
Agent-oriented models, method and tools of
compatible problem solvers development for

intelligent systems
Shunkevich D. V.

Belarusian State University of Informatics and Radioelectronics
Minsk, Belarus

shunkevichdv@gmail.com

Abstract—The article is devoted to the development of agent-
oriented models, a method and means for developing compatible
solvers of problems of intelligent systems capable to solve complex
problems. The requirements for such solvers, the model of
problem solver that satisfy the requirements, as well as the
method and tools for developing and modifying such solvers are
considered.

The main problem considered in the work is the problem of
low consistency of the principles underlying the implementation
of various problem solving models. As a consequence, it is difficult
to simultaneously use different models for solving problems
within the same system when solving the same complex problem,
it is practically impossible to reuse the technical solutions
implemented in a certain system, in fact, there are no integrated
methods and tools for problem solvers development.

As a basis for problem solvers design, it is proposed to use
the multi-agent approach. The process of any problem solving
is proposed to decompose into logical atomic actions, which will
ensure compatibility and modifiability of the solvers. The solver
is proposed to be considered as a hierarchical system consisting
of several interconnected levels, which allows to provide the
possibility of independent designing, debugging and verification
of components at different levels.

Keywords—semantic technologies, ostis-system, problem solver,
multi-agent system, intelligent agent, knowledge base

I. INTRODUCTION

One of the key components of each intelligent system is
the problem solver, which provides the ability to solve various
problems, related both to the basic functionality of the system,
and to the such a system efficiency ensuring, as well as the
development automation of the system itself. The problem
solver, ensuring the fulfillment of all listed functions, will be
called the integrated problem solver.

The capabilities of the problem solver largely determine the
functionality of the intelligent system as a whole, the ability
to answer on non-trivial user questions and solve various
problems in a certain subject domain.

The composition of the solver of each particular system
depends on its purpose, the classes of problems being solved,
the subject domain and a lot of other factors. Expanding of the
scope of intelligent systems applications requires such systems
to be able to solve complex problems, that is, problems that
require the application of a variety of different knowledge
representation models and different knowledge processing
models.

Examples of such tasks are:

• The problem of the natural language texts understanding,
both printed and hand-written, understanding of speech
messages, semantic analysis of images. In each of the
listed cases, it is necessary first to performs the syntactic
analysis of the processed file, remove the insignificant
fragments, then classify the significant fragments, corre-
late them with the concepts known to the system, identify
those fragments, that the system can not recognize, elim-
inate duplication of information, etc.;

• The problem of automating adaptive learning of students,
suggesting that the system itself can solve various prob-
lems from a certain subject domain, and also manage the
learning process, create tasks for students and monitor
their implementation;

• The problem of intelligent robots behavior planning,
including both understanding of various kinds of external
information, and the various decision making, using both
reliable and plausible methods.

• The problem of complex and rapidly evolving automation
of various enterprises;

• and others.

At present, there are a lot of problem solving models of
various kinds, including the variety of types of logics (clear,
fuzzy, inductive, deductive, temporal, etc.), neural networks
and genetic algorithms, various strategies of problem solution
search ways (depth-first search, breadth-first search, etc.), var-
ious programming languages, both declarative and imperative.

The ability of different models using for problems solving
within a single system will allow to decompose the complex
problem into subproblems, each of which can be solved by one
of the methods, known to the system. Thanks to a combination
of different problem solving models, the number of problem
classes, which such a system will be able to solve, will be
significantly larger than the total number of problem classes,
which can be solved by several systems, each of which
implements only one of the problem solving models being
integrated.

Modern intelligent systems, oriented to the simultaneous
use of different types of knowledge and various problem
solving models, are built on the principle of hybrid computer

119



systems [1], [2]. Such an approach allows to solve complex
problems, however, during hybrid systems design process, it
becomes necessary to ensure the interaction interface for var-
ious problem solving models. That substantially increases the
overhead in the such systems construction. As a result, such
systems, as a rule, have a complex monolithic architecture, the
introduction of any changes in which requires considerable
work. To solve this problem, it is necessary to ensure the
compatibility of various problem solvers.

At the same time, the urgent problem is the intelligent
system teaching to new knowledge and skills and adapting
it to permanently changing requirements. It is necessary to
attach new resources, including new approaches to solving of
problems of various classes. At the same time, unlike most
modern approaches to computer systems learning (machine
learning) [3], where the class of tasks being solved is actually
fixed (does not change during the learning process) and only
the method of solving is optimized, in this case we are talking
about the expansion of the number of classes of problems
solved by the system, and in the general case - unlimited
expansion.

An important way to reduce the complexity of the process
of changing the functionality of intelligent systems is the
accumulation of libraries of reusable components of solvers
that will significantly reduce both the terms of development
and modification of solvers, and the level of professional
requirements for their developers. At the same time unification
of various models of problem solving on a common formal
basis will allow to form not only traditional libraries of
standard subprograms, but also libraries of entire solvers that
implement one or another problems solving model.

Let us consider in detail one of the examples of complex
problems listed above, which is related to the enterprise
automation.

Within the integrated system of the enterprise automation,
the following automation levels can be conventionally distin-
guished:

• automation of the actual production process at all stages,
from the receipt and evaluation of raw materials to
packaging and goods delivery to the end user;

• automation of production process management, that is,
automation of making changes in the production process,
for example, changes in batch quantities, nomenclature
or properties of the manufactured product, etc;

• automation of production process control, which involves
the use of various methods of the current situation analy-
sis, as well as mechanisms for identifying, classifying and
eliminating of emergencies, up to complete elimination of
the emergency situation without operator intervention.

Figure 1 describes a schematic diagram of the integrated
system of the enterprise automation, showing the application
of which problem solving models is actual in each of the
subsystems of such a system.

In the figure 2 the conventional scheme of the contingencies
handling subsystem is shown in more detail.

This example shows that design of such a complex au-
tomation system is impossible without ensuring the consistent
use of different types of knowledge and problem solving
models within the same system when solving the same com-
plex problem. In addition, the problem of such a system
support in a state corresponding to the current production
technologies level, supplementing it with more advanced mod-
els and methods of problem solving becomes urgent. It is
obvious that such a system reconfiguration should be carried
out directly during the system operation, and not require a
complete stop of the entire production or its individual parts
at every time. Thus, it can be said that such a system should
be learnable, that is being able to acquire not only new
knowledge, but also new skills.

