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ABSTRACT 

The purpose of navigation system is to help mobile robot in 

order to select an optimal and short path to reach the target. In 

most of these systems, GPS are used to determine the robot 

position. There are errors in positioning using GPS. This 

paper considers the problem of navigating a Mobile Robot in 

an unknown environment while maintaining visibility with a 

(movable or non-movable) target by means of Fuzzy Model 

Predictive Control (FMPC). The approach combines input 

variables from different resources such as: GPS, RVS (Robot 

Vision System), and QVS (Quad-copter Vision System). In 

this paper, a new approach based on Fuzzy Model Predictive 

Control (FMPC) is proposed to solve the positioning and 

navigation problems for mobile robot. 
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1. INTRODUCTION 
Mobile robotics is the area of robotics that groups the robots 

that have no fixed base, or they can get around within a 

limited or no space. Robot’s locomotion should be recognized 

as a moving object, save its position within this space 

understand the physical limits of space and adapt providing 

ways and fixed objects that can be obstacles to be diverted. 

The robots have potential application in areas such as (i) 

Support to medical services (Transportation of food, 

medication, medical exams); (ii) Automatic cleaning of areas 

(Supermarkets, airports, industrial sites); (iii) Agricultural and 

Forests (fertilization, planting, fire preventing, tree cutting); 

(iv) Hazard Environments (catastrophic areas, volcanoes, 

nuclear power plants, inspection of gas or oil pipes); (v) 

Military (Surveillance vehicles, Monitoring vehicles); (vi) 

Safety ( Surveillance of large areas, buildings, airports, car 

parking); and (vii) Civil Transportation (Inspection of 

airplanes, trains). 

A 4-wheel mobile robot is a robot that can move in any 

direction in the horizontal plane depending on angle of 

rotation Ɵ . Thus, for locomotion, it is necessary that it has a 

computer embedded system responsible for controlling all its 

functions. This computer system can send and receive 

information so that the robot can perform its functions. Thus, 

this is called a control system. This system can be divided into 

simpler control modules. 

The Mobile Robot is a strongly coupled system which 

influence the rotation of front wheels directly influences the 

speed of the other two wheels, as well as the resulting velocity 

of the center of mass of the robot. For this coupled system, 

nonlinear and MIMO (Multiple Inputs Multiple outputs) 

developed a multivariable control. 

A major difficulty in a mobile robot design is the controller 

design for trajectory tracking. The trajectory control may be 

accomplished through numerous control techniques. When 

considering a path that faithfully represents the desired 

trajectory, it is necessary to introduce an approach that 

incorporates a data feed related to the actual location of the 

mobile robot. This perspective is fundamental to running a 

control to ensure the displacement of the robot in a desired 

trajectory. 

The main objective of this work is to introduce and develop a 

multivariable controller for mapping 4-wheel mobile robot 

path using a model in state space that allows the robots to 

move smoothly with obstacles avoidance. Robot’s position 

plays a key role in path tracking. The objective of the study of 

path planning in mobile robotics is to give robots the ability to 

plan their own movements, without the need for direct 

interference of humans. As a result, our approach is to use 

model predictive control for robot trajectory generation 

(navigation) and positioning. 

Path trajectory for a four-wheel mobile robot (Belarus 132N) 

is in fact a feedback control problem to which model-based 

predictive control (MPC) has been an effective mechanism 

[1,2]. Most MPC control applications are based on linear 

models of dynamic systems to predict outputs over a certain 

horizon. Future sequences of control signals are evaluated by 

minimizing a cost index that takes account of the future output 

prediction errors over a reference trajectory, as well as control 

efforts. However, when the systems are non-linear and are 

operated over a large dynamic range, the use of linear models 

becomes impractical, and the identification of non-linear 

models for control becomes absolutely necessary. 

Fuzzy Model Predictive Control (FMPC) [3], [4] combines 

input variables from different resources such as: GPS, robot 

image system, and quad-copter video system in order to 

achieve localization i.e. Cartesian coordinates (x,y) and the 

orientation θ. 

This paper is organized as follows: Section II presents the four 

wheeled mobile robot design, and Section III presents the 

fuzzy model predictive control. The proposed control system 
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is demonstrated in Section IV. Our conclusions and thoughts 

on future extensions are summarized in Section V. 

