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Within the matrix 10-dimensional Duffin-Kemmer (DK) formalism applied to the
Shamaly—Capri field, we study the behavior of a vector particle with anomalous magnetic
moment in epy presence of an external uniform magnetic field. The separation of variables
in the wave equation is performed using projective operator techniques and the theory of
DK-algebras. The problem is reduced to a system of 2-nd order differential equations for
three independent functions, which is solved in terms of confluent hypergeometric functions.
Three series of energy levels are found, two of which substantially differ from those for spin 1
particles without anomalous magnetic moment. For assigning them physical sense for all the
values of the main quantum number n = 0,1,2,..., one has to impose special restrictions
on a parameter related to the anomalous moment. Otherwise, only some part of the energy
levels corresponds to the bound states. The neutral spin 1 particle is considered as well. In
this case no bound states exist in the system, and the main qualitative manifestation of the
anomalous magnetic moment consists in occurrence of a space scaling of arguments of the
wave functions, compared to a particle without such a moment.

Also we give some details of the general theory of the Shamaly—Capri particle; in particular,
we describe some features of this theory extended to General Relativity.
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more complicated equations can be proposed for
particles with such spins, these equations are
based on application of extended sets of the
Lorentz group representations (see [1]-[18]).

Such generalized wave equations allow to
describe more complicated objects, which have,
besides mass, spin, and electric charge, other
electromagnetic characteristics like polarizability
or anomalous magnetic moment. These additional
characteristics manifest themselves explicitly in
presence of external electromagnetic fields.

In particular, within this approach Petras
[3] proposed a 20-component theory for spin
1/2 particle, which-after excluding 16 subsidiary
components — turns out to be equivalent to the
Dirac particle theory modified by the presence
of the Pauli interaction term. In other words,
this theory describes a spin 1/2 particle with
anomalous magnetic moment. In this approach,
a generalized equation for a spin 1 particle has
been proposed by Shamaly—Capri [6], [7] (also see
[16], [17]). The last one describes a vector particle
with anomalous magnetic moment (see also some
recent papers [20-22| in which scalar, spinor and
vector particles are studied in presence of external
fields).

In the present paper, we ‘investigate the
wave equation for spin 1 particle with anomalous
magnetic moment in the presence of an external
uniform magnetic field. The generalized formulas
for the Landau energy levels are derived, and
the corresponding wave functions are constructed.
The new formulas for the energies in presence of
an external magnetic field, in principle, allow to
experimentally distinguish such a particle.

The restriction to the case of neutral vector
boson - (the uncharged spin 1/2 particle with
anomalous magnetic moment) is performed.

As well, we give some details of the
general theory of the Shamaly—Capri particle;
in particular, we describe some features of this
theory extended to General Relativity.

2. The separation of the variables

The wave equation for spin 1 particle with
anomalous magnetic moment is presented in
Duffin-Kemmer (DK) matrix formalism [6, 7],
it includes an additional non-minimal interaction
term with an external field through the
electromagnetic tensor Fj,,) and reads

e
<18MDM + M)‘?))‘gF[MV}PJ[,uu] + M> U =0 (1)

where the 10-component wave function and the
10 x 10 dimensional DK-matrices (3, are used:

Py

\If —
R

5 J[uu] = /B,LL/BV - /BVB,LL ;

the matrix P stands for a projective operator
separating from ¥ its vector component W,
D, = 0, — ieA,, in Minkowski space, the
metrics with imaginary unit is used: since x4 =
ict, X3 denotes an arbitrary complex number
related to anomalous magnetic moment (more
details are given in Sec. 7), Jj,,) are Lorentz
group generators, M is a mass term. The matrix
equation (1) may be re-written in the tensor form
as follows

DU, — DV, + MW, =0,
e N
D,,‘IJ[W,] + 2M>\3)\3F[“y]\l’u + M\Ifu =0. (2)

When using DK-matrices, we apply the
method of generalized Kronecker’s symbols (for
more details see [24]). The collective indexes
A(B,C,D,...) list the following 10 independent
components of the wave function: 1,2,3,4, [23],
[31], [12], [14], [24], [34]:

By =ehl el p = v

(e)ep = acopp, eMPeCP =ipoeP
1

Oluw)lpo) = 5 (Gupdvo = Ouadup)

the entity (e/4P)cp denotes the elements of

complete matrix algebra. The main properties of
DK-matrices are

5,1151//6/) + ﬁpﬁuﬁu = 5,uuﬂp + 5puﬂu )
[/B)\a J[pcr}]— = 5)\p60 - 5)\(7/Bp .
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We use the following representation for these

matrices:

OO OO OO O o oo

@

[N}

I
cCooOROO0 OO0 OO
CoCc o000 OO0 O0O

p3 =

O o oo, O OO oo
O OO o OO~ OO0 OO

By =
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A uniform magnetic field is specified by the
relations

1 1
A = _§Bx2,A2 = §B$1>A3,4 =0, Fjiy = B.

The non-minimal interaction _through the
anomalous magnetic moment is given by the
term

e N e N
iMAg)\gF[HV}PJ[HV} = :tQM)\g)\3BPJ[12] .

Correspondingly, eq.(1) is written as

B1(01 + %Bﬂcz) + B2(02 — %3961) + (303

8404+ 2%A3)\§BPJ[12] FM|T=0. (3)

Let us introduce the matrix

Y =iJjg = i(B182 — B21);

it satisfies the minimal polynomial equation
Y(Y —1)(Y + 1) = 0, which permits us to define
three projective operators:

Po+P_+P. =1, Py=1-Y?