The foregoing allows us to formulate requirements for the
problem solver of an intelligent system, which is able to solve
complex problems:

• at each point in time the solver must ensure the solution
of problems from the specified class for a specified time,
and the result of the problem solution must satisfy certain
known requirements. In other words, as in the case of
modern computer systems, the correctness of the problem
solving results at the system development stage should
be verified by special methods, including such modern
approaches as unit-testing, «black box» testing and others
[4].

• the solver should be easily modifiable, that is, the
complexity of making changes to an already developed
solver should be minimal. Ways to increase the mod-
ifiability are the ensurance of the introduced changes
localness, as well as the availability of ready-made
reusable components that can be included into the solver
if necessary. At the same time, changes must be made
directly during the system operation, and the overhead of
new components integrating or replacing existing ones
should be minimal.

• in order for the intellectual system to be able to analyze
and optimize the existing problem solver, to integrate new
components into it (even by ssystem itself), to evaluate
the importance of certain components and their applica-
bility for particular problem solving, the specification of
the solver should be defined with system understandable
language, for example, with the same means as the
processed knowledge. The ability of an intelligent system
to analyze (verify, correct, optimize) its own components
will be called reflexivity.

• an additional requirement to the integrated problem solver
in relation to the solver in general is its completeness
(integrity, complexity), that is, such a solver must provide
all the functionality of the system, i.e. ensure the solution
of all problems, both related to the direct designation of
the system, and ensuring the effectiveness of the system
operation.

120



Figure 1. Simplified scheme of integrated system of the enterprise automation

Figure 2. The simplified scheme of the contingencies handling subsystem

A. Problems in the development of problem solvers

Despite the fact that there are currently a lot of problem
solving models, many of which are implemented and success-
fully used in practice in various systems [5], [6], [7], [8], the
problem of low consistency of the principles underlying the
implementation of different models of this kind, leads to the
fact that:

• it is difficult to simultaneously use different models of
problem solving within the same system for the same
complex problem solving, it is practically impossible to
combine different models to solve a problem for which
there is no a priori algorithm;

• it is practically impossible to use technical solutions
implemented in one system in other systems, i.e. the
possibility of the component approach implementation
in the problem solvers design is very limited. As a
consequence, there is a large number of duplications of
similar solutions in different systems;

• in fact, there are no complex methods and tools for prob-
lem solvers construction that would provide the ability to
design, implement and debug solvers of various types.

The consequences of these problems are:

• high complexity of each solver development, increase of
their development time, and as a result - the increase of
the corresponding intelligent systems development and
support cost;

121



• high complexity of making changes to the already de-
veloped solvers, i.e. there is no possibility or it is very
difficult to add new components to the already developed
solver and to make changes to existing components
during the system operation process;

• a high level of professional requirements to the develop-
ers of solvers;

B. The proposed approach

The development of a problem solvers model that meets
the above requirements, as well as the corresponding method
and tools for their construction and modification, is proposed
to be implemented within the OSTIS Technology [9]. As
a formal basis for representation of knowledge within this
technology approach, a unified semantic network with set-
theoretic interpretation is used. This representation model is
called SC-code. Elements of such a semantic network are
called sc-nodes and sc-connectors (sc-arcs, sc-edges). The
model of an entity, described by means of SC-code will be
called the semantic model of the specified entity or simply a
sc-model. Computer systems, based on OSTIS Technology are
called ostis-systems. Each ostis-system consists of a sc-models
interpreting platform and the sc-model of this system, which
does not depend on the platform of its interpretation.

Orientation to OSTIS Technology and SC-code is due to
their following advantages and peculiarities:

• SC-code is oriented to the sense representation of knowl-
edge, which allows to generalize the problems solving
models and thus significantly reduce the variety of dif-
ferent models, which is largely due to the representation
forms of certain knowledge types, rather than their mean-
ing;

• SC-code, unlike other widely used knowledge represen-
tation languages, allows to represent in a unified form
any kinds of knowledge, including logical statements
and programs. This fact makes it possible to unify also
the problem solution models on the basis of knowledge
presented in this form and to ensure integration of various
problem solving models on the basis of such formalism;

• the associativity and structural reconfigurability of the
semantic memory (sc-memory), in which the SC-code
constructions are stored, makes it possible to provide
modifiable models for solving problems, presented on its
basis.

In addition, the work involves a number of solutions devel-
oped within the technology:

• a graph procedural programming language SCP, programs
of which are also written using SC-code and which will
be used as the base programming language within the
proposed approach;

• models of knowledge base structuring and models of
various types of knowledge representation, built on the
basis of SC-code, presented in [10];

• the method of consistent construction and modification
of knowledge bases, presented in the work [11];

• means for automatic editing and verification of various
knowledge types, presented in the same work;

• an implementation version of the computer systems sc-
models interpreting platform, considered in the work [12].

At the base of the proposed approach to the previously
formulated problems solution are the following principles:

• as a basis for problem solvers design, it is proposed to
use a multi-agent approach that will allow to build parallel
asynchronous systems, having a distributed architecture,
as well as to increase the modifiability and performance
of the solvers developed.

• the process of any problem solution is proposed to de-
compose into logically atomic actions, which will provide
compatibility and modifiability of the solvers too.

• the solver is suggested to be considered as a hierarchical
system consisting of several interconnected levels. This
approach allows to provide the possibility of designing,
debugging and verifying components at different levels
independently of other levels.

• in order to ensure the reflexivity of the designed intel-
ligent systems, it is proposed to record all information
about the solver and the problems it solves with the
means of SC-code in the same knowledge base as the
subject knowledge of the system. In general, this in-
formation includes: (1) the specification of the solver’s
agents, including the full texts of agent programs (in SCP
language); (2) specification of all information processes
performed by agents in the semantic memory, including
- constructions that ensure synchronization of parallel
processes; (3) specification of all problems on solution of
which the specified information processes are directed;

• when designing the solver as a hierarchical system, it is
suggested to use at each level the component approach,
which allows to significantly reduce the development time
and improve the reliability of solvers by using well-
debugged components. To implement this approach, it is
proposed to develop within the IMS metasystem [13] a
library of solvers components of various levels, as well as
a method for solvers constructing and modifying, which
takes into account the existence of such a library.

• it is proposed to build automation and information sup-
port tools for solvers developers using OSTIS Technol-
ogy, that is, including using models, methods and tools
offered in this work. Such an approach will allow to
ensure high rates of development of these tools, as well
as significantly improve the effectiveness of information
support tools, allowing to build these tools as part of
the intelligent metasystem IMS, that is, as a kind of
intellectual subsystem.

