А.Н. ВИТЧЕНКО, И.А. ТЕЛЕШ

СОВРЕМЕННЫЕ ТЕНДЕЦИИ ИЗМЕНЕНИЯ КОМФОРТНОСТИ КЛИМАТА ГОРОДА МИНСКА

Введение

В XXI веке проблема изменения климата привлекла к себе внимание всего мирового сообщества и побудила рассматривать климат как важнейший природный ресурс, пространственно-временные вариации которого имеют серьезные социально-экономические и политические последствия, определяющие благосостояние государств мира. Также в настоящее время уделяется значительное внимание проблеме урбанизации — возникновению и постоянному увеличению площади и численности населения городов, процессам формирования городских ландшафтов и многим другим вопросам их развития, требующих квалифицированного решения в теории и практике управления городами. В связи с этим исследование климатических условий городов является актуальным и имеет фундаментальное и прикладное значение, является составной частью комплексной оценки геоэкологического потенциала среды жизнедеятельности населения урбанизированных территорий.

Основной целью исследования является геоэкологическая оценка комфортности климата города Минска и определение возможных тенденций ее изменения. Под геоэкологической оценкой комфортности климата города авторы понимают определение степени его благоприятности по отношению к организму человека с учетом естественного потенциала самоочищения атмосферы и влияния климата на режим эксплуатации жилых сооружений.

Методика исследования

Анализ литературных источников и собственные исследования авторов позволили разработать оригинальную методику геоэкологической оценки комфортности климата городов (1). Методика базируется на расчете частных и интегральных эколого-климатических показателей состояния окружающей среды, характеризующих степень ее благоприятности для человека, выполненных на основе математического моделирования природноантропогенных процессов и использования современных ГИС-технологий. При оценке комфортности климата использовать все факторы не представляется возможным в силу их большого количества, необходимо выделить наиболее значимые с учетом их весовых коэффициентов. Для оценки комфортности климата городов была разработана 5-балльная шкала ранжирования эколого-климатических параметров. Высший балл соответствует оптимальным эколого-климатическим показателям в пределах городов, а низший - наименее благоприятным. Для каждого показателя учитывались коэффициенты значимости. Коэффициент значимости (F) отражает вклад отдельного фактора в общий показатель комфортности климата. F = 2 – присваивался наименее значимым показателям, F = 5 – самым существенным.

К наиболее значимым показателям комфортности климата городов относится индекс изменчивости погоды. Методика определения индекса учитывает контрастную смену погоды. Основаниями для выявления факта смены периодов с однотипной погодой являются изменения: ясной и облачной погоды на погоду с осадками; ясной на облачную (и наоборот) при межсуточной амплитуде температуры воздуха $\ge 2^{\circ}$ C; любой погоды при межсуточной амплитуде температуры воздуха $\ge 6^{\circ}$ С [2]. Индекс изменчивости погоды вычисляется по формуле: $K_{\text{ип}} = M_{\text{к}} / N \cdot 100\%$, где $K_{\text{ип}} - \text{индекс}$ изменчивости погоды, %; $M_{\text{к}} - \text{число}$ контрастных смен периодов с однотипной погодой; N – число дней в году. Показатель изменчивости погоды на территории Беларуси достигает нижнего предела сильно изменчивой погоды (≥50%). В этом случае происходит смена погоды через день и физиологические механизмы адаптации метеочувствительных людей не в состоянии обеспечить приспособление организма к новым погодным условиям. Этому показателю соответствует коэффициент значимости F = 5. Для характеристики дискомфорта зимнего периода был использован индекс холодового стресса по [3]: $H_w = (0.13 + 0.47V^{0.5}) \cdot (36.6 - T) + (0.085 + 0.102V^{0.3}) \cdot (61.1 - e)^{0.75}$, где H_w индекс холодового стресса, вт/м²·с; V – скорость ветра, м/с; Т – температура воздуха, °С; е – упругость водяного пара, мб. Согласно методике оценки холодового стресса погоды [4] климатические условия с показателем $H_w \ge 4.5 \text{ вт/м}^2 \cdot \text{с}$ характеризуются как «дискомфортные». Они регистрируются в Беларуси достаточно часто, а в отдельные годы условия погоды достигают уровня «абсолютно дискомфортных» ($H_w \ge 8.0 \text{ вт/м}^2$), что значительно ограничивает комфортность климата зимой и определяет высокую степень значимости показателя (F = 5). При оценке комфортности климата значительный интерес представляет повторяемость оптимальных погодных условий теплого периода. Нормальные эквивалентно-эффективные температуры (НЭЭТ) отражают воздействие на человека совокупности метеорологических условий: температуры, влажности и скорости ветра. НЭЭТ рассчитывается по формуле [5,6]: $HЭЭТ = 37 - (37 - t) / [(0.68 - 0.0014f + 1 / 1.76 + 1.4v^{0.75} - 0.29t) (1 - f / 100)],$ где t – среднесуточная температура воздуха, °С; f – относительная влажность воздуха, %; v – среднесуточная скорость ветра, м/с. По повторяемости значений НЭЭТ от 17 до 22°C определяют продолжительность наиболее комфортного периода в теплое время года. Чем больше климатические условия отличаются от оптимальных, тем короче период с НЭЭТ 17-22°С. Повторяемость погод с комфортными НЭЭТ <30% от числа дней теплого периода считается минимальной. В Беларуси продолжительность периода с оптимальными НЭЭТ составляет около ≤25%, что снижает благоприятность климата для метеочувствительных людей и определяет значительный вес фактора при оценке комфортности климата городов (F = 5). При оценке комфортности климата важное значение имеет повторяемость неблагоприятных погод в межсезонные периоды, которая неблагоприятна для метеочувствительных людей и часто вызывает у них обострение хронических заболеваний. Особенно это относится к повторяемости резко холодной погоды формирующейся при температуре от 0 до 5° С в сочетании с высокой влажностью воздуха и скоростью ветра 4-15 м/с [2]. Вероятность таких погодных условий в Беларуси составляет более 80 %, что обуславливает весомый вклад показателя в комфортность климата (F = 5).

