the
performance of the step) and some set Cs−1 of
(s − 1)-dimensional hypercubes exists. All pairs of
hypercubes from Cs−1 are looked through and one
of them is chosen. The suitable edges are added to
form s-dimensional hypercube from this pair that is
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introduced to Cs, and then the pair is removed from
Cs−1. The performance of this step is accomplished
when Cs−1 = ∅.

The criterion for coupling two hypercubes is
as follows. Let wij be a function taking its values
from the set of pairs of distinguished columns of
the compact table. The values of compact table
are binary codes. So, for each pair of distinguished
columns, the number of di�erent peer-to-peer bits
is calculated. It is clear that the value of wij
will be from the set of positive integers. For two
(s − 1)-dimensional hypercubes which have been
represented by sequences S′ and S′′, the sum

∑
wij

is calculated. The summing is performed over all
pairs i, j of indices of the vertices that take the
same places in the sequences. This sum varies with
permutations of vertices of one of the sequences,
say S′′. Of course, only those permutations may be
taken here into consideration, which preserve the
adjacency relation among the vertices.

For all the proper permutations,
∑
wij is

calculated. Then according to its minimum value,
the equivalent pair of hypercubes is chosen. They
are joined into an s-dimensional hypercube by edges
between vertices that are in the related places
of S′ and S′′. The sequence that represents the
composed hypercube is formed by concatenation
of the sequences S′ and S′′. The sequence S′′

may be changed its order according to the selected
permutation before the concatenation. The number
of feasible permutations for each hypercube in sth
step is (s− 1)! · 2s−1.

II. The process of encoding

The �nal process to encode the compact table
is encoding of the constructed hypercube. At �rst,
the basic encoding is obtained by using Karnaugh
map. Then, a supplementary improvement is made
on the basic encoding if it is needed and it can
be possible. It means, sometimes it is possible
to achieve more e�cient encoding with additional
e�orts. In case the current hypercube contains some
virtual vertices, it would be done.

So, it is searched for a feasible version of
the encoding vector which assigns the maximum
possible 1's for the codes of the virtual vertices.
A feasible version is related to such permutations
keeping the vicinity relations. The operations of
searching for the feasible version are similar to
the hypercube construction. Unfortunately, it is
not possible always to �nd the optimal version,
especially when the number of virtual vertices is
more. But the basic encoding is still improved.

III. To obtain the desired superposition

Now, to obtain the solution of the task,
the systems of functions y = ϕ(w , z 2) and
w = g(z 1) should be constructed [3], [4]. For that,
the functions connected with the blocks of the cover
maps of Z1 and Z2 must be obtained. Then the

DNFs of the functions connected with the blocks of
Z1 and Z2 will be calculated. Finally a minimization
with the well-known Espresso logic minimizer is
performed on the obtained superposition.

The method of Boolean hypercube encoding
is used to establish a better superposition. Here,
a better solution is related to the size of PLA,
and it is speci�ed by the number of rows of the
matrices representing decomposed systems. The
smaller number of the rows of each matrix implies
a better solution of the task.

As we tested the suggested method for the
several benchmarks, in the most cases, the numbers
of the rows of the matrices obtained by the
hypercube encoding method were less than the
numbers of rows of the matrices obtained by a
trivial encoding method. This reduction is expected
to be more when increasing the number of the
arguments of DNFs of a given system. Indeed, the
comparable work has been done on the problem
of an optimal state assignment of a �nite state
machine (FSM) [6]. Those results are con�rmed our
method as well.

Conclusion

The ternary matrix cover approach is an
e�cient technique for the problem of decomposition
of systems of Boolean functions. The encoding of
the compact table columns has a direct in�uence
on the quality and cost of the designing of the
digital devices. So, its optimization will cause a
signi�cant improvement on the obtained solution.
In this paper, we suggested the assembling of
Boolean hypercube for the encoding of the columns.
This encoding improves the desired superposition
and reduces the size of PLA which is important in
the practical applications.

1. Muthukumar, V. An e�cient variable partitioning
approach for functional decomposition of circuits /
V. Muthukumar, R. J. Bignall, H. Selvaraj // Journal of
Systems Architecture. � 2007. � Vol. 53, No. 1. � P. 53�
67.

2. Hassoun, S. Logic Synthesis and Veri�cation. The
Springer International Series in Engineering and
Computer Science / S. Hassoun, T. Sasao. � Kluwer
Academic Publishers, 2001. � 454 p.

3. Pottosin, Yu. V. Tabular Methods for Decomposition
of Systems of Completely Speci�ed Boolean Functions /
Yu. V. Pottosin, E. A. Shestakov. � Minsk:
Byelorusskaya Nauka, 2006. � 327 p. (In Russian)

4. Taghavi Afshord, S. On decomposing systems of
Boolean functions via ternary matrix cover approach /
S. Taghavi Afshord, Yu. V. Pottosin // International
Journal of Advanced Science and Technology. � 2013. �
Vol. 55, No. 6. � P. 33�42.

5. Zakrevskij, A. Optimization in Boolean Space /
A. Zakrevskij, Yu. Pottosin, L. Cheremisinova. � Tallinn,
Estonia: TUT Press, 2009. � 242 p.

6. Pottosin, Yu. V. State assignment of a �nite
state machine for a low power implementing circuit /
Yu. V. Pottosin, S. A. Pottosina // Digital Technologies
2011. 8th International Conference, November 10-11,
2011, Zilina, Slovak Republic. � Zilina: University of
Zilina, 2011. � P. 113-116.

111

Би
бл
ио
те
ка

 БГ
УИ
Р




