УДК 621.383.92 (521.383.523)

ТЕМПЕРАТУРНЫЕ ХАРАКТЕРИСТИКИ КРЕМНИЕВЫХ ФОТОЭЛЕКТРОННЫХ УМНОЖИТЕЛЕЙ

М.А. АСАЁНОК, О.Ю. ГОРБАДЕЙ, А.О. ЗЕНЕВИЧ

Белорусская государственная академия связи, Республика Беларусь

Поступила в редакцию 17 января 2018

Аннотация. Представлены результаты исследований температурных зависимостей коэффициентов умножения темнового тока и фототока для кремниевых фотоэлектронных умножителей. Показано, в какой степени снижение температуры влияет на изменение коэффициента усиления фототока и приводит к уменьшению последовательного сопротивления микроплазменного пробоя.

Ключевые слова: кремниевые фотоэлектронные умножители, коэффициент усиления фототока, микроплазменный пробой.

Abstract. The investigations results of the temperature dependences of the multiplication coefficients of the dark current and photocurrent for silicon photoelectric multipliers are presented. It is shown to what extent the decrease in temperature effects to the change in the photocurrent gain and leads to a decrease of the series resistance of the microplasma breakdown.

Keywords: silicon photoelectric multipliers, photocurrent gain, microplasma breakdown.

Doklady BGUIR. 2018, Vol. 112, No. 2, pp. 54-58 Temperature characteristics of silicon photoelectronic multipliers M.A. Asayonak, O.Yu. Gorbadey, A.O. Zenevich

Введение

В настоящее время для регистрации оптического излучения находят все более широкое применение кремневые фотоэлектронные умножители (Si-ФЭУ). Эти фотоприемники приходят на смену вакуумным фотоэлектронным умножителям, поскольку обладают достаточно большими коэффициентами усиления (≥ 10⁵) и имеют достаточно большие площади фоточувствительной площадки (≥ 7 мм²) [1].

Вакуумным фотоэлектронным умножителям свойственны следующие недостатки: высокие напряжения питания (≥ 1000 В), малая чувствительность в ближней инфракрасной области спектра, низкая механическая прочность [2]. В отличие от вакуумных фотоэлектронных умножителей Si-ФЭУ не обладают вышеотмеченными недостатками. Однако в настоящее время характеристики Si-ФЭУ недостаточно изучены. При использовании Si-ФЭУ в фотоэлектрических приборах важно знать влияние температуры на коэффициент усиления фототока. Поэтому цель данной работы – установить зависимость коэффициента усиления фототока Si-ФЭУ от температуры их эксплуатации.

Описание установки и методики эксперимента

В качестве объектов исследования были выбраны кремниевые фотоэлектронные умножители, имеющие различные структуры *n*+-*n*-*p*+ и *p*+-*p*-*n*+, производства ОАО «Интеграл» (Беларусь). Измерения проводились на экспериментальной установке, структурная схема которой показана на рис. 1. Экспериментальная установка функционировала

следующим образом. Для создания оптического излучения использовался светодиод СД. Питание светодиода осуществлялось при помощи источника постоянного напряжение И1. Излучение от светодиода СД подавалось в оптическое волокно ОВ. С выхода оптического волокна излучение поступало на Si-ФЭУ.

Кремниевый фотоэлектронный умножитель включался последовательно с резистором нагрузки *R*_н. Для питания Si-ФЭУ использовался регулируемый источник постоянного напряжение И2. Приложенное к Si-ФЭУ напряжение измерялось при помощи вольтметра В. Для измерения электрического тока, протекающего через Si-ФЭУ применялся амперметр A (см. рис.1). Кремниевый фотоэлектронный умножитель был помещен в камеру тепла и холода К. Температура в камере контролировалась при помощи электронного термометра Т.

На Si-ФЭУ подавалось оптическое излучение с длиной волны 630 нм, что соответствовало максимуму его спектральной чувствительности. Диапазон изменения температуры составлял 198÷303 К. При сравнении характеристик кремниевых фотоэлектронных умножителей между собой применялась величина перенапряжения $\Delta U = U_n - U_{np}$. Это связано с тем, что исследуемые фотоприемники имели различные напряжения пробоя.

По вольтамперной характеристике Si- Φ ЭУ, полученной для отсутствия оптического излучения, определялось его напряжение пробоя U_{np} , по методике, представленной в работе [3].