1 1

and to resolve the wave function into three
components, ¥ = W_ 4+ Uy + U,:

Uo=PW, U,=P U, U_=PU.
By transforming (3) to cylindric coordinates
tan¢ = xa/x1 ,

Tl =7rcos¢p, xo=rsina,

we get
0 sing 0 ) .
[51 <cos ¢§ - ﬁiqﬁ + 1 Byr sin qb)
., 0 cos¢g 0 .
+p2 (Sln ¢E + 90 1Bor cos gb)

+(B305 + 404 + TPY + M)] V=0 (4)
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where we have used the shortening notation:

eB BO x
- =Bo, FTMA =T, (5)

We further act on (4) by the projective
operator Py; taking into account the identities
PofBs = B3P,

P0ﬂ4:ﬁ4P05 PYzYPv

Pop1 = B1(1 — Po) = p1(Py + P-),

Pofa = po(1 — Py) = Bo(Py + P_),

and we get

(8303 + 8404 + M]Tq

+ {ﬁl(cos ¢2 — sin ¢ ai) + ﬁQ(Slnd) + CO;¢ aa¢) + tByrsin g1 — iBor cos gbﬁg] U,
+ [ﬁl(cos ¢§r - SH;d) aaé) + ﬁ2(sm¢ s COS(Z) 5;) + iBorsin ¢ — iBor cos ¢62:| =0

where we took into account the identities Y Py =
0 = TI'YVYy)=TI(YP)V = 0. By introducing
the notation

(

we can transform the previous equation to the
form

5+=\}§(51+Zﬂ2), p- = 7(51—252)
|
[ﬂ383+6484+M]\110+\% [e+i¢ﬁ_(§ 23+Bor)+e “%;(5 ;aagb —Bor)] W,
1 ), o 10 i$ 0 0 B
+\/§[+ 5( +*%+BO7")+€ BJF(r_r&;ﬁ_BOT)]\P__O'

By making use of the projective operators

Py = %[61,61 — 201818282 £ i(B1B2 — B251)],

1 - 0 10
i 1) =~ _°
[5383+,3484+i\4]\1/0+\/§6 B+ <87’ 7‘8(]5

) e s Lo (24

and the commutation relations for DK-matrices,
we prove the identities f_ Py = 54+ P— = 0; so the
above equation is written simpler

1 0 1 0

V2 ar oo

Now, we act on (4) by 1 — Py = Py + P_; this gives

96 + 3 Bgr sin ¢> U+ (1— Py)pP2 <sin ¢§T +

+ (8303 + 104+ TPY + M) (¥4 +T¥_)=0.
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By using the identities (1 — Py)f81 = 1P and (1 — Py) B2 = 2Py, we transform this equation to

) Vo + iBorsin ¢f1¥g + Fo <sin (bjr + cos ¢ 8(15) Wy — iBgr cos pPa¥

(5383+6464+FPY—|—M) (\P++\I/_)=O, (7)

from which it follows that
1 : 0 0 )
— |:e_z¢6+ < - ; - Bor> +et8_ ( + % + Bm“)} Uy

V2 or or
+ (8303 + 8404 + TPY + M) (T, +T_) =0. (8)
[
Now, let us act on (8) by %(1 +Y). Because Yp_ =B_PFy, Y3y =—-5+P,
1 1 .
5 —(1+Y)P, =Py, (1 +Y)P_ =0, we derive
1 .
(8303 + B101 + TPY + M) V_ + —e ™03,
Y/B— = 5—P07 Y/B-‘r = _6+P07 \/5
P .
the above equation simplifies to <8r T BO7”> ¥o = 0,(10)

(8303 + 404 + TPY + M) ¥

1 visg (O 0 _
+ﬁe B_ <8T + ; + B()T) WUy = 0. (9)

Similarly, by multiplying (8) by %(1 —Y) and
taking into account the identities

Now, by considering the relations

1 1
YPy = §(Y3 +Y?) = F(1+ Y?) =Py,

1 1
YP_ = 5(Y3 ~Y?) = (1= Y3 =-P_,

1 1
5(1 -Y)P; =0, 5(1 -Y)P_.=P_, we transform (6), (9) and (10) to the form
(8303 + 404 + M| ¥y
1 _. a 10 1 . a 10
—e B, (= — —— — Byr)¥ —eT®B_ (= 4+ —— + Byr)¥_ =0
+\/§e B“F(ar T8¢ OT) ++\/§€ /8 (8T+T8¢+ OT) Y
(8303 + B40s + TP+ M) ¥ + Te“% ( + + Bor)¥y =0,
1 8 j
(B35 + Ba0s = TP+ M)W+ —=e"By (- — — — Bor)¥o = 0. (11)
V2 r
[
To separate the variables, we search for three components of the wave function in the form

Uy = oiPAT4 IP3T3 6im¢f0 (r),
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Uy = PamaeiPsms gimEe ¢ (1) written in symbolic form as

The resulting from (11) radial equations are

J

d d —
(ip3fB3 + ipafs + M) fo + \}QBJ“(dr + mfﬂ — Bor) f+ + \}§ﬂ_(dr - mfl + Bor)f- =0,