Коэффициент значимости равный 4 был присвоен ряду показателей комфортности климата которых неблагоприятно влияют на здоровья населения и сильно варьируют на территории Беларуси, в отдельных районах достигая \geq 50% от числа дней рассматриваемого периода. К ним относятся количество дней: $K_{дд}$ – душных с $t_{в}\geq$ 20°C, $f\geq$ 80%; $K_{xд}$ – холодных с $t_{в}\leq$ -15°C; K_{ag} – с межсуточным изменение атмосферного давления \geq 10 мб/сут; K_{obs} – с относительной влажностью воздуха \geq 80%.

Существенное влияние на комфортность климата городов имеет количество дней со скорость ветра ≥ 6 м/с (K_{cB}); с осадками ≥ 1 мм (K_{oc}); с облачностью ≥ 5 б (K_{ob}), а так же климатический потенциал самоочищения атмосферы (Ккпс) и продолжительность комфортного периода эксплуатации жилых сооружений (Кэжс), которым был присвоен коэффициент значимости F= 3. Климатический потенциал самоочищения атмосферы определялся по формуле предложенной [7]: $K_{\text{кпс}} = (P_{\text{III}} + P_{\text{T}}) / (P_{\text{o}} + P_{\text{v}})$, где $K_{\text{кпс}}$ – климатический потенциал самоочищения атмосферы, баллы; P_{m} – число дней со штилем; $P_{\text{т}}$ – число дней с туманами; P_{o} – количество дней с осадками ≥ 0.5 мм; P_v – число дней с сильным ветром ≥ 6 м/с. Чем больше по абсолютной величине $K_{\text{кпс}}$, тем хуже условия для рассеивания вредных веществ в атмосфере. Если Ккпс ≤1, то в повторяемость процессов, способствующих самоочищению атмосферы, преобладает над повторяемостью процессов, способствующих накоплению вредных примесей в ней, что улучшает условия для жизни и отдыха населения особенно при значительных антропогенных нагрузках (F=3). Продолжительность комфортного периода эксплуатации жилых сооружений определялась с учетом влияния на них температуры и влажности воздуха [8]. В данном случае под комфортной погодой понималась такая, при которой для поддержания комфортных условий в помещениях не требуется ни отопления, ни охлаждения, а воздухообмен в помещениях поддерживается естественным путем. Эти погодные условия наблюдаются при сочетании следующих значениях средней суточной температуры (t, °C) и относительной влажности воздуха (f, %): t - 12,0-19,9 °C и $f - \le 85$ %; t - 20,0-23,9 °C и $f - \le 75$ %; t - 20,0-23,9 °C и $t - \le 75$ %; t - 20,0-23,9 °C и t - 20,0-23,9 °C и $t - \le 75$ %; t - 20,0-23,9 °C и $t - \le 75$ %; t - 20,0-23,9 °C и $t - \le 75$ %; t - 20,0-23,9 °C и -24,0-28,0 °C и f $- \ge 25 \le 50$ %. При оценке комфортности климата среднемесячные температуры самого холодного и теплого месяцев малоинформативны. Но, тем не менее, отражают общие климатические особенности территории. Им был присвоен коэффициент значимости F=2.