2. FOUR WHEELED MOBILE ROBOT 

DESIGN  
The wheel has been by far the most popular locomotion (how 

the robot moves through its environment) mechanism in 

mobile robotics and in man-made vehicles in general. It can 

achieve very good efficiencies, and it does so with a relatively 

simple mechanical implementation. Almost all wheeled robot 

research tends to focus on the problems of traction and 

stability, maneuverability, and control: can the robot wheels 

provide sufficient traction and stability for the robot to cover 

all of the desired terrain, and does the robot's wheeled 

configuration enable sufficient control over the velocity of the 

robot?  

2.1 Design of Belarus-132N Mobile Robot 
The Mobile robot used in the experiment use chassis tractors 

"Belarus-132N" platform with the petrol engine (HONDA 

GX390). Its weight is about 400 kg with dimensions of 

120×120×180 cm3. General view of the current mobile robot 

system is shown in Fig. 1.  

 

Fig 1: General view of the Belarus 132N Robotic system 

2.2 Discrete Time Model of Belarus-132N 

Wheeled Mobile Robot 
The robot is assumed to be moved in a flat plane where the 

motion P can be described in Ixp and Iyp direction using four 

wheels. The direction θ determines the rotation of mobile 

robot in counter clockwise. The robot motion can be described 

in two coordinate systems: global coordinate system Ix ,Iy axis 

and Local coordinate system Ex , Ey as shown in Fig. 2.  

Fig 2:  Location of Wheeled Mobile Robot with respect to  

global and local coordinate system 

 

Fig 3: kinematic Position of a Wheeled Mobile Robot 

2.2.1 Kinematic model of mobile robot 
The kinematic model [5] of a mobile robot at point p(xp , yp, 

θp)  as shown in Fig. 3 is given by:  

(1) 

                 (2) 

Where x and y represent the coordinates of the centre of the 

axis of the actuated wheels on the plane X-Y and θ is the 

angle formed by the longitudinal axis of the robot and the X 

axis. V represents the linear velocity, ω represents the angular 

velocity, V1 and V2 - longitudinal velocity of the wheel while 

K - drive transmission ratio. The kinematic model of a four 

wheeled mobile robot is shown in Fig. 4. 

 

Fig 4: kinematic Model of a Wheeled Mobile Robot 

2.2.2 Discrete Time Model of mobile robot 
Considering an example break Ts and a zero-appeal hold, eq. 

(1) movements in discrete-time of a mobile robot at point p(xp 

, yp, θp) to: 

 

 

  

           

  

 

 

Consequently a virtual robot, the heading qd(t)=[ xd(t) yd(t)  

θd(t) ] is viewed as coming about the accompanying kinematic 

model, Mathematical statement of the virtual robot can be 

communicated as: 

(4) 
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Where pd=(xd , yd, θd) represents the desired pose, Vd the 

desired linear speed, wd the desired angular. 

Considering an example break Ts and a zero-appeal hold, eq. 

(4) movements in discrete-time to: 

 

 

 

(5) 

 

 

 

3. OVERVIEW OF 

MODELPREDICTIVE CONTROL 
Model Predictive Control (MPC), is playing a  vital propelled 

control technique for troublesome multivariable control 

problems and is widely implemented within industry and 

getting more popular to those who are interested in control to 

fulfill their duties. In fact predictive control would describe an 

approach to the control design rather than a specific 

algorithm. And thus an interpretation of the approach is 

required to define a suitable algorithm that fits the needs. If a 

clear and defined dynamic model is available for a process, 

then the model and present measurements could be utilized to 

reach forthcoming/future output values. At that point the 

proper fluctuations in the input variables can be computed in 

accordance of the measurements and predictions. 

Fundamentally, any changes in the input variables are 

managed with respect to the I/P-I/O relationships that are 

introduced by the process model. The output variables are 

referred as controlled variables (CVs), and on the other hand   

input variables are referred to as manipulated variables 

(MVs). In addition, the measured disturbance variables are 

known as (DVs) and in other terms may be called feed 

forward variables. 

Model predictive control is well known to provide many 

favorable leverages; first as we begin by the  process model it 

would start in collecting the static as well as the dynamic 

interaction between the input, output, and DVs; secondly, the 

constraints if any are existing on I/P and O/P which are  taken 

into effect in the sense of systematic aspect; thirdly, the 

control computations are possible to interact with finding the 

ultimate set points, and the fourthly;  building a model of 

accurate predication can detect, trace and flag any upcoming 

issues. Realizing that the main objective that MPC has been 

illustrated by Qin and Badgwell as: i) to avoid infringement of 

constraints on I/O-O/P; ii) push part or few of the O/P 

variables to the set point (SP), while keeping up other O/Ps in 

defined set of ranges; iii) to set a static status on the input 

variables; iv) and in the absence of a sensor to control the 

most possible process variables. 

