2004

Доклады БГУИР октябрь-декабрь

УДК 621.396.67 (075.8)

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПАРАБОЛО-ТОРОИДАЛЬНОЙ ЗЕРКАЛЬНОЙ АНТЕННЫ

О.А. ЮРЦЕВ, Н.М. НАУМОВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 17 апреля 2004

Представлены результаты численного моделирования многолучевой зеркальной антенны с отражателем в виде параболического тора при сканировании в плоскости образующей поверхности отражателя. Оцениваются искажения параметров диаграммы направленности при смещении облучателя по дуге окружности.

Ключевые слова: зеркальная антенна, параболический тор, численное моделирование, диаграмма направленности, сканирование, ортогональная поляризация.

Введение

Параболический тор привлекает внимание разработчиков в связи с возможностью использования его в качестве отражателя многолучевой антенны с широким сектором обзора [1]. В работах, посвященных анализу параболических тороидальных зеркальных антенн, как например в [2], рассматривается сканирование в зеркальной антенне с отражателем в виде параболического тора в плоскости направляющей поверхности отражателя. Приводятся результаты численного моделирования диаграммы направленности (ДН) в главных плоскостях по основной поляризации. Задачи двухмерного обзора пространства многолучевыми антенными системами требуют поиска их оптимальных решений, одним из вариантов которых может быть использование параболического тора для формирования веера лучей в плоскости направляющей с механическим сканированием в плоскости образующей. При этом требуется знание ДН не в главных плоскостях для каждого луча, проходящих через направление максимума Н. Плоскость, в которой создается веер лучей, является главной для каждого луча. Плоскость механического сканирования является главной только для центрального луча. Для лучей, отклоненных от оси Z, при механическом вращении антенны вокруг оси X необходимо знать диаграмму направленности, которая является сечением пространственной ДН конусом. Конус образуется вращением направления главного максимума луча вокруг оси Х. В настоящей статье приводятся результаты численного моделирования в более общей постановке задачи, чем в работе [2]. Рассматривается диаграмма направленности по основной и ортогональной составляющим поля для различных лучей в плоскости веера лучей и в ортогональной плоскости.

Геометрия и математическая модель антенны

Анализируемая антенна состоит из отражателя в виде части параболического тора и системы облучателей в виде пирамидальных рупорных излучателей. Конструкция антенны поясняется рис. 1–4. Отражатель образуется поворотом параболы в плоскости XZ вокруг точки O по углу θ_x ; R_o — радиус направляющей окружности; F_p — фокусное расстояние параболы (об-

 \mathcal{N}_{2} 4

разующей); L_x , L_y — размеры отражателя в плоскостях ХZ и YZ; R_o , θ_x , θ_y — координаты точки на отражателе в сферической системе с началом в точке O; T_{xmin} , T_{xmax} — пределы изменения угла θ_x ; T_{ymin} , T_{ymax} — пределы изменения угла θ_y . Эти значения определяют угловые размеры отражателя и его положение относительно осей X и Y; α — угловая координата точки на отражателе в плоскости YZ в системе координат с началом в точке фокуса параболы F; $H=R_o-F_p$. Линейные размеры и положение отражателя задаются значениями R_o , T_{xmin} , T_{xmax} , F_p , T_{ymin} , T_{ymax} .

Рис. 2. Проекция отражателя на плоскость XZ

Облучатели расположены на дуге окружности радиуса H (рис. 2), угловой разнос между излучателями в плоскости XZ равен ΔQ . Алгоритм численного моделирования позволяет также дополнительно поворачивать любой облучатель вокруг осей X и Y и смещать каждый облучатель с его требуемого положения на дуге вдоль осей X,Y,Z на величины ΔX , ΔY , ΔZ . Максимум ДН каждого облучателя ориентируется вдоль радиуса R_o .

Рис. 3. Проекция отражателя на плоскость ХУ

Рис. 4. Проекция антенны на плоскость YZ

Алгоритм включает следующие этапы: перенос начала сферической системы координат из точки *O* в точку размещения излучателя с заданным номером и ее поворот на угол, соответствующий углу поворота облучателя по дуге их расположения; расчет сферических координат точки на отражателе θ_l , φ_l в сферической системе с центром расположения облучателя с заданным номером; расчет ДН облучателя в этой сферической системе координат; определение распределения поверхностных токов на отражателе методом физической оптики; расчет ДН антенны по токам на поверхности отражателя на заданном расстоянии г от антенны. В соответствии с этим алгоритмом разработана математическая модель, описывающая указанные этапы.