Интегральный показатель комфортности климата ($K_{ипкк}$) рассчитывается по уравнению: $K_{ипкк} = C_1F_1 + C_2F_2 + C_3F_3 + ... + C_nF_n / F_1 + F_2 + F_3 + ... + F_n$, где; C – уровень комфортности і-го эколого-климатического показателя, баллы; F – коэффициент значимости і-го эколого-климатического показателя. Интегральный показатель комфортности климата дает представление о степени благоприятности климата городов для жизнедеятельности людей с учетом воздействия всего комплекса метеорологических факторов. В крупных городах Беларуси можно выделить 4 категории комфортности климатических условий: $K_{unkk} \ge 4,00$ – комфортные, $3,00\div3,99$ – умеренно комфортные, $2,00\div2,99$ – малокомфортные, $\le 1,99$ – дискомфортные. Разработанная методика геоэкологической оценки комфортности климата городов реализована в виде комплексной географической информационной системы геоэкологической оценки комфортности климата (ГИС ГОКК) на базе MS Access и ArcView GIS. ГИС ГОКК включает два основных блока. Первый блок представлен полифункциональной базой данных климатической информации в разрезе городов. Во второй блок входят субблоки расчета частных и интегрального показателей оценки комфортности климата городов.

Для характеристики современного изменения комфортности климата Минска были использованы средние суточные данные ГУ «Республиканский центр по гидрометеорологии, контролю радиационного загрязнения и мониторингу окружающей среды» о суммарной солнечной радиации и радиационном балансе, температуре и относительной влажности воздуха, парциальном давлении водяного пара, скорости ветра, атмосферном давлении, атмосферных осадках, общей облачности и туманах за 36-летний период (1980–2015 гг.), которые были, затем обобщены и интерпретированы авторами с учетом их сезонной динамики и межгодовой изменчивости.

Результаты исследования

Изучение климатические условий в Минске за период 1980-2015 гг. показывает, что в городе отмечается устойчивая тенденция к увеличению суммарной солнечной радиации Q. Среднегодовое значение Q за этот период составило 3694,1 МДж/м² при коэффициенте вариации C_v 5,25 %, максимальное годовое Q наблюдалось в 2011 г. (4139,0 МДж/м²), минимальное – в 1980 г. (3291,0 МДж/м²). В экстремальные годы отклонение годового хода Q от многолетних значений отмечается в основном в теплый период (табл. 1). На май–июль приходится 45÷50 % годовой Q, а на ноябрь–январь – всего около 5 %. Месячная сумма Q в июле примерно в 14 раз больше, чем в декабре. Средний годовой радиационный баланс R за рассматриваемый период составил 1503,8 МДж/м² при C_v 7,67 %, максимальный отмечался в 2009 г. (1758,0 МДж/м²), минимальный – в 2001 г. (1255,0 МДж/м²). Температура воздуха t в городе отличается значительной временной изменчивостью и устойчивой тенденцией к повышению среднегодовых значений. Наиболее низкая среднегодовая температура воздуха от-

мечалась в 1987 г.(4,3 °C), максимальная – в 2015 г. (8,7 °C). Максимальная среднемесячная температура воздуха в основном наблюдалась в июле, минимальная – в январе—феврале.

Таблица 1 Средние годовые показатели климата в Минске за 1980–2015 гг.

Γ	Климатические показатели								
Год	Q, МДж/м ²	R, MДж/м ²	t,°C	Р, гПа	V, M/c	F, %	Ос, мм	Об, баллы	
1980	3291,0	1397,0	4,8	986,9	3,1	79,3	646,3	3,2	
1981	3595,0	1622,0	6,4	986,4	2,9	77	737,8	7,5	
1982	3547,0	1566,0	6,4	988,8	2,8	78	695,5	3,5	
1983	3705,0	1532,0	7,4	985,8	3,0	76,1	592,4	3,6	
1984	3421,0	1369,0	6,0	989,5	2,9	78,2	656,3	7,2	
1985	3539,0	1533,0	4,6	986,9	2,7	79,1	706,9	7,2	
1986	3608,0	1628,1	5,8	988,1	2,8	77,7	610,4	6,8	
1987	3604,0	1490,0	4,3	988,2	2,8	78,7	726,0	6,6	
1988	3583,0	1414,3	6,3	986,5	2,7	79,0	665,2	6,8	
1989	3476,0	1588,3	7,9	987,1	2,6	79,9	746,4	7,1	
1990	3520,0	1650,0	7,7	986,2	2,7	78,3	766,4	7,4	
1991	3437,0	1532,1	6,9	989,0	2,5	79,1	541,3	7,3	
1992	3684,0	1622,0	7,1	987,4	2,6	75,5	568,8	6,9	
1993	3479,0	1647,0	5,8	988,4	2,6	77,3	725,3	7,2	
1994	3645,0	1464,0	6,5	987,0	2,2	77,2	747,7	7,4	
1995	3736,1	1472,0	6,9	986,8	2,2	76,7	558,2	7,1	
1996	3738,8	1293,0	5,6	989,7	2,1	76,4	672,3	7,1	
1997	3605,5	1546,5	6,2	986,6	2,3	77,5	693,7	7,4	
1998	3447,8	1302,0	6,3	986,8	2,1	79,2	965,4	7,4	
1999	4008,3	1447,0	7,8	987,5	2,1	73,7	575,2	7,1	
2000	3580,7	1518,9	7,8	987,8	2,1	77,1	588,3	7,3	
2001	3711,0	1255,0	7,0	987,4	2,2	77,1	714,1	7,2	
2002	4086,6	1503,2	7,7	988,7	2,2	72,6	587,8	6,9	
2003	3822,4	1356,5	6,4	989,4	2,2	77,5	615,0	7,2	
2004	3698,4	1281,5	6,6	987,6	2,1	77,8	809,4	7,3	
2005	3780,2	1466,3	6,8	989,3	2,0	77,3	765,8	7,0	
2006	3937,0	1596,3	6,9	989,2	1,9	77,4	727,7	6,9	
2007	3895,0	1609,0	7,8	987,2	1,9	76,8	585,9	7,4	
2008	3769,0	1556,0	7,9	987,9	2,0	78,5	684,3	7,5	
2009	3930,0	1758,0	7,0	988,1	1,6	79,4	899,2	3,5	
2010	3818,0	1441,6	6,9	987,3	1,5	79,4	820,2	3,5	
2011	4139,0	1513,0	7,6	989,7	1,4	75,7	631,1	3,6	
2012	3806,0	1504,0	6,8	987,3	1,5	77,0	839,1	3,3	
2013	3821,0	1520,0	7,5	987,2	1,4	77,0	677,0	3,4	
2014	3885,0	1602,0	7,8	989,4	1,5	74,5	604,6	3,5	
2015	3639,0	1539,0	8,7	989,0	1,6	73,2	563,2	5,9	
За 1980-2015 гг.						-			
Среднее	3694,1	1503,8	6,8	987,8	2,2	77,3	686,4	6,2	
Максимальное	4139,0	1758,0	8,7	989,7	3,1	79,9	965,4	7,5	
Минимальное	3291,0	1255,0	4,3	985,8	1,4	72,6	541,3	3,2	
σ	194,01	115,39	0,99	1,11	0,49	1,75	99,90	1,63	
Cv	5,25	7,67	14,54	0,11	22,02	2,27	14,55	26,36	