Рис. 1. Структурная схема экспериментальной установки: И1 – источник питания светодиода; СД – светодиод; ОВ – оптическое волокно; И2 – источник питания; Si-ФЭУ – кремниевый фотоэлектронный умножитель; А – амперметр; В – вольтметр; *R*_н – резистор нагрузки; К – камера тепла и холода; Т – электронный термометр

Результаты эксперимента и их обсуждение

В процессе исследований измерялись вольтамперные характеристики Si-ФЭУ для различных температур. На основании вольтамперных характеристик определялись напряжения пробоя Si-ФЭУ U_{np} и дифференциальные сопротивления в области микроплазменного пробоя R_d для различных температур. Данные об изменениях U_{np} и R_d от температуры представлены в таблице. В таблице для сравнения помещены сведения об изменении U_{np} и R_d для кремниевого лавинного фотодиода (ЛФД) со структурой p^+n-v-n^+ .

Taxana and a I/	C: DOM		C: 40V		ПФП	
температура, к	21-432		S1-433		ЛФД	
	структура <i>p</i> +- <i>p</i> - <i>n</i> +		структура <i>n</i> +- <i>n</i> - <i>p</i> +		структура <i>p</i> ⁺ <i>n</i> - <i>v</i> - <i>n</i> ⁺	
	<i>Rd</i> , Ом	$U_{\rm np},{ m B}$	R_d , Ом	$U_{\rm np},{ m B}$	R_d , Ом	$U_{\rm np},{ m B}$
303	3457		4562		13750	225,01
273	3857		5738		14150	205,01
243	4372	13,01	7503	20,90	18370	185, 01
223	4954		9003		19180	165,01
203	5853		11650		19800	145,01

Характеристики микроплазменного пробоя исследуемых фотоприемников

Из представленных в таблице данных следует, что понижение температуры приводило к росту величины R_d для всех типов исследуемых фотоприемников. Это связано с тем, что уменьшение температуры приводит к сокращению числа свободных носителей электрического заряда в полупроводниковых структурах. Это способствет увеличению дифференциального сопротивления в области микроплазменного пробоя. Самая сильная зависимость от температуры величины R_d наблюдалось для ЛФД. Наибольшее изменение

дифференциального сопротивления в области микроплазменного пробоя при изменении температуры было присуще Si-ФЭУ со структурой *n*+-*n*-*p*+. Также для ЛФД понижение температуры влекло за собой уменьшение напряжения пробоя.

Для всех типов исследуемых Si-ФЭУ напряжения пробоя оставались практически неизменными во всем исследуемом диапазоне температур. Это можно объяснить тем, что согласно работе [1] лавинные фотоприемники с более высоким значением напряжения пробоя имеют более сильную зависимость напряжения пробоя от изменения температуры. Поскольку для исследуемых Si-ФЭУ $U_{np} < 25$ B, то и зависимость напряжения пробоя от температуры была незначительной, и при имеющейся погрешности измерительной аппаратуры ее обнаружить не удалось.

На рис. 2 представлены зависимости коэффициента усиления для темнового тока М_т от температуры. Представленные зависимости получены для постоянного значения перенапряжения $\Delta U = 4$ В. Как видно из полученных результатов, для Si-ФЭУ со структурой n+-n-p+ при понижении температуры $M_{\rm T}$ увеличивался во всем интервале исследуемых температур. Для Si-ФЭУ со структурой *p*+-*p*-*n*+ величина *M*_т увеличивалась при понижении температуры в интервале 303÷245 К, а при дальнейшем уменьшении температуры эта величина практически не изменялась. Во всем исследуемом диапазоне температур коэффициент $M_{\rm T}$ для Si- Φ ЭУ со структурой *p*+-*p*-*n*+ был больше, чем для Si- Φ ЭУ со структурой *n*+-*n*-*p*+. Так, в исследуемом диапазоне температур среднее значение отношения изменения коэффициента усиления темнового тока $\Delta M_{\rm T}$ к изменению температуры ΔT для $\Delta U = 4$ В составляло следующие значения: $|\Delta M_{\rm T}/\Delta T| = 1250 \,{\rm K}^{-1}$ для Si- Φ ЭУ со структурой n+-n-p+, $|\Delta M_{\rm T}/\Delta T| = 1125 \text{ K}^{-1}$ для Si-ФЭУ со структурой *p*+-*p*-*n*+. Для больших ΔU величина $\Delta M_{\rm T}/\Delta T$ для Si- Φ ЭУ со структурой p--p-n+ также превосходила значение этого отношения для Si- Φ ЭУ со структурой n+-n-p+. Таким образом, более сильную зависимость коэффициента усиления темнового тока от температуры имеют Si- Φ ЭУ со структурой *p*+-*p*-*n*+.