. . 1 d m
(Zp3ﬁ3+lp4ﬁ4+FP+M)f++f2/3— < m 3 +Bo7“) fo=0,

V2 dr
(ipsBs + ipafa — TP+ M) fo+ g (L™ o) fo=0
P3P3 T 1PaP4 _\/§+dr 3 0 o=V
3. The radial system We note the relation
By using the notations (M +TP)(M +TP)
M+T

2 dr r

- 1 d — Byr? _ _
by = M0, ipsBs +ipafa =P’ M?+4 MTP+ MTP+T2PP  M?+4 MT
B M+T - M+T

)7

m — \/ﬁ(_%

the equations (12) are rewritten shorter as

(@ + M) fo+ Bramirfs = B-bm_1f- =0,(12) which is valid due to the identities P + P =

1, PP = PP = 0. We introduce the notations:
(ip+ TP+ M) fy —B-bmfo =0,

13 = =
(5~ TP # M) [t By =0. MATP o MATEL
M +T o M+4+T T T
We further act on (12) by the operator (M +
[')~'(M +IP), where P =1 — P. This yields Then the above equation transforms to
_ 1 _ .
M+F(M+FP)zp+ M+F(M+FP)(M+FP) (A+M)fy — B bnfo=0.
R Similarly, we act on (13) by the operator (M —
X fy — T F(M +TP)B_bmfo=0. )" (M —TP), P=1- P, which yields
! (M —TP)ip+ (M —TP)(M —TP)| f_+ (M —TP)Byamfo=0
M-T PEM-T “TM-oT HamJO =5

Henuneiinble siBiieHnst B CJIOXKHBIX cuctemax 1. 20, Ne 1, 2017
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Spin 1 Particle with Anomalous Magnetic Moment in an External Uniform Magnetic Field 27

Considering the identities

(M —TP)(M —TP)

M? — MTP — MTP +T?PP  M?—-MT

M—T -

and introducing the notations

M—-TP

(M —TP)
M-T

5O
M_T p )

By =08,
we present the above equation in the form
(C+M)f- + Blamfo=0.
Thus, the radial system can be written as

(ip+ M) fo + Brams1 f+ — B-bm—1f- =0,
(A+ M) fy = Bbmfo=0,
(C+M)f-+ Bramfo=0.

To proceed with these equations, we introduce
the matrices (note that p? = p% + pi) with the
properties

(ip + M) (ip + M) =p° + M?,
(A+ M)A+ M)=p*+M? (14
(C+ M)(C + M) =p?+ M.
In fact, these formulas determine the inverse
matrices to within numerical factors (p? + M?2)~1.

Then the system of radial equations can be
rewritten alternatively as

(ip+ M) (p* + M?) fo + Bs@mi

X(p* + M?) fy = Bbp-1(p* + M*)f- =0,
(15)

1 cara | TABAN R A | DA

M-T

=M
M-T

1
(M +T)2

P>+ M) fr — (A+ M)B" by fo = 0,

(p* + M) f- + (C+ M) amfo = 0.

The first equation in (15), with the help of the
other two, can be transformed into an equation
for the component fo(r):

(ip +M)(p* + M?) fo + Bsams1 (A + M)B by fo
+B_bn—1(C + M)B amfo =0, (16)

while two remaining ones are not changed

P>+ M?) fy — (A+ M)B b fo =0,

I 17
(p° + M) f- + (C + M)\ amfo=0. a7

In fact, the equations (17) mean that it suffices
to solve (16) with respect to fo; the other two
components fy and f_ can be calculated by
means of equations (17).

To proceed further, we need to know the
explicit form of the inverse operators (14). To
solve this task, we first establish the minimal
polynomials for the relevant matrices. The
minimal polynomial for (ip) is ip [(ip)? + p?] = 0
(see in [3]). We further consider the operator A%:

[—M?p? — MTpPp — MT Pp* — T2PpPp).

Nonlinear Phenomena in Complex Systems Vol. 20, no. 1, 2017
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Due to the identities

B/L:P/BM+B/LP:PﬁM+ﬂMPa
/B/LP:Pﬁ,uypﬁu :/6up>
PB,P = PB,P =0,
ﬁuﬁup = Pﬁuﬁmﬁuﬁup = Pﬁ,uﬁm
P+P=1PP=PP=0,

we find

1

Mp?
(M + F)Q(

T M+T

A? = —M?p* — MTp?) =

Thus, we get the minimal polynomial for A as

M

A =G

M +T'P)(ip)p>

. Mp? (M—l—TP)(,A)__
T M+r) M+T VT TMT

Similarly, we find

Mp?
M-T

c? = C.

Therefore, the necessary inverse operators must
be quadratic with respect to the relevant

J

(p* + M?) fo+

matrices. They are given by the formulas:

(I +1p) = — [(ip) — M(ip) + (5 + M?)] .

M
2 2
Y P+ M M+I
A+ M) = —
(4+M) M [ p?+ M? + MT
M 4T )
+ ;
M (p? + M? + MT)
2 2
e P+ M M-T
M) = 1-—
(C+M) M [ p2+ M? — MT
M-T

2
+M(p2+M2—MF)C } '

Let us turn back to the equation for fo,
rewritten in the form

(p* + M2 fo + (M +ip)Brami1 (A + M)

X B b fot- (M + ip) B—bm—1(C + M) By fo = 0.