MPC is a comprehensive control system that consists of 

accompanying modules [6], [7], [8], [9]. MPC system block 

diagram is shown in Fig. 5. In order to predict the output 

variables values a process model is going to effectively used. 

Normally any variations between real and predicted outputs 

are going to be acting as a feedback signal to a prediction 

module. At every sampling instance those predictions are 

utilized as a part of the following MPC calculations which 

starts with the set point and control computations. Note that 

inequality constraints whether occurring on the input and 

output variables, can be involved in any of the above 

calculations. 

Targets which are known as set points and serve for control 

calculations would be evaluated and computed from the 

process steady state model (linear model). When the process 

settings are changing the set points values change as well due 

to these variations in the process circumstance particularly in 

the changes of the inequality constraints. The changes and 

variations in the constraint are mainly due to fluctuations in 

process surroundings, apparatus, devices, etc.  

 

 

Fig 5: Block diagram for model predictive control 

4. GENERALIZED NONLINEAR 

PREDICTIVECONTROL 
Figure 6 demonstrates the basic principle of MPC. At a 

denoted time (t) certain measurements are provided. These 

measurements will trigger the controller and kick it to 

commence predicting the forthcoming (future) dynamic act of 

a system over a predicted horizon called Tp and furthermore 

determines the input   at which optimization of predefined 

open loop performance goals are met. 

As long as neither disturbances exist nor mismatching model 

plant presence is evident, in this case if there was a way for 

the infinite horizon optimization issue to take place in solving 

it, hence at this point and at time of t=0 the input function can 

be incorporated in regards of the system in a condition where 

all times “t” is greater or equal to zero (t ≥ 0). However and as 

a matter of fact, this is not feasible generally. Because of the 

factors of disturbances and the stressing mismatching model 

plant, the real and predicted behaviors of the system will not 

be the same. The integration of the feedback would depend on 

the acquired I/P function of the open loop and shall be ready 

for implementation whenever a next measurement is around. 

A difference in the time among the re-calculation incident and 

measurement can change but regularly is expected being fixed 

however often it is assumed to be fixed, i.e. a measurement is 

going to occur throughout each δ sampling time units. During 

a time (t + δ) a new measurement is used, and later due to 

these measurements  the process of  both the optimization and  

prediction will re-run to figure out and get another recent 

input function (new) in conjunction with both the 

control/prediction horizons advancing ahead forward.  
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 Fig 6: Principle of model predictive control 

Nevertheless, the input can be assumed as constant during a 

sampling time δ. The computations of the input that will be 

applied permits adding constraints on the states/inputs and 

more could go for optimizing certain cost function. 

Technically speaking the behavior of predicted system is 

going to be different from a closed loop; therefore the stability 

of the closed loop will require more analysis to achieve it. 

According to the literature a nonlinear set of differential 

equations as outlined and shown below will touch base the 

issue of  stabilization as we move through a set of systems [6], 

[7]: 

(6)

  

Which is represented to input and state constraints as set out 

below, 

                (7) 

Where x(t)  denotes the  states 

vectors along with the inputs. The set of feasible input values 

is denoted by X. Note that μ and X shown as constraints 

according to the below form: 

(8) 

 

 

Note that umin, umaxas well as xmin, xmaxare assumed as constant 

vectors.We presume that the aim and main objective of a 

control object (6) is to assure: 

 

;                                                 (9)

    

Where the vector functions; and identify a 

preferred passage of object. 

The control of objects’ moves can be set or regulated by a 

specific functional; (1). 

                                (10) 

Optimal control problem would definitely need to look for a 

control action of a specified class, which assure the 

accomplishment of setup goals (9) without forgetting the 

constraints  and hence the 

functional minimizes (10). 

To overcome the problems of optimal control various 

techniques are used and applied in the multiple forms and 

approaches where we can take as a sample the theoretical 

applications in model predictive control that was considered 

as the backbone of feedback based on the structure of control 

action that rely on and utilize the measured information on the 

object’s state. 