 Π р и м е ч а н и е . Здесь и в табл. 3, 4 σ – среднее квадратичное отклонение.

Среднегодовое атмосферное давление воздуха Р в Минске характеризуется незначительной межгодовой изменчивостью и небольшой тенденцией к повышению. Более высокие значения атмосферного давления, как правило, отмечаются зимой, более низкие – летом. За период 1980-2015 гг. наиболее низкое среднемесячное атмосферное давление в январе наблюдалось в 2007 г. (977,6 гПа), наиболее высокое – в 2006 г. (1000,8 гПа). В июле данный показатель отличается меньшей изменчивостью: самое низкое атмосферное давление зафиксировано в 2000 г. (981,0 гПа), наиболее высокое – в 2006 г. (992,5 гПа). Относительная влажность воздуха F в Минске характеризуется незначительной временной изменчивостью и устойчивой тенденцией к уменьшению средних годовых значений. Она имеет достаточно выраженный годовой ход с минимумом в весенние месяцы (апрель-май) и максимумом - в осенне-зимний период (ноябрь-январь). Средняя годовая относительная влажность воздуха в 1980-2015 гг. варьировала от 72,6 % в 2002 г. до 79,9 % в 1989 г. Анализ относительной влажности воздуха в разрезе сезонов года показал, что наибольшая ее межгодовая изменчивость отмечается в июле, наименьшая – в декабре. Скорость ветра V имеет умеренную временную изменчивость, устойчивую тенденцию к снижению, относительно плавный годовой ход. Среднегодовая скорость ветра изменялась от 3,1 м/с в 1980 г. до 1,4 м/с в 2011 и 2013 гг. Максимальная скорость ветра в основном характерна для осенне-зимнего сезона, минимальная наблюдается весной и особенно летом. Сезонная динамика скорости ветра достаточно устойчивая, но в отдельные годы существенно варьирует. Преобладающее направление ветра летом – западное, северо-западное, осенью и зимой – западное, южное, юго-западное, весной - восточное, юго-восточное (рис. 1). В исследуемый период в Минске преобладал западный ветер (17,1 %). Минимальная повторяемость характерна для северо-восточного ветра (8,1 %), значительная повторяемость – для южного ветра до 16,3 %. Повторяемость штилей заметно увеличилась к концу рассматриваемого периода и в среднем составила – 8,6 %. Атмосферные осадки Ос характеризуются значительной временной изменчивостью и тенденцией к увеличению их годового количества. В среднем минимум осадков наблюдается в зимние месяцы, максимум – в летние, достигая пика в июле. В экстремальных ситуациях годовой ход атмосферных осадков имеет более сложный характер. Количество атмосферных осадков варьировало от 541,3 мм в 1991 г. до 965,4 мм в 1998 г. Самыми дождливым и засушливыми месяцами за исследуемый период были август 2006 г. (250,3 мм) и октябрь 2000 г. (1,5 мм) соответственно. Облачность Об в городе характеризуется незначительной временной изменчивостью. В годовом ходе облачности минимум приходится на теплый период года (майавгуст), максимальные значения отмечаются в ноябре-январе. Но в отдельные экстремальные годы он имеет более сложный вид. Наблюдаются месяцы, когда не бывает ни одного ясного дня. Среднегодовая облачность за рассматриваемый период изменялась от 3,2 балла в 1980 г. до 7,5 балла в 2008 г.