Orientation to the multi-agent approach as a basis for the
modifiable solvers constructing is due to the following main
advantages of this approach [14]:

• autonomy (independence) of agents within such a system,
which allows to localize the changes introduced into the

122



solver during its evolution, and reduce the corresponding
labor costs;

• Decentralization of processing, i.e. the absence of a
single monitoring center, which also allows to localize
the changes introduced into the solver.

The most common and widely used definition of intelligent
agent is given in [15].

Existing approaches to the construction of multi-agent sys-
tems are discussed in detail in the papers [16], [17], [18],
[19], also a specialized journal Autonomous Agents and Multi-
Agent Systems [20] is devoted to multi-agent systems.

In the general case, in order to construct a concrete multi-
agent system, it is necessary to clarify the following compo-
nents:

• a model of the agent itself, which is part of such a system,
including the classification of such agents and a set of
concepts that characterize each agent within the system.
Currently, the most popular is the BDI (belief-desire-
intention) model, in which it is intended to describe the
«beliefs», «desires» and «intentions» of each agent of the
system in appropriate languages.

• a model of the environment within agents are located, on
the events in which they react and within which they can
perform some transformations. A survey on the varieties
of environments for multi-agent systems is given in [21].

• an agent communication model that specifies the agent
interaction language (the structure and classification of
messages) and the way messages are exchanged between
agents. Currently, there are a number of standards de-
scribing agent interaction languages, for example, KQML
[22] and ACL [23].

• a model of agents coordination, regulating the principles
of their activities, including mechanisms for resolving
possible conflicts. Currently, the most works in the field
of multi-agent systems is aimed specifically at mecha-
nisms for coordinating agents, including the allocation of
a higher level agents (meta-agents) [24], various socio-
psychological models [25], [26], ontology-based behavior
[17] and others [27], [28].

The main disadvantages of most popular modern tools for
building multi-agent systems [29], [30], [31], [32], [33], [2],
[34], [35] include the following:

• the rigid orientation of most tools to the BDI model leads
to significant overhead costs associated with the need to
express a particular practical task in the BDI concept
system. At the same time, the orientation toward the BDI
model implicitly provokes the artificial separation of lan-
guages, describing the BDI components themselves and
the agent’s knowledge about the external environment.
That leads to the lack of unification of the representation
and, correspondingly, to additional overhead costs.

• most modern means of multi-agent systems construction
are oriented to the representation of agent’s knowledge
using highly specialized languages, often not intended to
represent knowledge in a broad sense. Here we mean

both the agent’s knowledge of himself (for example, in
accordance with the BDI model) and knowledge about the
external environment. In some approaches, an ontology
is first constructed, which, however, often uses tools with
low expressiveness that are not designed for ontologies
building [32], [33]. Ultimately, this approach leads to
a strong limitation of the capabilities of the developed
multi-agent systems and their incompatibility.

• the absolute majority of modern tools assume that agents
interact through messaging directly from the agent to the
agent. This approach has a significant disadvantage due
to the fact that in this case each agent of the system
should have sufficient information about other agents in
the system, which leads to additional resource costs. In
addition, adding or removing one or more agents leads
to the need to notify other agents about that change. This
problem is solved by organizing agents’ communication
on the «blackboard» principle [36], which assumes that
messages are placed in some common area for all agents,
and each agent in general case may not know to which
of the agents the message is addressed and from which
agent the message was received. However, this approach
does not exclude the problem associated with the need
to develop a specialized agent interaction language that
is not generally associated with a language that describes
the agent’s knowledge about the problems to be solved
and about the environment.

• a lot of means of multi-agent systems construction are
designed in such a way that the logical level of agents’
interaction is rigidly tied to the physical level of the multi-
agent system implementation. For example, when sending
messages from an agent to an agent, the developer of a
multi-agent system needs, in addition to the semantically
significant information, to specify the ip-address of the
computer on which the receiving agent is located, the
encoding with which the message text was encoded
and other technical information, which depends on the
features of the concrete tools implementation.

• in most approaches, the environment with which agents
interact is specified separately by the developer for each
multi-agent system, which, on the one hand, expands the
possibilities of corresponding means using, but on the
other hand leads to significant overhead and incompati-
bility of such multi-agent systems. In addition, in some
cases, the developer also has to take into account the
specifics of the technical implementation of development
tools in terms of their docking with the intended envi-
ronment, which, for example, can be a local or global
network.

Within this work, the listed disadvantages are supposed to
be eliminated by using the following principles:

• communication of agents is suggested to be implemented
on the basis of the «blackboard» principle, however,
unlike the classical approach, in the role of messages
there are specifications in the general semantic memory

123



of the actions (processes) performed by agents and aimed
at solving any problems, and the role of communication
environment is played by this semantic memory itself.
This approach allows to:

– exclude the need to develop a specialized language
for messaging;

– ensure the «impersonality» of communication, i.e.
each agent generally does not know which other
agents are in the system, who has formulated the
request and to whom this or that request is addressed.
Thus, adding or removing agents to the system does
not lead to changes in other agents, which ensures
the modifiability of the entire system;

– agents, including the end user, get the opportunity
to formulate tasks in the declarative way, i.e. do not
declare for each problem the way to solve it. Thus,
the agent does not need to know in advance how the
system will solve a particular problem, it is enough
only to specify the final result;

It should be noted that this approach allows, if necessary,
to organize messaging between agents directly, and, thus,
can be the basis for modeling multi-agent systems that
implement other ways of interaction between agents.

• in the role of the external environment for agents is the
same semantic memory, in which problems are formu-
lated and through which agents interact. This approach
ensures unification of the environment for different agent
systems, which in turn ensures their compatibility.

• the specification of each agent is described by means of
SC-code in the same semantic memory, which allows:

– minimize the number of specialized means required
to specify agents, including language and tools;

– on the one hand - to minimize the necessary spec-
ification of the agent in the general case, which in-
cludes the condition of its initiation and the program
that describes the algorithm of the agent, on the
other hand - to provide the possibility of unlimited
expansion of such specification for each specific
case, including the possibility of implementing the
BDI model and others;

• synchronization of the agents activities is supposed to be
carried out at the level of the processes performed by
them, aimed at solving certain problems in the semantic
memory. Thus, each agent is treated as an abstract proces-
sor, which is able to solve the tasks of a particular class.
With this approach, it is necessary to solve the problem
of ensuring the interaction of parallel asynchronous pro-
cesses in the common semantic memory, for the solution
of which the solutions used in traditional linear memory
can be adapted.