Taking into account the explicit form for the
inverse operators, we get

1

M2 [(’Lﬁ)2 - M(Zﬁ) + (p2 + Mz) ] B—i-&m—‘rl

M +T M+T 2| o1t Lo A 2 2 7
- A A b — - M M=) B_by,—
+ p2+M2+MF + M(p2+M2+MF) /B— mf0+ M2[(Zp) (Zp)+(p + )}/B m—1
M-T M-T
1- C? By amfo=0.
RS VER v A VP YR ViU R O
[
Now, by using the formulas we transform the above equation into following
M~+TP Mp? one
A= N A2:_ b
M+T P M+T’
M —-TP Mp?
C=——"ip,C?*=—
M-_1T P M-T’
M +TP M—-TP
y ATl r_
ﬂ—_ M+T 5—7/8-‘,- M—T B+7
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T . "
(0 + M?) fo + 5 [(i0)° = M(ip) + (p* + M?)] By
M~+TP (ip)? ]M+FPB o b
P2+ MT T R M M M om0
r "
+7z [0)* = M(ip) + (0 + M?) |5
M-TP (ip)? M-TP_ .
“p2imz—mr? p2+M2_MF]M_Fﬂ+bm—1amf0—0-

x [1

x [1

After some manipulation with the use of identity pg+p = pS_p = 0, this equation can be presented in

a different way as

1 1
"M2(p% + M2 4 MT)M +T
x[(p* + M? + MT)(ip)*B4 — M(p? + M* + MT)ipfB,
+(p* + M?)(p* + M? + MT) By — (p° + M?)B1ip(M +T'P)

_ . 1 1
2+ M?)B1(ip)?] (M + T'P)B_ + b1,
+p" + M7)B(ip)"] (M +TP)SB- + b1 M2(p? + M? — MT)M —T

X[ (9 + M2 — MT)(ip)?Aos M(p* + M2 — MT)ipg_
+(p* + M?)(p® + M>=MT)B_ — (p* + M?)B_ip(M — I'P)
+(®? + M?)B-(ip)*] (M —TP)B } fo = 0.

{ (@ + M?) + amprb

(18)

Now we take into account the explicit form of fy, ip, and matrices B4, 5, P. Then, we derive four

equations:

1 1

M?2(p?+ M2+ MT)M +T

<{(p* + M?)(p* 4 M? + MT)(M +T) f3 — pa(M +T)(p* + M? + MT)(pafs — p3.f1)
~p3(p* + M?)(M +T)(ps3fs + pafa) + psM(M +T)(p* + M?) f12}

1
M2(p? + M2 —MI‘)M—I‘{(p2+M2)(p2+M2 — MT)(M —T)fs3

—pa(M —T)(p* + M?* — MT)(pafs — p3fa)
—p3(p® + M?)(M —T)(p3fs + paf1) — psM(M —I)(p* + M?) fi2} =0,

(p? + M?) f3 4 Gms1bm

+Bm71dm

1 1
M?(p?> + M2+ MT') M +T
x{ (p* + M?)(p* + M? + MT)(M +T) fs + p3s(M +T)(p* + M? + MT)(pafs — p3fa)

—pa(p* + M?)(M +T)(p3f3 + pafa) + paM(M +T)(p* + M?) f12}
1

N2+ M2 = MT) M —T\
+p3(M —T)(p* + M? — MT)(pafs — p3fa)
—pa(p? + M?)(M —T)(psfs + pafs) — paM (M —T)(p* + M?) f12} =0,

(p2 + MQ)f4 + dm+1i7m

by 16 (p% + M?)(p* + M?* — MT)(M —T) f,

Nonlinear Phenomena in Complex Systems Vol. 20, no. 1, 2017
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1 1
M?(p?> +M?+ MI') M +T
x{M(p* + M?)(p* + M? + MT) fis — M (p* + M?)p® fra — M(M +T)(p* + M?)(psfs + pafs)}
1

(p2 + M2>f12 + dm+18m

A 1
o lan M2+ M2 (02 4 M2 — M) 1o — M(p2 + A2)p2
Fomerbm gy gy ap - @M+ )iz = M(p” +M7)p frz
+M(M —T)(p* + M*)(pafs +p3fs)} =0, (21)
o 1 1
(p2+M2)f34+am+1me2(p2 e —|—MP)M+F{_1M(p2 +M? £ MU)(M +T)(pafs — p3fa)}

1 1
M2(p? + M? —MF)M—P{

by 16 —iM(p* + M? —MT)(M —T)(pafs — psfa)} =0, (22)

(p® + M?) f3s — M(am-i-lbm + bp—1@m ) (Paf3 — p3fa) =0. (23)

The equations (19) and (20) may be simplified to

(p? +M?)f3 + dmj\?zbm{(pQ + M?) f3 — pa(pafs — p3fa)

2 :]_?2]\}_2%2]2411]73(173f3 +pafs) + p%_(l;\z;—i\/‘fj\?rpsflz} + Blijm{ (p* + M?) f3 — pa(pafs — p3fa)
) - (42_)2]\}_2]\{2]2/[1“]?3(193]03 + pafa) — pé\/:_(]j;jiwj\?rpgflg} =0,

(p* + M?)fs + &mj\?fm{ (p* + M?) f1 + p3(pafs — psfa) — Impdmf:s + pafa)

X {(P2 + M) fa+ ps(pafs — p3fa) — P (fzj\z;]\fz&rm(mf:’, + pafs) — p?ﬁﬁ?:_j\i\?rmfm} =0.