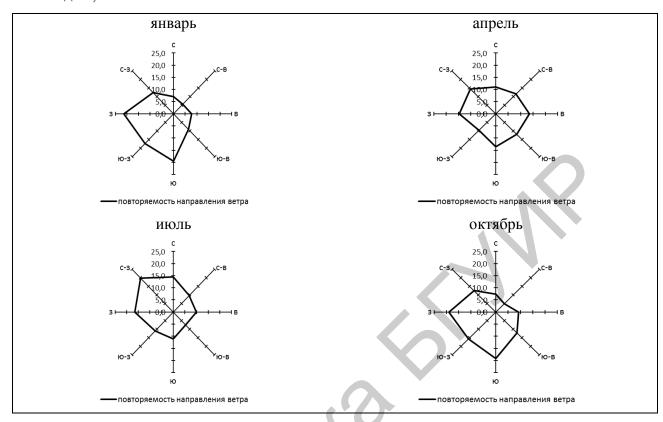


Рис. 1 Средняя повторяемость направления ветра в Минске за 1980-2015 г.г.

Анализ эколого-климатических показателей комфортности климатических условий в Минске показал, что в теплый период года наиболее значимой ее характеристикой является количество дней с нормальной эквивалентно-эффективной температурой воздуха К_{нээт}, отражающей воздействие на человека совокупности метеорологических факторов: скорости ветра, температуры и относительной влажности воздуха. Наибольшее значение К_{нээт} наблюдалось в 2011 г. и составило 56 дней, а наименьшее – в 1980 г. – 16 дней (табл. 2). Количество душных дней K_{nn} со среднесуточной температурой воздуха ≥ 20 °C и относительной влажностью воздуха ≥ 75 % в течение года небольшое – в среднем 3,7 дня. Максимальное значение К_{лл} наблюдалось в 2010 г. (15 дней). В 1992, 2005, 2012 и 2015 гг. подобные климатические условия совсем не наблюдались. В холодный период года важной характеристикой комфортности климатических условий является количество дней с индексом холодового стресса по Хиллу $K_{\pi\pi} \ge 4,5 \; Bt/m^2 \cdot c$. Максимальное количество дней с дискомфортными значениями наблюдались в 1980 г. (76 дней), а минимальное в 2015 г. – 3 дня. Количество холодных дней с температурой воздуха $K_{xx} \le -10$ °C в течение года значительно больше, чем количество душных дней. Максимальное число К_{хд} зафиксировано в 1985 г. (46 дней), а минимальное – в 1990 г., когда наблюдалось всего 2 холодных дня.

 $\label{eq:2.2} Таблица \ 2$ Средние годовые эколого-климатические показатели климата в Минске за 1980–2015 гг.

Г	Эколого- климатические показатели								
Год	К _{нээт, дни}	К _{дд, дни}	$K_{\rm дп, \; дни}$	$K_{xд, дни}$	$K_{\rm ип,\ дни}$	К _{ад, дни}	$K_{\text{ов, дни}}$	К _{ипкк, отн. ед}	
1980	16	7	76	26	161	43	197	1,94	
1981	42	5	61	12	160	46	184	2,72	
1982	25	3	40	8	138	39	176	2,68	
1983	47	3	53	10	170	51	143	3,02	
1984	18	1	73	7	128	33	192	2,44	
1985	31	2	60	46	151	43	198	2,40	
1986	32	2	53	33	167	50	179	2,50	
1987	27	2	67	34	150	36	173	2,52	
1988	42	6	54	16	167	53	185	2,76	
1989	37	3	21	6	146	37	204	3,18	
1990	22	2	25	2	158	41	191	2,66	
1991	31	4	32	11	128	32	181	2,84	
1992	33	0	33	4	156	57	165	3,28	
1993	46	1	43	14	143	41	166	2,94	
1994	27	1	13	18	155	52	166	2,94	
1995	36	1	19	18	153	64	182	3,12	
1996	37	2	30	32	138	25	174	3,22	
1997	38	3	25	13	154	57	166	3,12	
1998	41	6	22_	15	156	53	199	2,80	
1999	40	6	22	7	147	46	154	3,30	
2000	53	1	8	5	143	29	174	3,78	
2001	37	14	27	20	158	37	175	2,72	
2002	44	4	16	19	131	36	136	3,66	
2003	40	4	19	18	152	41	175	3,32	
2004	33	4	15	12	160	47	182	3,12	
2005	36	0	24	13	128	43	160	3,56	
2006	50	3	15	25	137	23	194	3,62	
2007	38	3	13	9	153	41	172	3,34	
2008	51	2	10	3	157	39	192	3,44	
2009	56	3	8	14	150	28	203	3,66	
2010	37	15	15	34	158	29	196	3,08	
2011	56	10	9	17	140	34	159	3,48	
2012	46	0	9	33	162	36	167	3,70	
2013	46	8	7	10	144	30	169	3,94	
2014	46	2	8	18	133	21	147	3,98	
2015	44	0	3	3	145	40	146	4,10	
За 1980-2015 гг.									
Среднее	38,4	3,7	28,6	16,3	149,4	40,4	175,6	3,14	
Максимальное	56	15	76	46	170	64	204	4,1	
Минимальное	16	0	3	2	128	21	136	1,94	
σ	9,84	3,53	20,72	10,6	11,5	10,12	17,5	0,5	
Cv	25,64	95,49	72,55	65,23	7,72	25,07	9,97	15,98	