• each information process at any time has associative
access to the necessary fragments of the knowledge base
stored in the semantic memory, except of fragments
blocked by other processes in accordance with the syn-
chronization mechanism discussed below. Thus, on the

one hand, the need to store information about the external
environment by each agent is excluded, on the other
hand, each agent, like in classical multi-agent systems,
has only a part of all the information necessary to solve
the problem.
It is important to note that in the general case it is
impossible to predict a priori which knowledge, models
and methods of problem solving will be needed for the
system to solve a specific problem. In this regard, it is
necessary to ensure, on the one hand, the ability to access
all the necessary fragments of the knowledge base (in the
limit, to the entire knowledge base), on the other hand,
to be able to localize the area of the problem solution
search, for example, within a single subject domain [11].
Each agent has a set of key elements (usually concepts)
that it uses as starting points for associative search within
the knowledge base. A set of such elements for each agent
is specified at the stages of a multi-agent system design in
accordance with the method considered below. Reducing
the number of key elements of the agent makes it more
universal, but it reduces the effectiveness of its work due
to the need to perform additional search operations.

Next, consider the model of knowledge processing and the
model of the problem solver itself in accordance with the listed
principles.

II. GENERAL MODEL OF KNOWLEDGE PROCESSING IN
OSTIS-SYSTEMS

The model of processing the knowledge stored in semantic
memory can be conditionally divided into two components
(figure 3):

• the model of information processes performed in such a
memory, including the classification of such processes,
the mechanisms for their execution regulating, the means
for various conflicts solving, including associated with the
parallel execution of such processes, means of specifying
the state of information processes (executing, delayed,
planned, etc.);

• the model of the problem solver, which is treated as an
abstract processor that performs the specified informa-
tion processes, and, accordingly, the model of which is
constructed taking into account the model of information
processes in the semantic memory. The solver consists
of a platform-independent part (solver program) that
includes a model of the operational semantics of the
SCP language (scp-interpreter model) and a platform-
dependent part that includes the implementation of the
scp-interpreter. In addition, some components of the
solver program can, if necessary, be implemented within
the sc-model interpretation platform, for example, to
improve the solver performance.

This approach to the knowledge processing organization
makes it possible to ensure the independence of the ostis-
system sc-model (including the solver program) from the in-
terpretation platform of such models. Thus, the development of

124



Figure 3. General scheme of knowledge processing organization in ostis-systems

a solver for a particular ostis-system is reduced to developing
a program for this solver, i.e. the collective of the solver’s
agents and the programs corresponding to them. If the agent
programs are implemented in the SCP language, such a solver
program can be transferred from one implementation of the
sc-models interpretation platform to another, including the
hardware platform, without any changes.

In its turn, the formal model of the operational semantics of
the SCP language is, in fact, a technical task for the implemen-
tation of the sc-model interpretation platform, both in software
version and in hardware. The complete specification of the
denotational and operational semantics of the SCP language is
described in the corresponding sections of the IMS metasystem
[13].

The development of a certain entity sc-model (including a
program, an agent and a solver) supposes a formal refinement
of the concepts system that is used to describe this entity in
the knowledge base of the ostis-system. To achieve this goal,
in accordance with the principles of OSTIS Technology, it is
necessary to develop the sc-models of one or several inter-
connected subject domains and the corresponding ontologies
[10].

The implementation of the approach proposed in this work
requires the construction of several subject domains (SD) sc-
models connected with each other, as shown in the figure 4.

Next, the most important concepts that are researched
concepts [10] within the specified subject domains will be

Figure 4. Hierarchy of subject domains

discussed in more detail.

A. Means of specification of problems being solved

As it was said before, the principle of communication
of sc-agents within the proposed approach is based on the
specification by sc-agents of all the actions performed by
them in semantic memory, i.e. in the formal description in
the knowledge base of all problems being solved.

125



In the proposed approach, the problem is treated as a
specification of some action, which in general can include such
information as: the subject and the object of the performed
action; the timing of the problem, its priority, dependent
problems, etc .; detailed specification of the specified action
execution process by its decomposition into sub-actions (pro-
cedural formulation of the problem); specification of the action
goal (declarative formulation of the problem), etc.

The figure 5 shows an example of an information task in
SCg language.

Figure 5. The problem of establishing the truth or falsity of a statement

The model of the activity performed by agents while solving
problems in semantic memory is defined as follows:

MA = {AC , ACM , AR, ACS}, (1)

where AC – set of classes of actions performed by different
subjects;

ACM – set of classes of actions performed by agents in
semantic memory, ACM ⊂ AC ;
AR – set of relations specifying actions belonging to classes

from AC ;
ACS – a set of specification classes of actions belonging

to classes from AC , such as a task, a protocol for an action
executing, etc.;

In more detail, the means for specifying the actions per-
formed in semantic memory are discussed in [37].

One of the basic principles underlying the proposed ap-
proach to the construction of solvers is the principle of

dividing the process of any problem solving in an intelligent
system by logically atomic actions.

We will assume that each action belonging to some par-
ticular class of logically atomic actions has two necessary
properties:

• The execution of an action does not depend on whether
the specified action is part of the decomposition of a some
general action. When this action is carried out, it should
also not take into account the fact that the action precedes
or follows any other action;

• the specified action should be a logically complete act of
transformation, for example, in semantic memory. Such
an action is essentially a transaction, i.e. the result of
this transformation is the new state of the system being
converted, and the action to be performed must either
be executed completely, or not executed at all, partial
execution is not allowed.

At the same time, logical atomicity does not prevent de-
composition of the executed action into partial ones, each of
which in turn will also belong to some class of logically atomic
actions.

B. The concept of sc-agent

The only kind of entities that perform transformations in sc-
memory is sc-agents. We will call an sc-agent some subject
which is able to execute actions in sc-memory, belonging to
some particular class of logically atomic actions.

Formally, the sc-agent model is defined as follows:

MS = {SC , SR}, (2)

where SC – a set of classes (types) of sc agents; SR – set of
relations defined on the set of sc-agents.

Logical atomicity of sc-agent actions assumes that each sc-
agent responds to the corresponding class of events occurring
in the sc-memory, and performs a certain transformation of the
sc-text (SC-code text) located in the semantic neighborhood
of the event being processed. In this case, each sc-agent in
general does not have information about what other sc-agents
are currently present in the system and interacts with other
sc-agents solely through the formation of certain constructions
(usually the action specifications) in the common sc-memory.
Such a message can be, for example, a question addressed
to other sc-agents in the system (not known in advance what
exactly) or the answer to the question formed by other sc-
agents (again, it is not known exactly what). Thus, each sc-
agent controls only the knowledge base fragment in the context
of the problem solved by the agent at any given time, the state
of the rest of the knowledge base is unpredictable for the sc-
agent in the general case.