(

By multiplying the first equation by py4, and the By taking into consideration (23), we obtain
second one by —p3, and then summing these two

7
results, we find f3a = Y (pafs —pafa) - (25)

s 7 N 2 2
Gme1bm + bm—18m + "+ M } We further consider (21), which can be
X(pafs —p3fa) =0. (24) simplified to the form
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s (p? + M?)? — M?T?  2MT'B,
|: (am+1bm + bm—lam) + p2 T M2 p2 + M2 f12
r . - 2By
Am m m— Am ar = 2
+|:p2—|—M2(a +1bm + bn—1Gm) + — } (p3fs +pafs) =0 (26)
where the following identity has been used: &m+1l;m — Em_ldm = -2By.

Now, we turn again to (19) and (20). By multiplying the first relation by ps, and the second one

by p4, and summing the results, we find

1

(M +T)(psfs + pifa) +p° f12]

(p3f3 + pafa) + Gmy1bm

1

ZA) B A~
Fom—1lm e NP — T

M (p? +2 +MT)

(M —T)(psfs + pafa)] — p*fr2] = 0.

Thus, we have found two equations for (psfs + psafi) and fia:

<p2 + M2)2 o M2F2

2MT By

|: (dm—l-li)m + ém—l&m) +

[T
p2_|_M2

p2+M2

(derle + i)mflém)

p2+M2:|f12

+ 2.]50 } (p3fs +pafs) =0;

[ (p* + M?)2 — M*T? |(p3fz + pafa) 4 (p? + M? — T)(@ms1bm + bm—14m) (D3 f3 + pafa)

2B0Fp2
M

These equations may be reduced to such a form,
that the 2-nd order operator (@mm+1b0m + bm—1am)
acts on a single function:

<%q — F) (p3f3 +pafs) + [&m+1[;m

2B,T
M :| f12 - 07

[&m+lgm + Bmfldm +p2 + M2](p3f3 ‘|‘p4f4)

2Byp?
+ <p2f — ]\04p> f12 = 0.

b1 +pP+ M? —T? —

Thus, the final form of the equations for the
four functions f3, f4, f12, f34 has the following
relatively simple structure:

f3a = —LM (pafs — p3fa) . (27)

(p3f3 + pafa) = p* | D(@mi1bm + bo—1dm) +

2By(p? + M?) F1a =0
— | fiz=0

(

[&erle + (;mfl&m +p2 + MQ]
X(pafs —p3fs) =0, (28)

[derle + i)mflém +p2 =+ MQ] (pSfS + p4f4)

= —p? <F - 2;}) f12429)

i 1bm + b1 + D> + M2 fio =T

X (T - 25;) fiz+ (T — %)(Psfs + paf1)(30)

4. Solving the radial equations,
the energy spectra

The analysis of (27) and (28) can be now
clearly done. The second sub-system (29)-(30) is
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solved through diagonalizing the mixing matrix.
To this goal, let us introduce the new functions

Q1 = (p3f3 + pafa) + M fi2,

Oy = (p3f3 + pafa) + Ao fi2 (31

where A1, A9 stand for the roots of the equation
A2 A +p?=0:

1
>\1=§(F+VF2—4P2),

1

)\2:2

(I'— /T2 —4p?).

So we get two separate equations:
(derle + b1 + P2+ M? + )\,1,2) ®15=0

where M| = (280 —T)\;, and X, = (222 —T)\s.
The radial equations read

¢ 1d 2 2y
(dr2+rdr+€ —M" —p35— Ay

— B 2\2
_Wlﬂw>)¢m_g

In variable z = |By|r?, the the equation for ®;
takes the form

Pwd@d2+d>_BMm—ﬁwww2

dz? ~dx x

+e*— M? —p5 — N @ =0.
First, let it be By = —|Byl; then we have

[d2 d

(m + x)?
a2

dr 4z

€2 — M? —p3 =\

[}
4|By| '

=0.

With the substitution ®; = a;Ae_Cxin, A =
Im|/2, ¢ = 3, we get
d? d <|m +m+1

“ 1—
:deQ + (jm[ + x)d:c 2

62_M2_p§_)\’1)] B —0.
4| Bo|

This is a confluent hypergeometric equation; to
get polynomial solutions we must impose the
condition

|m|+m+1 _62—M2—p§—)\’1 y ..
2 4| Bo| ’

whence it follows €2 — M2 —p3 — X} = 2|By|(m +
|m| 4+ 1+ 2n). Hence, the two energy spectra are

@17

)

el —M><p3 = 2|Bp|(m+|m|+1+2n)+ | 5 .
using the simplifying notations

2|Bol(m + |m| + 1+ 2n) = N,
2B,
27 L=w

u g(r+ VT2 +4E), N, = g(r— T2 4 4E).

—p2262—p§:E>0,

the formulas for energy levels read

&y, By = —|Bo|, E-M? = N+§(F+\/F2 T 4E),

&y, By = —|Bo|, E-M?= N+2(I'—

2 +4F).
2 +4E)

We solve these equations for E:

2F —2M? — 2N — a1 = +2/I2 + 4E —
z=2N +2M? + aT,
22 _ 212

Ez—E(z+x2)+f:0;

and the roots are

2
1
B =7 4—23: + 5\/(2 +a?)? — (2% — 2%?),
2
1
Ey = z—;x — 5\/(2 +22)2 — (22 — 221?).