Количество случаев с контрастными изменениями погоды K_{un} в среднем за рассматриваемый период составило 149 дней. При этом более выраженные погодные контрасты наблюда-

лись в 1983 г. (170 дней), а наиболее стабильные погодные условия отмечались в 1984, 1991 и 2005 гг (128 дней). Продолжительность комфортного периода эксплуатации жилых сооружений Кэжс определяется с учетом влияния на них различных сочетаний среднесуточной температуры и относительной влажности воздуха. Количество дней с комфортными значениями К_{эжс} за 1980–2015 гг. в среднем составило 110. Наименее благоприятные условия наблюдались в 2010 г. (80 дней), наиболее комфортные – в 1983 г. (134 дня). Климатический потенциал самоочищения атмосферы Ккпс в условиях города определяется как функция комплексного влияния числа дней со штилем, туманами, осадками более 1 мм, сильным ветром свыше 5 м/с. Наиболее неблагоприятные значения Ккпс зафиксированы в 1991 г. – 0,7. Существенное влияние на изменение комфортности климата имеет количество дней с резким межсуточным изменением атмосферного давления $K_{ad} \ge 9$ г $\Pi a/cyr$; со среднесуточной: относительной влажностью воздуха $K_{ob} \ge 80$ %, скоростью ветра $K_{cb} \ge 5$ м/с; осадками $K_{oc} \ge 1$ мм; облачностью $K_{ob} \ge 6$ баллов. На протяжении исследуемого периода самые неблагоприятные условия с резким межсуточным изменением атмосферного давления наблюдались в 1995 г. (64 дня), наиболее комфортные – в 2014 г. (21 день); наибольшее количество дней с дискомфортными значениями Ков отмечалось в 1989 г. (204 дня), наименьшее – в 2002 г. (136 дней); максимальное количество дней с высокой среднесугочной скоростью ветра было в 1980 г. (28 дней), а в 2006, 2008, 2009 и 2011 гг. были зафиксированы нулевые значения показателя K_{cB} ; наибольшие количество дней с осадками более 1 мм соответствовало 1998 г. (142 дня), а наименьшее – 2014 г. (94 дня); самые неблагоприятные условия с дискомфортными значениями K_{ob} отмечались в 1981 г. (284 дня), а наиболее комфортные в 2012 г. (71 день). Для характеристики комфортности климатических условий города были также использованы среднемесячные температуры самого холодного и теплого месяцев года, отражающие общие особенности климата. Наиболее высокая среднесуточная температура воздуха в Минске наблюдалась в июле 2010 г. (22,6 °C) и январе 1989 г. (0,5 °C), а минимальная – в июле 1984 г. (15,6 °C) и январе 1987 г. (-15,2 °C).

Анализ изменения интегрального показателя комфортности климата в Минске в 1980–2015 гг. выявил повышение уровня комфортности климатических условий для жизнедеятельности его населения. На протяжении исследуемого периода в Минске отмечалась устойчивая тенденция к повышению количества дней с нормально эквивалентно-эффективной температурой воздуха от 17 до 21 °C и среднемесячной температурой воздуха в июле и январе; незначительное увеличение количества душных дней, продолжительности комфортного периода эксплуатации жилых сооружений, повышение интегрального показателя комфортности климата. Тенденция к снижению характерна для продолжительности периода с индексом холодового стресса по Хиллу ≥ 4,5 Вт/м²·с и количества случаев с контрастными изменениями

погоды; уменьшается количество дней с межсуточным изменением атмосферного давления \geq 9 гПа/сут, относительной влажностью воздуха \geq 80 %, холодных дней с температурой воздуха \leq -10 °C, с дискомфортными значениями облачности \geq 6 баллов, со скоростью ветра \geq 5 м/с, с осадками \geq 1 мм; снижается климатический потенциал самоочищения атмосферы. В Минске в 1980–2015 гг. преобладали умеренно комфортные (61 %) и малокомфортные (36 %) климатические условия. Комфортные климатические условия наблюдались в 2013-2015 г.г. Комфортность климата в Минске отличалась умеренной межгодовой изменчивостью. Коэффициент вариации $K_{ипкк}$ составил 15,98 %.