To ensure the availability of such a multi-agent system, it
is necessary that each sc-agent in its composition specifies in
the sc-memory all the results of its actions. It is assumed that
after solving a certain problem:

• all the intermediate constructs generated in the solution
process and having no meaning outside this process must
be deleted;

126



• all processes (actions) in sc-memory, aimed at solving
the same problem, should be terminated, except when it
is supposed to receive several independent responses to
the same questions.

It is important to note that the end-user of the ostis-system
in terms of knowledge processing also acts as an sc-agent,
forming the messages in the sc-memory by performing the
elementary actions provided by the user interface. In the same
way the ostis-system interacts with other systems and the
environment in general. All information gets in and out the
ostis-system exclusively through the appropriate sc-agents of
the interface.

Let’s list some advantages of the offered approach to the
organization of knowledge processing in sc-memory:

• because of processing is performed by agents that ex-
change messages only via common memory, adding a
new agent or excluding (deactivating) one or more ex-
isting agents usually does not result in changes to other
agents, since agents do not exchange messages directly;

• the agents are initiated in a decentralized manner and,
most often, independently of each other. Thus, even a
significant increase of the agents number within the same
system does not lead to its productivity reduce;

• agent specifications and, as will be shown below, their
programs can be written in the same language as the
processed knowledge, which significantly reduces the list
of specialized means designed to develop such agents and
their groups, and simplifies system development by using
more universal components;

Since it is supposed that copies of the same sc-agent or
functionally equivalent sc-agents can work in different ostis-
systems, being physically different sc-agents, it is advisable
to consider properties and classification of not sc-agents, but
classes of functionally equivalent sc-agents, which we will
call abstract sc-agents. Thus, an abstract sc-agent is a class
of functionally equivalent sc-agents, different instances (i.e.
elements) of which can be implemented in different ways.

Each abstract sc-agent has a corresponding specification,
which specifies the key sc-elements of the specified abstract
sc-agent, as well as a description of the initiating condition
for this sc-agent, i.e. class of those situations in sc-memory
that initiate the activity of this sc-agent. In addition, for each
abstract sc-agent, the variant of its implementation is specified.
From the implementation point of view, two classes of abstract
sc-agents can be distinguished:

• non-atomic abstract sc-agent, which is decomposed into
a group of simpler abstract sc-agents, each of which in
turn can be both atomic abstract sc-agent, and non-atomic
abstract sc-agent. However, in some version of abstract
sc-agent decomposition*, the child non-atomic abstract
sc-agent can become an atomic abstract sc-agent, and be
implemented accordingly.

• atomic abstract sc-agent is an abstract sc-agent, for which
the platform of its implementation is specified, i.e. there

is a corresponding connection of the sc-agent program*
relation.

In turn, atomic abstract sc-agents are subdivided into
platform-independent abstract sc-agents and platform-
dependent abstract sc-agents.

The platform-independent abstract sc-agents are atomic
abstract sc-agents implemented in SCP language.

When describing platform-independent abstract sc-agents,
platform independence is understood from the point of view
of OSTIS Technology, i.e. implementation in the SCP lan-
guage, because atomic sc-agents implemented in the specified
language can be easily transferred from one sc-models inter-
pretation platform to another.

The platform-dependent abstract sc-agents are atomic ab-
stract sc-agents, implemented below the level of sc-models,
i.e. not in the SCP language, but in some other language of
the program description.

An example of an atomic abstract sc-agent specification
including the agent program, its key sc-elements, and the
initiation condition is given in the figure 6.

Figure 6. Atomic abstract sc-agent of search for structures isomorphic to a
given pattern

The construction of non-atomic sc-agents allows to ensure
the hierarchy of the designed multi-agent system and the
ability to consider it at different levels of detail, which, in
turn, provides the convenience of such a system designing and
debugging through the ability to design and debug components

127



of varying complexity independently. In addition, the alloca-
tion of non-atomic sc-agents is the basis for the formation of
a hierarchical library of problem solvers reusable components,
which will include components of different complexity levels,
including even entire solvers.

C. Basic model of knowledge processing
The SCP language, developed within the OSTIS Tech-

nology, is proposed as the base development language for
the programs describing the activity of sc-agents within sc-
memory. SCP language is focused on processing of unified
semantic networks represented with SC-code.

The basic sc-text processing model includes:
• model of scp-programs subject domain, which includes

all the texts of scp-programs, and in which the classifica-
tion of these programs operators and the means of their
specification are researched.

• model of subject domain of the scp-programs interpre-
tation agents (also called Abstract scp-machine), which
is part of the sc-model interpretation platform. The term
abstract in this case, as in the case of the abstract sc-
agent, shows that a semantic model of the scp-interpreter
is being developed, including the specification of each
agent in its composition, which can later be implemented
within the any sc-model interpretation platform, including
hardware.

The main features of the SCP language include the follow-
ing:

• texts of scp-programs are written using SC-code, as well
as processed information;

• each scp-program is a generalized structure in sc-
memory, each time a scp-program is called, an indepen-
dent scp-process is created on its basis.

The main advantages of the SCP language, due to these
features:

• simultaneously several independent processes can be exe-
cuted in the common memory, and processes correspond-
ing to the same scp-program can be executed on different
servers, in case of distributed implementation of the sc-
model interpretation platform.

• SCP language allows concurrent asynchronous subrou-
tine calls (creating subprocesses within scp-processes),
as well as concurrently execute of scp-operators within a
single scp-process;

• since scp-programs are written using SC-code, the trans-
fer of the sc-agent implemented with the SCP language
from one system to another supposes a simple transfer
of the knowledge base fragment, without any additional
operations, which depends on the sc-model interpretation
platform;

• the fact that sc-agents’ specifications and their programs
can be written in the same language as the knowledge
they are processing significantly reduces the list of spe-
cialized tools, designed to build and modify problem
solvers and simplifies their development by using more
universal components;

• the fact that a unique scp-process is created for the scp-
program interpreting allows to optimize the execution
plan as much as possible before its implementation
and even directly during the execution without potential
danger to break the general algorithm of the entire
program. Moreover, this approach to programs designing
and interpreting allows to talk about the possibility of
creating self-reconfigurable programs;

III. SEMANTIC MODEL OF PROBLEM SOLVER

Using the concepts discussed above, we will say that the
sc-model of the integrated problem solver is a non-atomic
abstract sc-agent, which is the result of combining of all
abstract sc-agents within a particular ostis-system into one.
In other words, the sc-model of the integrated problem solver
is the collective of all sc-agents within a given ostis-system,
considered as a single whole.