To illustrate and go through a predictive control theory, we 

will need to consider a mathematical model of the control 

object (6) as well as we will need a set of differential 

equations that can be such as:  

,                           (11)                   

Additionally, assume that the function  is set for any 

permissible control  vector functions  and   

, meets the system expectations (6) and (11) respectively; 

and being nearby at a pace of  . 

The identified systematic model of differential equations (11) 

has formed a close associative relation between the predictive 

and mathematical models (6) of the control object.  

 

Fig 7: Predictive plant movement 

A delayed time , at the x-axis would be and during an initial 

state, let us consider   =T. So far, the control object with an 

unidentified precise model of the form (6) is forward moving 

through the influence of certain control executed 

feedback scheme, and through the time it was in a state. 

Let us consider an explicit control that would work as a 

function of time interval and being having a full integration 

with the system (11) at a defined interval with the initial state. 

The resultant incomplete solution will be viewed as the 

predicted behavior of the control object however through the 

zone of prediction horizon as shown in Fig. 7. 

We need to stress out that because of the differences that falls 

among the dynamics of a real object and a predictive model of 

transit on the sector.  Such a segment will be assumed an 

entire difference, knowing that any sort of concurrence is 

valid at the initial point only. 

At this point we can formulate a mathematical problem of 

choosing the optimal control based on the forecast. Further we 

will suppose that the purpose of management is to provide a 

predetermined pattern of behavior (11), it is determined as in 
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(9), and vector functions and   where  - the 

state vector;   - the vector control,   

The structure of all controllers of the MPC family follows a 

strategy as shown in Fig. 8 as follows: (i) Future output values 

are calculated every time t; (ii) Future control signals using an 

optimization method, process, and the reference trajectory is 

calculated so as to converge as much as possible; (iii) 

Typically, this optimization method is quadratic as a function 

of the difference between the predicted output and the 

predicted trajectory; (iv) The control signals measured only 

the first sample found. 

 

 

Fig 8: Model predictive control scheme 

By introducing model predictive control approach a 

formulation of a constrained optimal control algorithm is and 

incorporated throughout the receding horizon scheme [10]. 

It is obvious that any sort of a model is constructed as a result 

of the physical plant characteristics as well as the control 

problem normally and initially would be formulated by taking 

into account the objectives and constraints  of the system. 

4.1 Fuzzy Modeling 
A highly nonlinear system controlled by a linear Model 

Predictive Controller may not give a satisfactory control 

solution. To solve this problem, Nonlinear Model Predictive 

Control methods are proposed. But it is not easy to apply 

these methods practically since the nonlinearity increases the 

computational effort. Nonlinear process is defined by a set of 

linear sub-models and algorithms decreasing the 

computational effort to design controllers are proposed. In this 

study, an alternative approach to these methods, Fuzzy Model 

Predictive Control approach is proposed. 

According to the Fuzzy Model Predictive Control approach, a 

nonlinear process is described by a fuzzy convolution model 

that consists of a number of linear or quasi-linear subsystems. 

For each subsystem, a Model Predictive Controller is 

designed and the control effort is fuzzily merged by using the 

same rules used to merge subsystems.  

Fuzzy logic, linguistic variables are expressed based on an 

expert knowledge, it is a method used in order to quantify the 

value of linguistic and linguistic rules [11]. Fuzzy logic is 

frequently used in the modeling of complex systems. 

Depending on the nature of inference rules, there are three 

different models of fuzzy systems: (i) Linguistic fuzzy 

models; (ii) Fuzzy related models; (iii) Takagi - Sugeno (TS) 

fuzzy model [12]. 

The first two categories above are known as Mamdani fuzzy 

models. Accordingly, TS fuzzy modeling structure can be 

defined as follows: (i) The input space separated into sub 

spaces; (ii) Then each sub-space system model converges to 

more simple linear models; (iii) Finally, as required by fuzzy 

subsystem models of the rule base on the weighted average, 

the overall structure is created fuzzy model [4]. 

The path above in reference [10] Fuzzy Bend (Convolution) is 

expressed as the model. Accordingly, a non-linear system is 

decomposed into p sub system and the behavior of each sub-

system to be linear or linear-like. TSA's modeling 

requirement, a fuzzy linear-like pattern must be defined for 

each sub-claims [13]. These definitions are fuzzy inference 

(fuzzy implication) is called and in the sub-region (Ri , i = 1,2, 

.., p) is defined. In this way, the cause and effect relationship 

model, the control signal u, output y, and it is represented by 

discrete time difference equation in terms of the sampling 
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instant n. Each region is represented by a fuzzy Cartesian 

product as follows [10]. 