Из геометрии зеркала следуют формулы:

$$\cos\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{a},\tag{1}$$

где $a = 4F_p^2 + (H^2 + 4HF_p)\sin^2(\theta_y); b = (2H^2 + 4HF_p)\sin^2(\theta_y); c = -4F_p^2 + (4F_p^2 + H^2)\sin^2(\theta_y).$ Диаграмма направленности рупора облучателя, возбуждаемого на основной волне H_{10}

с вертикальной поляризацией (вектор \vec{E} расположен в плоскости XZ):

$$\vec{E}_{\theta} = F_c(\theta_1, \phi_1)(1 + \cos\theta_1)\cos\phi_1 \cdot \vec{\theta}_{o1}$$
 — по меридиональной составляющей, (2)

$$\vec{E}_{\varphi} = F_c(\theta_1, \varphi_1)(1 + \cos\theta_1)\sin\varphi_1 \cdot \vec{\varphi_{o1}}$$
 — по азимутальной составляющей, (3)

где

$$Fc(\theta_1, \phi_1) = F_{ce}(\theta_1, \phi_1) F_{ch}(\theta_1, \phi_1)$$
 — множитель системы ДН облучателя, (4)

$$F_{ce}(\theta_1, \varphi_1) = \frac{\sin\Psi_e}{\Psi_e}, \ \Psi_e = \frac{\pi A_e}{\lambda} \cos\varphi_1 \sin\theta_1,$$
(5)

A_e — размер раскрыва рупора облучателя в плоскости Е (вертикальной XZ), λ — длина волны;

$$F_{ch}(\theta_1, \varphi_1) = \frac{\cos \Psi_{he}}{1 - (2\Psi_h / \pi)^2}, \ \Psi_h = \frac{\pi A_h}{\lambda} \sin \varphi_1 \sin \theta_1.$$
(6)

Направляющие косинусы единичных векторов $\vec{\theta_{o1}}$, $\vec{\phi_{o1}}$:

$$Co\theta_{ox} = \cos\theta_1 \cos^2 \phi_1; \ Co\theta_{oy} = \cos\theta_1 \cos\phi_1 \sin\phi_1; \ Co\theta_{oz} = \sin\theta_1 \cos\phi_1.$$
(7)

Отражатель считается расположенным в дальней зоне облучателя, поэтому касательные к поверхности отражателя составляющие токов выражены через вектор $\stackrel{\rightarrow}{E}$ поля облучателя.

Для расчета декартовых составляющих J_x , J_y , J_z поверхностных токов на отражателе введены две системы ортогональных криволинейных координат, показанных на рис. 3 пунктирными линиями. Декартовы составляющие векторов \vec{E}_{θ} , \vec{E}_{φ} поля облучателя:

$$E_x = F_c(\theta_1, \phi_1)(1 + \cos\theta_1)(\cos\theta_1 \cos^2\phi_1 + \sin^2\phi_1);$$
(8)

$$E_{y} = F_{c}(\theta_{1}, \phi_{1})(\cos^{2}\theta_{1} - 1)\sin\phi_{1}\cos\phi_{1}; \qquad (9)$$

$$E_{y} = F_{c}(\theta_{1}, \phi_{1})(1 + \cos\theta_{1}))\sin\theta_{1}\cos\phi_{1}.$$
(10)

В узлах пересечения указанных линий определяются составляющие токов через составляющие векторов E_x , E_y , E_z :

$$J_{x} = \frac{C}{R}E_{x}, \ J_{y} = \frac{C}{R}E_{y}, \ J_{z} = \frac{C}{R}E_{z}.$$
 (11)

где *С* — постоянная, зависящая от мощности излучения облучателя, *R* — расстояние от точки расположения облучателя до точки на поверхности отражателя:

$$R = \sqrt{R_p^2 + H^2 + 2R_pH\cos\alpha} , \ R_p = \frac{2F_p}{1 + \cos\alpha} .$$
(12)

Диаграмма направленности антенны по декартовым составляющим:

$$F_{x,y,z}(\theta,\phi) = \iint_{S} J_{x,y,z} \frac{\exp(-ikr)}{r} dS , \qquad (13)$$

где *r* — расстояние от точки на поверхности отражателя до точки наблюдения; $k = \frac{2\pi}{\lambda}$.