Formally, the semantic model of the integrated problem
solver is given as follows:

MIPS = {AGNA, AGA, AGR}, (3)

where AGNA – a set of non-atomic abstract sc-agents within
the solver;

AGA – a set of atomic abstract sc-agents within the solver;
AGR – a set of concepts specifying abstract sc-agents

within the solver, including those describing the decomposition
of non-atomic agents into atomic ones;

There are several basic levels of detail for the problem
solver:

• level of the solver itself;
• level of non-atomic sc-agents within the solver, including

particular solvers;
• level of atomic sc-agents;
• level of scp-programs or programs implemented at the

level of sc-model interpretation platforms.
Such a level hierarchy, firstly, provides the possibility of

step-by-step design of task solvers with a gradual increase of
the detail level from the upper to the lower, and secondly, the
possibility of designing, debugging and verifying components
at different levels independently from other levels, which
significantly simplifies the task of solvers construction and
modification due to lower overhead costs.

In addition, the proposed approach to the construction of
a solver model allows to provide modifiability of solvers and
the possibility of consistent use of different problem solving
models within a single solver.

IV. SEMANTIC MODEL OF PARALLEL PROCESSES
INTERACTION IN THE COMMON SEMANTIC MEMORY

Taking into account the models considered earlier, a for-
mal model of information processes interaction in semantic
memory is constructed, which is defined as follows:

MIPM = {MA,MS ,MSY NC ,MSCP }, (4)

128



where MA – model of the activity performed by agents in
semantic memory;

MS – model of sc-agent that performs transformations in
semantic memory;

MSY NC – model of processes execution synchronization in
the semantic memory;

MSCP – a model of a basic programming language, ori-
ented to the processing of unified semantic networks, which,
in turn, is defined as:

MSCP = {MP ,MI}, (5)

where MP – model of basic programming language program;
MI – model of basic programming language programs inter-
preter;

To synchronize the execution of processes in sc-memory,
the lock mechanism is used. The lock* relation connects the
signs of the processes in the sc-memory to the signs of the
situational structures that contain sc-elements that are locked
for the duration of this process or for some part of this period.
Each such structure belongs to any of the lock types.

In the current version, three lock types are distinguished to
synchronize the processes execution in the sc-memory:

• full lock;
• lock on any change;
• lock on delete.
In turn, from the point of view of synchronization tools,

three classes of sc-agents can be distinguished:
• textit sc-agents of scp-programs interpreting, which are

implemented at the sc-models interpretation platform
level and one of tasks of which is to provide the described
synchronization mechanism. In turn, the principles of
synchronization of agents of this class are more trivial
than in the case of program sc agents, and are described
separately.

• textitprogram sc-agents, providing the main functionality
of the system, that is, its ability to solve certain tasks and
working in accordance with the considering mechanism.

• sc-metaagents, task of which is to coordinate the activity
of program sc-agents, in particular, to solve the deadlocks
problem.

For more details on the locks mechanism in semantic
memory, see [38], [39].

Thus, each sc-agent can generally correspond to several con-
currently running processes in the sc-memory, the interaction
of which is regulated by the described locks mechanism.

An example of a description of locks in semantic memory
that correspond to several processes in this memory is shown
in the figure 7.

V. METHOD FOR PROBLEM SOLVERS CONSTRUCTING AND
MODIFYING

As mentioned above, all platform-independent components
of problem solvers can be represented using SC-code. In this
case, we are talking about the specifications of sc-agents, and
the full texts of scp-programs that describe the algorithms of
these agents.

Thus, the construction of the ostis-system problem solver
is reduced to the development of a special kind of knowledge
base fragment of such a system. In this regard, when construct-
ing and modifying solvers, all existing automation tools for
the knowledge bases construction and modifying using OSTIS
Technology can be used, considered, in particular, in the work
[11].

Due to that, when constructing a method and means for
solvers developing, it is necessary to clarify only some aspects
of the development that are specific to the problem solvers
based on the model considered earlier. It is important to note
that, according to the model presented earlier, the task solver
is an abstract sc-agent, and therefore the development of the
solver is reduced to the such an agent development.

To develop problem solvers on the basis of the solver model
considered, a method is proposed that assumes the use of
formal ontology of such solvers developers activity for solvers
development and is oriented to the use of reusable solver
components at each level of the structural hierarchy of the
solver being developed, which makes it possible to reduce the
complexity of their development.

The proposed method includes several stages (figure 8):
The formally proposed method for solvers constructing and

modifying is defined as follows:

MPA = {PAC , PAR}, (6)

where PAC – a set of classes of actions performed by the
solver developers;

PAR – set of relations specifying these actions, including
relations, specifying the order of actions implementation and
decomposition of some actions into sub-actions.

The main advantage of the proposed method is its orienta-
tion to the ontology of the solver developers activity, which,
on the one hand, will allow to automate this activity, and on
the other hand, will allow to present the specifications of this
activity within the knowledge base of the IMS metasystem and
thus provide information support to the solvers developers.

VI. TOOLS FOR PROBLEM SOLVERS CONSTRUCTING AND
MODIFYING

To implement the proposed method, tools were developed
to automate the process of problem solvers construction and
modifying (TAPCM). The tools include a system for au-
tomating the process of solvers constructing and modifying,
which in turn is conditionally divided into an automation
system for the agents development and automation system for
scp-programs development, as well as the library of solvers
reusable components as part of the IMS metasystem for ostis-
systems design support. Schematically, the architecture of the
tools is shown in the figure 9:

In its turn, the library includes:
• the set of problem solvers components;
• means for specifying the problem solvers components;
• search tools for problem solver components based on

their specification;

129



Figure 7. Example of the specification of locks in semantic memory

Figure 8. Stages of the method for problem solvers constructing and
modifying

General structure of Library of problem solvers reusable
components in the language SCn:

Library of problem solvers reusable components
= problem solvers reusable component
<= subdividing*:
{
• Library of reusable problem solvers
• Library of reusable atomic abstract sc-agents
• Library of reusable programs for sc-texts processing
}

Figure 9. The architecture of tools for problem solvers constructing and
modifying

In turn, the Library of reusable abstract sc-agents has the
following structure:

Library of reusable abstract sc-agents
= reusable abstract sc-agent
<= subdividing*:
{
• Library of information search sc-agents
• Library of sc-agents of integrable knowledge

immersion into the knowledge base
• Library of sc-agents for aligning the ontology of

integrable knowledge with the basic ontology of the
knowledge base current state

• Library of sc-agents for planning solutions to
explicitly formulated tasks

• Library of logical inference sc-agents
• Library of sc-models of high-level programming

languages and their interpreters
• Library of sc-agents of knowledge base verification

130



• Library of sc-agents of knowledge base editing
• Library of sc-agents for automation of activity of

knowledge-base developers
}

The solvers debugging tools developed provide the possi-
bility of debugging on two levels of the solver:

• debugging at the sc-agents level;
• debugging at the scp-program level;

In the case of debugging at the sc-agents level, the act of
each agent executing is considered to be indivisible and can
not be interrupted. At the same time, debugging of atomic
sc-agents and non-atomic agents can be performed. Initiation
of an agent, including one that is part of a non-atomic one,
is carried out by creating appropriate structures in the sc-
memory, so debugging can be performed at different levels
of agent detail, up to atomic levels.