Изучение тенденций изменения эколого-климатических показателей за 1980-2015 гг. позволили разработать прогнозный сценарий возможного изменения комфортности климата Минска до 2030 г., основанный на теоретических и методических положениях геоэкологического прогнозирования. Пятнадцатилетний лаг прогноза обусловлен небольшим периодом выборки исходной информации, при анализе которой выполнялась процедура проверки «выбросов», далее определялись уравнения регрессии изменения эколого-климатических показателей, вычислялись среднеквадратичные отклонения и доверительные интервалы, рассчитывались их значения на перспективу. При определении уравнений регрессии изменения эколого-климатических показателей были выполнены расчеты для линейной и экспоненциальной регрессионной модели. Анализ полученных данных показал, что в соответствии с физическими особенностями для большинства рассматриваемых показателей следует использовать уравнение линейной регрессии, а для прогнозирования изменения V, $K_{д\pi}$, $K_{x_{Z}}$ и K_{cs} – уравнение экспоненциальной регрессии. По прогнозному сценарию, в 2030 г. в Минске возможно небольшое увеличение суммарной солнечной радиации, радиационного баланса, средней годовой температуры воздуха, атмосферного давления воздуха, атмосферных осадков и облачности, уменьшение относительной влажности и скорости ветра (табл. 3). Ожидается существенное увеличение продолжительности периода с комфортными НЭЭТ. По сравнению со средними значениями за 1980-2015 гг. К_{нээт} возрастет на 19 дней и достигнет 57 дней. Количество душных дней увеличится всего, на 1-2 дня и составит 5-6 дней. Продолжительность дискомфортного периода с индексом холодового стресса по Xиллу ≥ 4.5 Bт/м 2 ·с значительно сократится – до 2– 3 дней. Также ожидается уменьшение: числа холодных дней – до 11–12 дней; количество дней с контрастными имениями погоды – до 142 дней; количество дней с межсуточным изменением атмосферного давления ≥ 9 гПа/сут – до 27–28 дней; количества дней с относительной влажностью воздуха $\geq 80 \%$ – до 161 дня и со средней скоростью ветра $\geq 5 \text{ м/c}$ – до 1-2 дней, с осадками ≥ 1 мм – до 109-110 дней, с облачностью ≥ 6 баллам – до 153-154 дней. Продолжительность комфортного периода эксплуатации жилых сооружений в 2030 г., по сравнению со средними значениями за 1980-2015 гг., увеличится на 15-16 дней. Климатический потенциал самоочищения атмосферы в 2030 г. снизится в первую очередь за счет сокращения количества дней с сильным ветром свыше 5 м/с, осадками более 1 мм и увеличения числа дней со штилем.

Таблица 3 Изменение климатических и эколого-климатических показателей в Минске согласно прогнозного сценария на 2030 г.

ЭКП	Временная функция*	σ	Доверительный интервал при p ($\alpha = 0.05$)	Среднее значение ЭКП за 1980–2015 г.	ЭКП в 2030 г.
Q , МДж/м ²	y = 12,715x + 3458,9	194,01	± 63,38	3694,1	4107,4
R, МДж/м ²	y = 0.083x + 1502.2	115,39	± 37,69	1503,8	1506,4
t _Γ ,°C	y = 0.054x + 5.771	0,99	± 0,32	6,8	8,5
Р, гПа	y = 0.036x + 987.17	1,11	± 0,36	987,8	989,0
V, м/c	$y = 3,228e^{-0.021x}$	0,49	± 0,16	2,2	1,1
F, %	y = -0.06x + 78.4	1,75	± 0,57	77,3	75,3
Ос, мм	y = 1,031x + 667,31	99,90	± 32,63	686,4	719,9
Об, баллы	y = -0.038x + 6.9	1,63	± 0,53	6,2	5,0
К _{нээт, дни}	y = 0.589x + 27.473	9,84	± 3,21	38,4	57,5
К _{дд, дни}	y = 0.052x + 2.730	3,53	± 1,15	3,7	5,4
К _{дп, дни}	$y = 74,663e^{-0.067x}$	20,72	± 6,77	28,6	2,5
К _{хд, дни}	$y = 13,558e^{-0,003x}$	10,60	± 3,46	16,3	11,6
К _{ип, дни}	y = -0.238x + 153.76	11,52	± 3,76	149,4	141,6
К _{ад, дни}	y = -0.398x + 47.725	10,12	± 3,31	40,4	27,4
Ков, дни	y = -0.457x + 184.06	17,50	± 5,72	175,6	160,8
К _{св, дни}	$y = 27,109e^{-0,125x}$	7,18	± 2,35	6,3	0,1
Кос, дни	y = -0.248x + 122.08	12,23	± 4,0	117,5	109,5
Коб, дни	y = -1,855x + 248,46	77,14	± 25,2	214,1	153,9
Кэжс, дни	y = 0.487x + 101.88	13,0	± 4,25	110,9	126,7
Ккпс, отн. ед	y = -0.003x + 0.46	0,11	± 0,04	0,4	0,3
t _{и,} °C	y = 0.093x + 16.935	1,87	± 0,61	18,7	21,7
t _{я,} °C	y = 0.024x - 5.004	3,57	± 1,17	-4,6	-3,8
Кипкк, отн. ед	y = 0.04x + 2.394	0,50	± 0,16	3,14	4,44