При программной реализации математической модели интегрирование в выражении (13) по поверхности *S* отражателя проводилось методом прямоугольников с исследованием результата расчета ДН на сходимость по критерию ширины главного лепестка и уровня боковых лепестков.

Диаграмма направленности антенны по составляющим \vec{E}_{θ} и \vec{E}_{ϕ} на основной (вертикальной) поляризации:

$$F_{\theta}(\theta, \phi) = F_{x}(\theta, \phi) \cos\theta \cos\phi + F_{y}(\theta, \phi) \cos\theta \sin\phi + F_{z}(\theta, \phi) \sin\theta; \qquad (15)$$

$$F_{\varphi}(\theta, \varphi) = -F_{x}(\theta, \varphi)\sin\varphi + F_{y}(\theta, \varphi)\cos\varphi.$$
(16)

Результаты численного моделирования антенны

Описанная математическая модель реализована в системе программирования Delphi. Произведен расчет ряда вариантов антенны. Сходимость результата вычисления ДН обеспечивается при интегрировании по формуле (13), если поверхность отражателя разбита на квадратные ячейки с площадью $\Delta S < 0.05 \lambda^2$.

Результаты численного моделирования позволяют сделать ряд выводов, иллюстрируемых далее на варианте антенны с параметрами: угол раскрыва зеркала в вертикальной плоскости T_{xmin} =-42°, T_{xmax} =42°, в горизонтальной плоскости T_{ymin} =-20°, T_{ymax} =20°, R_o =600 мм, F_p =320 мм, A_e =10 мм, A_h =20 мм, частота 37,5 ГГц. Размеры раскрыва отражателя L_x =803 мм, L_y =409 мм. Размер раскрыва облучателя в плоскости H (в плоскости YZ на рис. 1) выбран так, чтобы края отражателя в этой плоскости облучались на уровне –10 дБ по отношению к центру. В плоскости E (в плоскости XZ на рис. 1) размер облучателя на 60 % меньше расстояния между соседними облучателями по дуге их расположения. Параметры центрального луча, ориентированного вдоль оси Z: ширина главного лепестка ДН в вертикальной плоскости 1,325°; в горизонтальной плоскости 1,275°; максимальный уровень боковых лепестков в вертикальной плоскости –41,9 дБ; в горизонтальной плоскости –27,8 дБ.

При формировании веера лучей в вертикальной плоскости горизонтальная плоскость, в которой может быть применено механичекое сканирование, является главной только для центрального луча. При смещении облучателя с оси Z искажается ДН в горизонтальной и вертикальной плоскостях и тем более, чем сильнее смещен облучатель с оси Z: растет ширина главного лепестка ДН, уровень боковых лепестков и уровень поля по ортогональной поляризации (ДН по ортогональной поляризации показаны бледными линиями). На рис. 5–8 показаны ДН в логарифмическом масштабе для облучателя, расположенного на оси Z (не смещенного) и облучателя, смещенного по дуге в вертикальной плоскости на угол $\Delta Q=39^{\circ}$.

Рис. 5. ДН в вертикальной плоскости для центрального облучателя ($\Delta Q=0^{\circ}$)

Рис. 7. ДН в вертикальной плоскости для смещенного облучателя ($\Delta Q=39^\circ$)

Рис. 6. ДН в горизонтальной плоскости для центрального облучателя ($\Delta Q=0^{\circ}$)

Рис. 8. ДН в горизонтальной плоскости для смещенного облучателя ($\Delta Q=39^\circ$)

В таблице представлены параметры ДН антенны в зависимости от угла ΔQ отклонения облучателя от оси Z. В таблице: $2\Theta_{0,5}^x$, $2\Theta_{0,5}^y$ — ширина главного лепестка по уровню –3 дБ в плоскостях XZ (плоскость направляющей) и YZ (плоскость образующей); F_{bm}^x , F_{bm}^y — максимальный уровень боковых лепестков в этих плоскостях; A_{ort}^x — максимальный уровень поля по ортогональной поляризации по отношению к максимуму основной в плоскости YZ. Плоскость XZ является главной для каждого луча веера, поэтому поле по ортогональной поляризации равно нулю.