Debugging at the level of sc-agents involves the ability to set
or release the locks, enable or disable any agents, etc. Taking
into account that the model of agent interaction proposed in
this paper uses a universal variant of interaction of agents
through common memory, the considered system of agent
design support can serve as a basis for modeling systems of
agents using other principles of communication [40], [41], for
example, direct exchange of messages between agents.

Debugging at the level of scp-programs is carried out in a
manner similar to existing modern approaches to procedural
programs debugging and assumes the possibility of setting
breakpoints, step-by-step program execution, etc.

The main feature of the considered tools for solver con-
structing and modifying is their implementation on the basis
of OSTIS Technology, that is, including the use of previously
considered solver model for the tools constructing. This feature
allows to ensure the modifiability of the tools themselves,
i.e. ease of their functionality expansion, including by using
components from the permanently extending library of solvers
reusable component.

VII. CONCLUSION

The proposed models, method and tools have been suc-
cessfully applied to the development of problem solvers for
intelligent reference systems in various academic disciplines,
such as geometry, graph theory, history, chemistry, as well
as in the development of a prototype automation system for
batch production enterprises [42]. On certain examples, the
proposed approach showed such advantages as the universality
of the developed agents and the ease of modification of solvers
constructed on the basis of the proposed model.

ACKNOWLEDGMENT

This work was supported by BRFFR (BRFFR-RFFR
№Ф16Р-102, BRFFR-SFFRU №Ф16К-068).

Список литературы

[1] A. Kolesnikov, I. Kirikov, and S. Listopad, Gibridnye
intellektual’nye sistemy s samoorganizatsiei: koordinatsiya,
soglasovannost’, spor [Hybrid intelligent systems with self-
organization: coordination, consistency, dispute]. M.: IPI RAN,
2014, (in Russian).

[2] O. Castillo, P. Melin, and J. Kacprzyk, Recent Advances on
Hybrid Intelligent Systems. Springer, 2014.

[3] S. Nikolenko and T. A.L., Samoobuchayushchiesya sistemy
[Self-learning systems]. M.: MTsNMO, 2009, (in Russian).

[4] C. Kaner, J. Falk, and H. Nguyen, Testing Computer Software,
2nd ed. Wiley, 1999.

[5] E. Efimov, Reshateli intellektual’nykh zadach [Intelligent
problem solvers]. M.: Nauka, 1982, (in Russian).

[6] A. Podkolzin, Komp’yuternoe modelirovanie logicheskikh
protsessov. Arkhitektura reshatelya i yazyki reshatelya zadach
[Computer modeling of logical processes. Solver architecture
and problem solver languages]. M.: Fizmatlit, 2008, (in
Russian).

[7] (2017, Jun.) Wolfram alpha. [Online]. Available:
http://www.wolframalpha.com/

[8] A. Vladimirov, O. Varlamov, A. Nosov, and T. Potapova,
“Programmnyi kompleks "UDAV": prakticheskaya realizatsiya
aktivnogo obuchaemogo logicheskogo vvoda s lineinoi
vychislitel’noi slozhnost’yu na osnove mivarnoi seti pravil
[the program complex "UDAV": practical implementation of
the active learning logical input with linear computational
complexity on the basis of a miwar rule network],” Trudy
nauchno-issledovatel’skogo instituta radio [Proceedings of the
radio research institute], no. 1, pp. 108–116, 2010, (in Russian).

[9] V. Golenkov and N. Gulyakina, “Proekt otkrytoi semanticheskoi
tekhnologii komponentnogo proektirovaniya intellektual’nykh
sistem. Chast’ 2: Unifitsirovannye modeli proektirovaniya
[project of open semantic technology of component design of
intelligent systems. part 2: Unified design models],” Ontologiya
proektirovaniya [Ontology of design], no. 4, pp. 34–53, 2014, (in
Russian).

[10] I. Davydenko, N. Grakova, E. Sergienko, and A. Fedotova,
“Sredstva strukturizatsii semanticheskikh modelei baz znanii
[Means of semantic models of knowledge bases structuring],”
in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh sistem [Open semantic technologies for
intelligent systems]. Minsk.: BSUIR, 2016, pp. 93–106, (in
Russian).

[11] I. T. Davydenko, “Ontology-based knowledge base design,” in
Open semantic technologies for intelligent systems (OSTIS-
2017): materials of VII International.sc.-tech.conf. Minsk:
BSUIR, 2017, pp. 57–72.

[12] D. Koronchik, “Realizatsiya khranilishcha unifitsirovannykh
semanticheskikh setei [implementation of the unified semantic
networks storage],” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh sistem [Open semantic
technologies for intelligent systems]. Mn.: BSUIR, 2013, pp.
125–129, (in Russian).

[13] (2017, Jun.) IMS metasystem. [Online]. Available:
http://ims.ostis.net/

[14] M. Wooldridge, An Introduction to MultiAgent Systems -
Second Edition. Wiley, 2009.

[15] S. Russel and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed. Prentice Hall, 2010.

[16] V. Gorodetskii, M. Grushinskii, and A. Khabalov,
“Mnogoagentnye sistemy (obzor) [Multi-agent systems
(survey)],” Novosti iskusstvennogo intellekta [Artificial
intelligence news], no. 2, pp. 64–116, 1998, (in Russian).

[17] V. Gorodetskii, V. Samoilov, and D. Trotskii, “Bazovaya
ontologiya kollektivnogo povedeniya avtonomnykh agentov i ee
rasshireniya [Basic ontology of autonomous agents collective
behavior and its extension],” Izvestiya RAN. Teoriya i sistemy
upravleniya [Proceedings of the RAS. Theory and control
systems], no. 5, pp. 102–121, 2015, (in Russian).

[18] V. Tarasov, Ot mnogoagentnykh sistem k intellektual’nym
organizatsiyam [From multi-agent systems to intelligent
organizations]. M.: Editorial URSS, 2002, (in Russian).