(32)

To have both E7 and Ej real-valued and positive
(such that these refer to physical energy levels),
we require

z2—a:2F2>0, z+x2>0,
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(z+2%)? — (22 —2°T?) > 0.
We consider the first inequality

22— 2’T? = (z—al)(z+20) >0

— (2N +2M?)(2N + 2M?* + 22T) > 0;

this holds true if we impose the following

restriction (we remind that By = —|By| < 0):
2|Bo|
r>0 <= rr<o
: ST
2| By
—— < I'<0. 33
7 << (33)

The second inequality z+2% = (2N +2M?)+z +
22 > 0 is valid due to (33). The third inequality
2202 + 2% + 2272 > 0 is valid due to

z=2N +2M? + T, 2" > 0.

Thus, we get one simple restriction on the
parameter I':

92| B
By = —|By|, —‘M°|<F<0, (34)

which ensures that both spectra-are physical
(real and positive) for all the values of quantum
numbers. In the case under comsideration, By =
—|Bo| < 0, from (5) it follows

—|Bo|

I'=+4
M

A3A3;

therefore we have the only case when the upper
sign is related to I' < 0.

Similar results can be obtained for the case
of the opposed orientation of the magnetic field,
By = —l—‘B0|:

P19, €§—M>—p3 = 2|Bo|(—m+|m|+1+2n)+ ] 5.
With the similar notation

21Bol(—m + [m| + 1+ 2n) = N

2B,
o T=e

N, = g(r+ VT2 +4E), N, = g(r— T2+ 4F),

—p2:62—p§:E>0,

we derive the formulas for the energies:

2
1
E]_:z—;’w +§\/(Z+£L’2)2—(22—$2F2),
2422 1
Ey = 5~ 5\/(2 +22)2 — (22 — 2?12).

In order to have energy values positive and real-
valued, we must impose the following restrictions

z4x? >0, 22212 > 0, (2+2%)2—(2*—2T?) > 0.
From the inequality

22 <2’ T2 = (z—aD)(z+20) >0

— (2N +2M?)(2N +2M? +22T') > 0

we get the main restriction (we remind that By =
+|Bp| < 0):

2| By|

2I'>0 <= (— +DI'>0 < I'<O0.
We note that the possibility of positive values
I' >0, > 2|By|/M is ignored, because in this
case the admissible region for I' does not contain
the close to zero values. The two remaining
inequalities are valid as well:

2+ 2% = (2N +2M?) + 2T + 22 > 0,
2222 + 2t + 2°T? >0

(z = 2N +2M? 4 2T, 2" > 0).

Let us summarize the main results of the
Sections 2—4.

Three series of the energy levels have been
found; two of them substantially differ from those
for spin 1 particles without anomalous magnetic
moment.

The formula (32) and its restriction (34)
provide us with two series for the energy levels (we
remember the formal change m — —m, when
inverting the orientation of the magnetic field)
in both cases By = —|By|, and By = +|By|. To
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assign to the energies F; and FEs physical sense
for all values of the main quantum number n =
0,1,2,..., one must impose special restrictions —
which are explicitly formulated — on the values of
the anomalous magnetic moment. Without these
restrictions, only some part of the energy levels
correspond to bound states.

The third series of the energy levels (see
(28)) has the form:

BQ = —‘Bo| .
E3 =€ — M?* —p2 = 2|Bo|(m + |m| + 1+ 2n),
By = +|By| :

Es3 =€> — M? — p2 = 2|By|(—m + |m| + 1+ 2n);

in these states the anomalous magnetic moment
does not manifest itself at all.

5. Neutral particles with

anomalous magnetic moment
The case of a neutral vector boson is of

particular interest; now the radial system for
f3, f4, f12, f34 becomes more simple and reads:

faa= —i(p4f3 — p3fa),

M
[&m+1bm =+ bmflam + p2 + M2]
X (pafz —p3fa) =0, (35)

[ +1bym + by 16m + p* + M?]
x(p3fs + pafs) = —p°T frz, (36)

[am1bm + byn—1m + p? + M2 f12
=T?f12+T(psfs +pafs). (37

Solving (35) is a trivial task. The system (36)-
(37) can be solved trough the diagonalization of
the mixing matrix. Let us introduce the notation

1
A=—

T [dm—l-li)m + Z;m—l&m +p2 + M? ] ,

(p3f3 +pafs) = ®1,  fi2 = Do

then the system (36)-(37) reads in the matrix
form as follows

.2
A Q1| _ |0 =p7 || P
Py 1 T %)
D1 | _ o[ 00—p* | go1g| P2
— AS oy | = S’ LT S 'S ®,
Requiring
g 0 —p? g1o A1 0 7 _ | s1 s12 7
1 T 0 Ao 821 S22
we derive two sub-systems:
—)\1 1 S11 _ 0
—p* (L= X1) || s12 ’
—/\2 1 S921 —0
—p* (T = X2) || s22

We use the solutions of the form:
1
M=o+ VIZ —4p?), su=1, si2=MA;
1
Ay = §(F — /T2 —4p?), s91 =1, s92 = Aa. (38)

Thus, for the functions ®; and ®o, we get the
separated equations

(@mg1bm +bm—1Gm +p* +M? —TAj9) 10 =0.
In the explicit form, these read

- M*—p2+Tho=D,

d? 1d m?
Ll p ) g, 0.
<dr2 + rdr + r2 > 12=0

Let us search for solutions of the form & =

rAeBT f(r); for f(r), we derive
2f  2A+1 df
NG 2B) —
dr? +( +2B) dr
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A’ —m? 2AB+ B
+< — + +B2+D>f:o.
r r
By imposing the following restrictions:

A2 —m? = = A=+|m|;

B*=-D =— B=x+iVD,
the above equation is simplified to

4> f daf
1 = U.
T +(2A+1+2Br) dr+(2AB+B)f 0

If we take the positive case A = + | m |, then
the solutions are vanishing near the point r = 0.
Moreover, from physical considerations, we must
require the parameter D to be positive, in order
to agree with the correspondence principle:

'=0 = D—=Dy=€e—M*—p3>0.