ΔQ , град	0	6	15	24	33	39
$2\Theta_{0,5}^{x}$, град	1,325	1,325	1,35	1,45	1,75	2,2
$2\Theta_{0,5}^{y}$, град	1,275	1,275	1,275	1,275	1,275	1,325
F_{bm}^{x} , дБ	-41,9	-40,8	-35	-30,8	-20	-20
F_{bm}^{y} , дБ	-27,8	-27,8	-28	-28,3	-30,7	-32
A_{ort}^{x} , дБ	-84	-57	-51	-50	-37	-32

Параметры ДН при смещении облучателя

С ростом угла ΔQ увеличивается асимметрия ДН в вертикальной плоскости. Причем уровень ДН, при котором асимметрия значительна, увеличивается с ростом ΔQ . Асимметрия связана с ростом асимметрии амплитудно-фазового распределения тока на поверхности отражателя в плоскости XZ при смещении облучателя с оси симметрии отражателя.

Для устранения реакции зеркала на облучатель целесообразно использовать несимметричный параболический тор, в котором $T_{ymin}>0$, $T_{ymax}>T_{ymin}$. В этом случае в плоскости XZ появляется поле с ортогональной поляризацией, причем его уровень растет с ростом угла смещения облучателя по дуге. На рис. 9–12 показаны ДН в вертикальной и горизонтальной плоскостях для двух облучателей. Параметры отражателя: $T_{xmin}=-42^{\circ}$, $T_{xmax}=42^{\circ}$, в горизонтальной плоскости $T_{ymin}=5^{\circ}$, $T_{ymax}=45^{\circ}$, $R_o=600$ мм, $F_p=320$ мм, $A_e=10$ мм, $A_h=20$ мм. Облучатели повернуты вокруг оси X на 45° так, чтобы максимум ДН облучателя был ориентирован на центр параболы.

Рис. 9. ДН несимметричного тора в вертикальной плоскости для центрального облучателя ($\Delta Q=0$)

Рис. 11. ДН несимметричного тора в вертикальной плоскости для облучателя, смещенного на угол ΔQ =30°

Рис. 10. ДН несимметричного тора в горизонтальной плоскости для центрального облучателя (ΔQ =0)

Рис. 12. ДН несимметричного тора в горизонтальной плоскости для облучателя, смещенного на угол ΔQ =30°

Заключение

Приведенные результаты показывают возможность применения зеркальной антенны с отражателем в виде параболического тора для создания веера лучей в одной плоскости при механическом сканировании в ортогональной плоскости. При этом следует учитывать искажения ДН лучей веера, проявляющиеся в росте ширины главного лепестка в двух ортогональных плоскостях, возрастании уровня боковых лепестков смещенных лучей и уровня поля по ортогональной поляризации. Эти искажения сильнее проявляются в антенне с несимметричным параболическим тором. По сравнению с зеркальной антенной с отражателем в виде параболоида вращения полного профиля веер лучей можно создать в большем угловом секторе без существенного ухудшения параметров диаграммы направленности.

NUMERICAL MODELING OF PARABOLIC TOROIDAL REFLECTOR ANTENNA

O.A. YURTSEV, N.A. NAUMOVICH

Abstract

Presented are the results of numerical modeling of a multi-beam reflector-type antenna with a reflector designed as a parabolic tours with scanning in the plane of the element of reflector surface. Estimated are distortions of the antenna pattern parameters when the reflector is shifted along the circular arc.

Литература

1. *Мирошниченко А.Я.* Зарубежная радиоэлектроника. 1989. № 6, С. 54–76. 2. *Chu Ta-Shing, Lannone P.P.* IEEE Trans. Antennas Propagat. 1989. Vol. AP–37, № 7. P. 865–874.