УДК 330.4

Потапов В. Д., кандидат технических наук, доцент Донбасский государственный технический университет, г. Лисичанск, Хмелев А. Г., доктор экономических наук, доцент Белорусский государственный университет информатики и радиоэлектроники, г. Минск Хмелева А. В., кандидат технических наук, доцент Белорусский государственный университет информатики и радиоэлектроники, г. Минск

НЕЙРОСЕТЕВОЕ ПРОГНОЗИРОВАНИЕ И ОПТИМИЗАЦИЯ УПРАВЛЕНЧЕСКИХ ПРОЦЕССОВ В ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ОХРАННЫХ ОРГАНИЗАЦИЙ

Многие из экономических систем содержат огромное количество элементов, взаимодействующих между собой, при этом являясь сложными структурами. Одной из структурных единиц в экономике являются охранные организации. Они имеют внутренние и внешние факторы, которые преобразуются рынком, а затем формируются на выходе такие величины, как количество предоставляемых услуг или количество выпущенной продукции, также доходность и прибыльность организаций. В управлении деятельностью организаций, задача получения оптимальных значений внутренних факторов, для осуществления поставленной цели основная. Наиболее разумным и эффективным методом управления систем является нейросетевое управление [1].

Можно отметить основные цели управления деятельностью организации: расширение рынка сбыта продукции или услуг; максимизация доходности; максимизация прибыльности, как до налогообложения, так и после. Динамическое влияние в результатах деятельности организаций оказывают постоянно изменяющиеся факторы, их действия отражаются как в текущем, так и в последующих периодах. Например, эффект от рекламной компании краткосрочен, в то время как эффект от научной деятельности зачастую долгосрочный.

Эффективным методом в управлении сложными системами является нейросетевое управление, где механика работы имеет вид «черного ящика», на входе у которого будут получены сигналы — внешние или внутренние факторы, которые влияют на деятельность организации. А на выходе — результирующие факторы деятельности организации (сбыт реализованных продукции или услуг и полученная на основе сбыта прибыль и доход, как до налогообложения, так и после). Говоря о внешних факторах, подразумевается функционирование организации в определенной экономической среде. Разнообразные виды и схемы управления нейронными сетями приведены в [1].

Чтобы учесть изменяющийся, динамический характер необходимо, чтобы на вход нейронной сети поступали значения входных факторов, как в текущий момент времени, так и в предыдущий. В качестве входных величин могут быть выходные величины в предыдущий момент времени. Для модели предлагается указывать четыре параметра: количество невидимых (скрытых) нейронов; величину максимально допустимой задержки сигналов; значения весовых показателей нейронной сети; общее количество нейронов в каждом невидимом слое. Решение поставленных залач можно оформить в два этапа: параметрическую и структурную идентификацию [2], Первые три задачи решает структурная идентификация, а четвертую задачу параметрическая. Резонно использовать конструктивные алгоритмы, для проведения идентификации структуры, когда в качестве отправной выступает сеть, которая не содержит скрытых слоев, а далее в последовательном порядке добавляются скрытые слои и их нейроны. Структура будет возрастать, до тех пор, пока ошибка обучения будет уменьшаться, и пока общее количество весов нейронной сети будет меньше общего количества строк в обобщающем множестве. Если есть несколько величин задержек, то можно построить структуры и выполнить её обучение, а затем выбрать необходимую структуру с наименьшей величиной функционала качества [3].

На протяжении обучения настраиваются веса нейронной сети на основании входного – выходного множества $\{x^{(k)}, y^{(k)}\}, k=1,...,K$, где $x^{(k)} \in \mathbb{R}^P$ векторов выхода, векторов входов сети. Модель экономической и управленческой деятельности характеризуется количеством выходов $P = (n_c + n_u) d + n_v (d-1),$ количество входов Q = nМинимизация квадратичного функционала по качеству, в процессе обучения:

$$Q(w) = \sum_{k=1}^{K} \sum_{q=1}^{Q} Q_{kq}(w) = \sum_{k=1}^{K} \sum_{q=1}^{Q} (\widetilde{y}_{q}(w, x^{(k)}) - y_{q}^{(k)})^{2},$$
 (1)

где w – вектор весов, $x \in \mathbb{R}^P$ – входной вектор, $Q_{kq}(w)$ – ошибка работы q-ого выхода, $\widetilde{y}_q(w, x^{(k)})$ – q-й выход, при подаче на вход k-ого вектора обучающего множества, $y_s^{(k)}$ – q-й элемент k-ого вектора указаний.

К недостатку линейно-нелинейного соотношения можно отнести отсутствие всяких гарантий на определение глобального минимума функционала. Чтобы гарантировать обучение нейронной сети можно использоваться методы интервального анализа.

Список литературы:

- 1. Терехов В. А. Нейросетевые системы управления / В. А. Терехов, Л. В. Ефимов, И. Ю. Тюкин. – М.: ИПРЖР, 2002. – 183 с,
- 2. Хмелев А. Г. Идентификация сложных экономических систем: нейросетевые методы, модели и технологии: монография / А. Г. Хмелев; [научн. ред. проф. Ю. Г. Лысенко]. Донецк: Юго-Восток, 2012. 296 с.
- 3. Сараев П. В. Нейросетевое моделирование и управление ценовой политикой // Системы управления и информационные технологии, 2004. № 1 (13). С. 37 41.

УДК 332.01:332.021

Чуріканова О. Ю., доктор філософії, доцент кафедри електронної економіки та економічної кібернетики, Державний ВНЗ «Національний гірничий університет» Загорулько К. А., аспірант, Державнийх ВНЗ «Національний гірничий університет»

АНАЛІЗ ІНДИКАТОРІВ СТАЛОГО РОЗВИТКУ РЕГІОНІВ

Відповідно до даних Світового банку [1] у 2015 році Україна мала номінальне ВВП на душу населення \$2115 і займала місце поруч з В'єтнамом (\$2111) ,Узбекистаном (\$2132), Суданом (\$2415), Гондурасом (\$2529). ВВП на душу населення це основний показник економічного розвитку, але він не завжди відображає реальний стан речей. Є речі такі як це тіньова економіка, які безпосередньо впливають на рівень ВВП. Разом з тим існують проблеми, такі як нерівність доходів, забруднення навколишнього середовища, які можливо мають не дуже чіткий зв'язок з ВВП, але впливають безпосередньо на рівень економічного розвитку та задоволеністю життям. Відповідно до гіпотези екологічної кривої Кузнеця (ЕКК), у певний момент часу суспільство досягає рівня доходів, після чого більш вигідно в соціальному плані рухатися в напрямку сталого розвитку.

Наразі найбільш розробленою метрикою для вимірювання процесів сталого розвитку ϵ система [2], що запропонована командою Світового центру