131



[19] V. F. Rǎzvan, Autonomous artificial intelligent agents.
Romania: Center for Cognitive and Neural Studies (Coneural),
2003.

[20] (2017, Jun.) Autonomous agents and
multi-agent systems. [Online]. Available:
http://www.springer.com/computer/ai/journal/10458

[21] D. Weyns, A. Omicini, and J. Odell, “Environment as a
first class abstraction in multiagent systems,” ser. 1, vol. 14,
February 2007, pp. 5–30.

[22] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “Kqml
as an agent communication language,” in Proceedings of the
third international conference on Information and knowledge
management - CIKM ’94, 1994.

[23] (2017, Jun.) FIPA ACL Message
structure specification. [Online]. Available:
http://www.fipa.org/specs/fipa00061/SC00061G.html

[24] R. L. Hartung and A. Hakansson, “Using meta-agents to reason
with multiple ontologies,” in Agent and Multi-Agent Systems:
Technologies and Applications, 2008, pp. 261–270.

[25] W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman,
“Normative conflict resolution in multi-agent systems,” ser. 2,
vol. 19, June 2009, pp. 124–152.

[26] T. Rumbell, J. Barnden, S. Denham, and T. Wennekers, “Emo-
tions in autonomous agents: comparative analysis of mecha-
nisms and functions,” ser. 1, vol. 25, June 2012, pp. 1–45.

[27] A. Omicini and F. Zambonelli, “Coordination for internet ap-
plication development,” Autonomous Agents and Multi-Agent
Systems, vol. 2, no. 2, pp. 251–269, June 1999, issue 2.

[28] M. V. Nagendra Prasad and V. R. Lesser, “Learning situation-
specific coordination in cooperative multi-agent systems,” Au-
tonomous Agents and Multi-Agent Systems, vol. 2, no. 2, pp.
173–207, 1999, issue 2.

[29] (2017, Jun.) GOAL agent
programming language. [Online]. Available:
https://goalapl.atlassian.net/wiki/spaces/GOAL/overview

[30] (2017, Jun.) GAMA Platform. [Online]. Available: http://gama-
platform.org/

[31] (2017, Jun.) EVE - a web-based agent platform. [Online].
Available: http://eve.almende.com/index.html

[32] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and
S. Dance, Implementing Industrial Multi-agent Systems Using
JACK. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 18–48.

[33] (2017, Jun.) JAVA Agent DEvelopment framework. [Online].
Available: http://jade.tilab.com/

[34] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with jacamo,” Sci. Comput.
Program., vol. 78, no. 6, pp. 747–761, Jun. 2013.

[35] M. W. Rafael H. Bordini, Jomi Fred Hübner, Programming
Multi-Agent Systems in AgentSpeak using Jason. Wiley, 2007.

[36] V. Jagannathan, K. Dodhiawala, and L. Baum, Blackboard
Architectures and Applications. N.Y.: Academic Press, 1989.

[37] D. Shunkevich, A. Gubarevich, M. Svyatkina, and O. Morosin,
“Formal’noe semanticheskoe opisanie tselenapravlennoi
deyatel’nosti razlichnogo vida sub"ektov [Formal semantic
description of the purposeful activity of various types
of subjects],” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh sistem [Open semantic
technologies for intelligent systems]. Mn.: BSUIR, 2016, pp.
125–136, (in Russian).

[38] D. Shunkevich, “Vzaimodeistvie asinkhronnykh parallel’nykh
protsessov obrabotki znanii v obshchei semanticheskoi pamyati
[Interaction of asynchronous parallel processes of knowledge
processing in common semantic memory],” in Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh
sistem [Open semantic technologies for intelligent systems].
Mn.: BSUIR, 2016, pp. 137–144, (in Russian).

[39] D. V. Shunkevich, “Ontology-based design of knowledge pro-
cessing machines,” in Open semantic technologies for intelli-
gent systems (OSTIS-2017): materials of VII International.sc.-
tech.conf. Minsk: BSUIR, 2017, pp. 73–94.

[40] C. M. Macal and M. J. North, “Tutorial on agent-based
modeling and simulation,” in Proceedings of the 2005 Winter
Simulation Conference. WSC’05, 2005, pp. 2–15.

[41] M. Marietto, N. David, J. S. Sichman, and H. Coelho, “Re-
quirements analysis of agent-based simulation platforms: State
of the art and new prospects,” in Third International Workshop
of Multi-Agent-Based Simulation. Bologna, 2002, pp. 125–141.

[42] V. Taberko, D. Ivanyuk, V. Golenkov, K. Rusetskii,
D. Shunkevich, I. Davydenko, V. Zakharov, V. Ivashenko,
and D. Koronchik, “Proektirovanie predpriyatii retsepturnogo
proizvodstva na osnove ontologii [Designing enterprises of
batch production on the basis of ontologies],” Ontologiya
proektirovaniya [Ontology of design], no. 2, pp. 123–144, 2017,
(in Russian).

АГЕНТНО-ОРИЕНТИРОВАННЫЕ МОДЕЛИ,
МЕТОД И СРЕДСТВА РАЗРАБОТКИ

СОВМЕСТИМЫХ РЕШАТЕЛЕЙ ЗАДАЧ
ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

Шункевич Д.В. (БГУИР)

Статья посвящена разработке агентно-
ориентированных моделей, метода и средств
разработки совместимых решателей задач
интеллектуальных систем, способных решать
комплексные задачи. Рассматриваются требования,
предъявляемые к таким решателям, модель
решателя задач, удовлетворяющего предъявленным
требованиям, а также метод и средства разработки и
модификации таких решателей.

Основной проблемой, решаемой в работе, является
проблема низкой согласованности принципов, лежащих
в основе реализации различных моделей решения за-
дач. Как следствие, затруднена возможность одновре-
менного использования различных моделей решения
задач в рамках одной системы при решении одной
и той же задачи, практически невозможно повторно
использовать технические решения, реализованные в
некоторой системе, фактически отсутствуют комплекс-
ные методы и средства построения решателей задач.

Как основу для построения решателей задач пред-
лагается использовать многоагентный подход. Процесс
решения любой задачи предлагается декомпозировать
на логически атомарные действия, что позволит обес-
печить совместимость и модифицируемость решателей.
Сам решатель предлагается рассматривать как иерар-
хическую систему, состоящую из нескольких взаимо-
связанных уровней, что позволяет обеспечить возмож-
ность проектирования, отладки и верификации компо-
нентов на разных уровнях.

132