Without loss of generality, let us assume that B =
+iv/ D. In new variable, the above equation reads
as a confluent hypergeometric equation

2Br = —ua,
&ef
T da?

df 1
+(2A+1_I)dx_<A+2)f_0’
F"+ (c—2)F' —aF =0,

a=A+1/2, ¢=24A+1=2a

where x = —2Br = —2i\/M? — p% + T'\; 2. Thus,
for a neutral particle, no bound states exist, and
the qualitative manifestation of the anomalous
magnetic moment is mainly revealed by appearing
of space scaling of the arguments of the wave
functions, in comparison with the case of particles
without the magnetic moment. Formally, we have
two sorts of states depending on the sign of I':

)\1,27

1
x=—2Br= —Zi\/M2 —p3 +F§(Fi

There exists a third type of states in which the
parameter I' does not manifest itself at all (see

(35)):

? 14 9 5 o m?

v . -4 Y Ve S
<d7’2 +rdr+6 P3 r2

2 —4p?).

X(pafs —p3fa) =0,

for these states, the solutions depend on

non-modified argument z: x = -—2Br =
—2i\/M? — p3.
6. Shamaly—Capri . theory and

General Relativity

Now, let us show that in Minkowski space,
the Shamaly—Capri-20-component model for the
spin 1 particle in the absence of an external
electromagnetic field is reduced to ordinary DK
10-component theory. We start with a free particle
wave equation

(i0%9, — m)W(z) =0 (39)

where the 20-component wave function includes
the tensors, scalar and vector ®, &, and
additionally  includes  antisymmetric  and
ureducible  symmetric  tensors P, Prap);
note that the matrices I'* are 20 x 20-dimensional
ones:

% = —i(Are®® — Xie®* + Agygpy, e™ 1R
X5 gkne ™ — X3 gip € — N gpnel*m, (40)

(x) stands for complex conjugation, (gqp) =
diag(+1,—1,—1,—1); note that in this section
it is more convenient in local Minkowski space
to use metric without complex unit. In (40),
numerical parameters \; obey the following set
of restrictions (see [18]):

AT — gksAzﬁ, =0, M5 —AA5=1. (41)

We determine the explicit form of the matrices I'*
by using the basic elements of the relevant matrix
algebra e

AB\D _ ¢A B, D _ABCD _ BC _AD
(6 )C _50 g , € € = e R

9

A, B,...=0, a, [ab], (ab)

where (5]?4 is the generalized Kronecker symbol.
The symbols with upper indexes gF are derived
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from § é4 with the help of the Minkowski metric
tensor. We use the following Kronecker symbols:

5[(5;7] — 52 52 _ 53 62, g[ab},[cd} — gac gbd o gad gbc’

a a a 1 a
5(£dl))) :60 5cbl + 5d510) - 59 bgcda

lab cd

(ab),(cd)
9 g g,

ac bd ad bc

g =99 t+g9°g

and also the generators J for the Lorentz group
representation

Jzzb _ (ea,b - eb,a) + gkn(e[ak],[bn] o e[bk],[an])

+gkn(e(ak),(bn) - e(bk),(an)) )

Let us transform now (39) to its tensor form
with respect to @, @q, Prap), P(ap):
/\1 8‘1(1)& =m (I),
—A1Op® + X20" Py — A30“P 10y = mPy,
A3 (0p®@q — 0u®y) = mPpq),
* 1 C
—)\3(81,(1’@ + 8(1(1)1, — §gaba (I’C) — m@(ab). (42)

From the first and fourth equations in (42), by
considering the relations (41), we obtain

— )\T OHd = A3 8a<1)(ba) =

Then (see (42) and (41)) we get %(’9“(1)[1)&] =
2

m @y Defining now ¥, = A®q, Vi = Py s

we obtain the ordinary Proca tensor equations

0b\D[ab] = mllla s aa\IJb — ab\pa = m\Il[ab] . (43)

The last equation can be represented in DK
matrix form as

U
(i 3%, —m)T =0, xy:‘ a“
Wap) (44)
Ba _ _Z-gbc(ec,[ba] - e[ba],c) )

So, the equations (39) and (44) are equivalent
from physical standpoint, because their solutions
must be unambiguously mutually related.

The generalization of (39) to the case of
arbitrary curved space-time with the metric
gap(x) and any relevant e?a)(a:), may be
performed in accordance with the tetrad method
of Tetrode-Weyl-Fock-Ivanenko [23]. Such an
equation has the form

[iF“(8u+Bu)—m]\I/:0,
- i (45)
(ZF 8(a)+§1“J ’cha—m>\I/=0

where the notation is used:

a 1 ab v
P'u =T G'E}Ja) s B,LL = §J e(a)vue(b)y,

a(a) = e?a)au y Yabe = _(vﬁe(a)a)ez’)e(ﬂc)’

V., represents the covariant derivative, while .
stands for the Ricci rotation coefficient.