Ri = y(n)× y(n − )1 ×...× y(n − m + )1 ×u(n)× 

u(n −1 ) ×...× u(n −l + 1)                               (12) 

y(n-j) in the above expression, n-j instantly measured output 

value u (n-j) , n-j is instantly measured input values. 

Fuzzy inference rules are consisting of symbolic premise of 

"if" part consisting of the numerical results and the phrase 

"then" consists of. In other words, the lower bending fuzzy 

model has a structure as follows [10]: 

Ri : if  

y(n)Ai
0 , y(n-1)Ai

1, ….. , y(n-m+1)Ai
m-1    

and                                                                                       (13) 

u(n)Bi
0, u(n- 1)Bi

1, ….. , u(n-l+1)Bi
l-1 

Then;      

In the above-mentioned common: 

• Aij ,i’th fuzzy inference Amedaki y (n-j) of the output fuzzy 

sets. 

• Bij ,i’th fuzzy inference Amedaki (n-j) of the input fuzzy 

sets. 

• hij ,i’th fuzzy inference Amedaki impulse response 

coefficients are. 

• T is the model horizon. 

• Δ (n), u (n) and u (n-1) is the difference between [10]. 

In this study, instead of impulse response of the subsystem, 

differential equations were used. This change did not cause 

any difference in the rule base, just brought out a calculation 

of the difference in the form of sub-systems. 

All pieces are pin fuzzy inference in the fuzzy bending model. 

System output y (n + 1), the weighted average of the output 

value calculated by the fuzzy inferences can be found by [10]. 

                              (14) 

Wj term in the above equation, j th fuzzy inference degree of 

reality, that is the multiplier ignition. Ignition factor fuzzy sets 

"if" part is calculated on the basis of the following form [10]: 

                                               (15) 

We use Triangular membership functions for each fuzzy 

linguistic value as shown in Fig. 9 of the total equal to 1. 

 

 

        Fig 9: Membership functions used for the fuzzy model 

Accordingly, y (n + 1) is transformed to equation with the 

following form [13]: 

(16) 

Equation (13) for each fuzzy sub-models as seen when 

calculating yj (n+1)  and yj (n)  is used instead of using y(n). n 

is immediately used such an expression in order to minimize 

the estimation error is known y(n) [10]. 

After the output values calculated FMPC structure will be 

introduced. However, it is necessary to explain the first classic 

MPC structure to explain the first classic MPC structure for it.  

5. PROPOSED SYSTEM 
Differential GPS navigation system which complements the 

fixed network of terrestrial base stations, improves position 

accuracy of one meter. But this accuracy is not quite enough 

to ensure the normal operation of the control systems of 

vehicles, robots and unmanned aerial vehicles. 

A new method to obtain accuracy is a combination of work 

standard GPS, RVS (Robot Vision System), and QVS (Quad-

copter Vision System)as shown in Fig.10. The GPS system 

provides in this case, the exact locations of the binding data, 

RVS, and QVS are used to ensure the continuity of location 

determination process. Combining the data from the GPS, 

RVS, and QVS allow obtaining the exact value of the 

coordinates. 

 

Fig 10: General scheme of QMRS 
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Fig 11: Finding the optimal path of Mobile Robot 

Using this method allows us to achieve a very high level of 

accuracy, but requires computing resources, which do not 

have the most powerful microprocessors and 

microcontrollers. This will create a highly specialized 

navigation systems (Fuzzy Logic) designed for each specific 

area, for car-robots, agricultural robots and other automated 

equipment for civilian and military purposes. Moreover, high-

precision positioning modules may become available in 

smart-phones and other portable electronics without 

increasing their ultimate cost. 

5.1 Detection and Object tracking 
Automatic detection and tracking of objects observed in a 

sequence of images is an actual problem, often occurring in 

the development of navigation systems manned and 

unmanned aircraft. At the same time one of the most 

important challenges is to ensure detection and tracking under 

uncertainty relative spatial arrangement of the camera and 

lens. There detection and tracking task airfield on board the 

aircraft in conditions when the initial relative positioning of 

the airfield and the aircraft is unknown. An essential 

requirement for the developed algorithm is the ability to 

implement it in the onboard data processing systems. 