^{*}Рассчитана по уравнению регрессии

Ожидается повышение среднемесячной температуры воздуха в июле и январе. По сравнению со средними значениями за 1980–2015 гг., температура воздуха в июле $t_{\rm u}$ 2030 г. может увеличиться на 3,0 °C, а в январе $t_{\rm g}$ — на 0,8 °C. Интегральный показатель комфортности климата, увеличится на 1,3 и климатические условия в городе будут более комфортными.

Заключение

Климатофизиология человека в погодных условиях Минска в значительной мере проявляется в реакциях приспособления к меняющимся условиям внешней среды. Частые циклоны и антициклоны вызывают приспособительные реакции на изменяющиеся атмосферное давление, температуру, влажность и скорость движения воздуха, на солнечные и пасмурные дни, затяжные, обложные дожди и кратковременные ливни с грозами и резкими изменениями атмосферного электричества. Метеопатические проявления обычно возникают, одновременно у значительного числа разных людей, синхронно погодным изменениям или несколько опережая их. Они не только обостряют или ухудшают течение болезней, но и снижают эффективность любого метода лечения. Таким образом, в городских условиях оценка влияния изменчивости метеорологических условий на организм человека является одним из организационных методов совершенствования медицинского обслуживания населения. Учет и своевременная профилактика метеотропных реакций позволяют в значительной степени ослабить отрицательное действие неблагоприятных климатических условий на организм человека. Проведенные исследования направлены на более рациональное использование естественных ресурсов города Минска при планировании и проектировании природопользования для его устойчивого развития и оптимизации среды жизнедеятельности населения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Витченко А.Н., Телеш И.А. Методика геоэкологической оценки комфортности климата городов // Вестник БГУ. 2007. Сер.2. № 2. С. 99-104.
- 2. Русанов В.И. Комплексные метеорологические показатели и методы оценки климата для медицинских целей. Томск. 1989.
- 3. Бартон А., Эдхолм О. Человек в условиях холода. Москва. 1957.
- 4. Золотокрылин А.Н., Канцебовская И.В., Кренке А.Н. Районирование территории России по степени экстремальности природных условий для жизни // Известия РАН. Сер. геогр. 1992. № 6 С. 16-30.
- 5. Айзенштадт, Б. А. Тепловой баланс человека и его здоровье // Климат и здоровье человека. 1988. Т.1. С. 197-209.
- 6. Бутьева И.В., Швейнова Т.Г. Методические вопросы интегрального анализа медико-климатических условий // Комплексные биоклиматические исследования. 1988. С. 97-106.
- 7. Селегей Т.С., Юрченко И.П. Потенциал рассеивающей способности атмосферы // География и природные ресурсы. 1990. № 2. С. 132-137.
- 8. Гербурт-Гейбович А.А. Оценка климата для типового проектирования жилищ. Ленинград. 1971.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ДЛЯ МЕЖДУНАРОДНЫХ БАЗ ДАННЫХ

- 1. Vitchenko A.N., Telesh I.A. Methods of the geoecological assessment of cities climate comfort in Belarus. *Vestnik BGU. Ser. 2. Himiya. Biologiya. Geografiya.* 2007. № 2. P. 99-104. (in Russ.).
- 2. Rusanov V.I. The complex meteorological indices and methods of the estimation of the climate for medical purposes. Tomsk. 1989. (in Russ.).
- 3. Barton A., Edholm O. Person in condition of the cold. Moscow. 1957. (in Russ.).
- 4. Zolotokrylin A.N., Kancebovskaya I.V., Krenke A.N. Division in to districts territory of Russia on degree extremality natural conditions for life. *Proceedings of the Russian Academy of Sciences*. *Ser. Geografiya*. 1992. № 6. P. 16-30. (in Russ.).
- 5. Ayzenshtadt, B. A. Heat balance of the person and his health. *Climat i zdorovye cheloveka*. 1988. Vol.1. P. 197-209. (in Russ.).

- 6. Butieva I.V., Shveynova T.G. The methodical questions of the integral analysis medicine-climatic conditions. *Complexnye bioclimaticheskye issledovaniya*. 1988. P. 97-106. (in Russ.).
- 7. Selegey T.S., Yurchenko I.P. The potential diffusing abilities of atmosphere. *Geografiya i prirodnye resursy*. 1990. № 2. P. 132-137. (in Russ.).
- 8. Gerburt-Geybovich A.A. The estimation of the climate for standard designing of dwelling buildings. Leningrad. 1971. (in Russ.).