The general covariant matrix wave equation
(45) may be transformed to the tetrad tensor form

AL (0@ 4 A D, =m®,

—A} 0@ + A2 (0B + 7, P + 15Dy )
X3 (09D + %R (1) + 1D (4 ) =MDy,
A5 (0 s — Oy ®r + VD — 7Py

= mq)['r‘s]a

_)‘g [(a(r)q)s + a(s)q)r + rY'rds(I)d + ’ysi(bd)
1

~ g 9rs (0P, + 729®4)] = m ).

(46)

Let us eliminate the components, and obtain
the equation for the main components &, and
®r.q. To this end, from the first and fourth
equations in (46) we express ® and @4 and
substitute the results into the second one. Due
to the conditions (41) and the third equation in
(46), we get

Henuneiinbie siBiieHnst B cJIoKHBIX cuctemax 1. 20, Ne 1, 2017



Spin 1 Particle with Anomalous Magnetic Moment in an External Uniform Magnetic Field 37

_)‘T a(r)q) — A3 [a(a)q)(r(z) + ’Yrdaq)(da) + ’yazczlq)(dr)] =

m

2N [4h 0 @, + 7%y %o =

Hence, we obtain

m : [’yar’(a) Dy + v g,(r) Cq

V% 00y Dy

2

[3(a)‘1>[m} + P + VP ]

Vrab a(a) (I)b + %"abfydbaq)d ’Yall)]’ycarq) ] :

1

= (0P + 71,2 ey + 77 iy )
2

= 1000 ® — %" 00y @b + 1 Yy Pa = WA ar Be] = My (47)

It remains to transform the third equation in (46) and Eq. (47) to the above introduced variables
U, and V.. In the end, we derive the tetrad generalized Proca system:

—2X3X5m " [0 Uy + 4% (g Wa — Y P(a) T

Oy Ws — OV + 7oy ¥a —

The term proportional to ZASAJ determines an

additional interaction term for a. generalized
vector particle with the gravitational field.

If we take into account the tetrad form of
the Riemann and Ricci tensors through the Ricci
rotation coefficients:

~Yabe,(d) + Yabd,(c) + ’Yakc'}/kl;)d + 'Yabn'}ﬂéd
—Yakd Voo = Yabn Ve »
Wy 13 + Y™ — Ve,

Rabcd =

Rb — Rab _ N
we finally get
2A373

O Wra) + 1, Vg + V5 ) —

[Rbr\lfb — ’yaf 6(a)\11b — ’yrab 6(a)\Pb] —mV¥, =0.

Like in (43), the system (48) can be
represented in the matrix DK form:

A3A3

- na i a 7c
{Zﬁ 8(oL) + 56 J(%)’cha - [(7 7kb>

- Wraba(a) Uy + Wrabfydba Vg — PYQII))PYCaT Ve ]

OV + % Uy + 77 Wy

mW,,

fydba Vg=mWy . (48)

x ("% — "),y + Ry (e + eMP)] — m} ¥=0.

It can be readily proved that the tetrad system
(46) can be transformed to the generally covariant
tensor form (below we use the notation D, =
A1 D@ = m®, (49)

—X{D/gq) + /\QDQ(I)[BQ] — /\3DQ(I)(Q5) = m‘I’g,
A;(Da@ﬁ — Dﬁ(I’a) = mq)[am, (50)

N 1
—/\3[Daq)g + DB(I)a - igagqu)p] = mq)(aﬁ).(f)l)

The relations between the tetrad and the tensor
components are:

— la _ o) (0)
0, = eV, Plag) = e )65 P a)»
— (@),
P(ag) = e ey P(ap)-
As for (46), the system (51) can be reduced to the

minimal form

2A3\}

1
=D Qg +

e [Dqo, Dg]— ®* = m &g,
2
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Xy (Da®s — Dp®y) = mPpag).

or, alternatively, to

2A3\]
Dy, Dl 0% = m g,
| il m¥ss (59)

Da\Ilg — Dﬁ\lla =m \I/[am .

D*W5q) +

Taking into account that [D,,Dgl-¥* =
(—ieFag + Ra3)V®, we conclude that the
parameter )‘i’;\; in (52) determines both the
anomalous magnetic moment of a spin 1 particle
and the additional interaction term with non-
FEuclidean space-time background through the
Ricci tensor Rqg.

7. Conclusions

By applying the matrix 10-dimensional
Duffin—-Kemmer formalism to the Shamaly—Capri
field, the behavior of a vector particle with
anomalous magnetic moment is studied in the

presence of an external uniform magnetic field.
The problem is reduced to a system of 2-nd
order differential equations for three independent
functions, these equation are solved in terms of
confluent hypergeometric functions. Three series
of the energy levels are found; two of them
substantially differ from those for spin'1 particle
without anomalous magnetic moment. To assign
them physical sense for all values of the main
quantum number n = 0,1, 2,... one has to impose
special restrictions on a parameter related to
the anomalous moment. Otherwise, the energy
levels corresponds only partially to the bound
states. The neutral spin 1 particle is considered
as well. In this case no bound states exist in the
system, and the main qualitative manifestation
of the anomalous magnetic moment consists in
occurrence of space scaling of the arguments of
the wave functions, in comparison with a particle
which has no such a moment. Some features
of theory of the Shamaly—-Capri particle within
General Relativity are given.
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