 

5.1.1 Robot Vision System (RVS) 
RVS use image processing system to extract elements or 

objects by processing each image in the video sequence. RVS 

projects each found object with a vertex on a RVS-smart-

map-graph. Each found object has the following properties: 

a) Identifier - a unique number assigned to the new object 

detection. Number assigned to this object as long as there is 

no decision on the loss of the object; 

b) Coordinate and orientation of object (xi , yi, θi); 

c) Width of new object; 

d) Length of new object; 

e) Height of new object; 

f) Life Time - the number of frames of a video sequence in 

which the object was present since the first detection; 

g) Object type. 

5.1.2 Quad-copter Vision System (QVS) 
QVS use image-down-view processing system to extract 

elements or objects by processing each image in the video 

sequence. QVS projects would each found an object with a 
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vertex on a QVS-smart-map-graph. Each found object has the 

following properties: 

a) Identifier - a unique number assigned to the new object 

detection. Number assigned to this object as long as there is 

no decision on the loss of the object; 

b) Coordinate and orientation of object (xr , yr, θr); 

c) Width of new object; 

d) Length of new object; 

e) Height of new object; 

f) Life Time - the number of frames of a video sequence in 

which the object was present since the first detection; 

g) Object type. 

5.1.3 Trajectory Analysis of RQVS 
Trajectory analysis algorithm is based on the decomposition 

of a smart-map-graph. At the entrance of the algorithm are the 

measurement data - parameters of an image extracted by 

processing each image in the video sequence. Downstream - a 

list of found objects and their properties, in which each 

element of the list is marked with a unique number. 

The first step of the algorithm is to construct a smart-map-

graph; the first group of vertices is the set of objects known on 

the current frame, and the second - the set of connected 

regions found on the frame. The algorithm will measure the 

distance between each pairs of vertices located at Smart-Map-

Graph. 

The algorithm use information of object identifier from both 

RVS and QVS, if the objects appear twice (coincide) on 

smart-graph-map i.e. the object has been detected by both 

systems so the algorithm neglect one of them.  

A recursive procedure is repeated for each received sub-

graph. The feasibility of using this algorithm is caused by the 

presence of such parameter of the detected object, as the time 

of life. At the stage of preliminary detection of the desired 

object is taken with the greatest lifetime and thus reduces the 

probability of false detection. 

With the trajectory analysis algorithm analyzes a list of 

objects found in the previous step. The result of the algorithm 

for tracking the object coordinates of the object are taken, 

having previously memorized identifier. The coordinates of 

the found object can then be used to adjust the rate of moving 

of Mobile Robotas shown in Fig.11. 

 

 

Fig 12: General scheme of the proposed system of FMPC 
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5.2 Calculation of new position (x , y ,Ɵ ) 

Fuzzy Model Predictive Control (FMPC) process input 

variables from different resources such as: GPS, robot vision 

system (RVS), and quad-copter vision system (QVS) in order 

to achieve localization i.e. Cartesian coordinates (X ,Y) and 

the orientation θ.  

The algorithm of Fuzzy Model Predictive Control can be 

described as follows. 

1) Use the coordinate of GPS for Mobile robot.  

2) Calculate the optical flow for the frame for both 

RVS and QVS of smart-graph-map. 

3) The total optical flow into two parts: the "terrestrial" 

and "un-terrestrial ". 

4) In the "un-terrestrial " of the move to a cylindrical 

coordinate system and calculate the angle of 

rotation θ with respect to the last two frames, 

thereby determining the angle of rotation. 

5) The "terrestrial" side of the highlight optical flow 

vectors and to calculate displacement in the plane 

XOY, received vector (x, y). 

6) Add (x, y) to the original position of the mobile 

robot (Xm ,Ym ) in order to get a new position of 

(X, Y). 

7) Go to step 1 for the next frame. Periodically update 

the key points. In general, the process of calculating 

the optical flow is shown in Fig.12. 

 

6. CONCLUSION AND FUTURE WORK 
In this paper, the motion control system and algorithm for a 

Mobile Robot was presented. The robot positioning and 

localization was calculated using Fuzzy Model Predictive 

Control. 

The algorithm of FMPC use data from different inputs such 

as: GPS, RVS, and QVS. The program is able to take into 

consideration the occurrence of obstacles along the path of 

travel. The successful generation and simulation of two 

different kinds of static obstacles from RVS and QVS are 

projected on Smart-Graph-Map. 

The program has been developed in such a way that it 

increases efficiency of moving and localization of mobile 

robot by the help of quad-copter which can be introduced into 

other related applications for unmanned navigation designs. 
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