Рис. 2. Зависимость коэффициента усиления темнового тока от температуры: 1 – для структуры *p+-p-n+*; 2 – для структуры *n+-n-p+*; 3 – для лавинного фотодиода

Полученная зависимость коэффициента усиления темнового тока от температуры для ЛФД представлена на рис. 2 (кривая 3). Для этой зависимости при охлаждении в интервале температур от 303÷265 К наблюдался рост коэффициента усиления темнового тока. В интервале температур 265÷235 К значение *М*_т оставалось практически неизменным. Дальнейшее охлаждение от 235 до 198 К приводило к небольшому уменьшению М_т. Такое поведение этой зависимости можно объяснить тем. что с понижением температуры уменьшается вероятность рассеяния свободных носителей заряда на колебаниях кристаллической решетки в полупроводниковой структуре фотоприемника. В результате повышается вероятность того, что за длину свободного пробега в области лавинного умножения ЛФД носитель заряда приобретет энергию, необходимую для ударной ионизации. Это приведет к росту величины $M_{\rm T}$. При больших значениях коэффициента усиления темнового тока образуется такое количество свободных носителей заряда, которое приводит к уменьшению электрического поля в области лавинного умножения. Это влечет уменьшение вероятности того, что за длину свободного пробега носитель заряда сможет приобрести энергию, необходимую для ударной ионизации, и, как следствие, прекращение увеличения коэффициента М_т, а при понижении температуры и даже небольшое его уменьшение. Аналогичные образом можно объяснить поведение зависимостей $M_{\rm T}$ от T для Si- Φ ЭУ.

Необходимо отметить, что для интервала температур 295÷303 К значения $M_{\rm T}$ для ЛФД были меньше, чем для Si-ФЭУ. При охлаждении ниже 285 К коэффициент усиления темнового тока ЛФД превосходил значение $M_{\rm T}$ для всех исследуемых типов Si-ФЭУ.

Различное поведение зависимостей $M_{\rm T}$ от температуры Si-ФЭУ и ЛФД, по всей видимости, связано с отличием их структур и тем, что кремниевые фотоэлектронные умножители при T = 303 К имели достаточно высокие значения коэффициента усиления темнового тока. Отметим, при этой температуре $M_{\rm T} = 2,6\cdot10^5$ для Si-ФЭУ со структурой p+-p-n+ и $M_{\rm T} = 1,8\cdot10^5$ для Si-ФЭУ со структурой n+-n-p+. Для этой температуры ЛФД обладал значительно меньшим значением $M_{\rm T} = 0,6\cdot10^4$.

На рис. 3 представлены зависимости коэффициента усиления для фототока M от температуры при $\Delta U = 4$ В. Данные зависимости получены для постоянной интенсивности оптического излучения $J = 10^{-5}$ Вт/м². Понижение температуры в интервале 303÷245 К приводило к увеличению значений M для всех типов Si-ФЭУ (см. рис. 3). Для ЛФД такое увеличение наблюдалось в интервале температур 303÷255 К. В интервале температур 245÷198 К коэффициент усиления для фототока Si-ФЭУ практически не изменялся. Для ЛФД значение M не изменялось при температурах от 245 до 198 К. Значения M, полученные для Si-ФЭУ, были меньше по сравнению со значениями $M_{\rm T}$ во всем диапазоне измеряемых температур. Так, для температуры 235 К коэффициенты усиления фототока составляли $M = 1,7\cdot10^4$ и $M = 1,0\cdot10^4$ для Si-ФЭУ со структурами p+-p-n+ и n+-n-p+ соответственно. При этой же температуре величина M = 60 для ЛФД. Отметим, что значения M для Si-ФЭУ значительно превосходили коэффициент усиления фототока ЛФД во всем диапазоне исследуемых температур (см. рис. 3).

Рис. 3. Зависимость коэффициента усиления фототока от температуры: 1 – для структуры *p*+-*p*-*n*+; 2 – для структуры *n*+-*n*-*p*+; 3 – для лавинного фотодиода

К такому поведению коэффициента усиления фототока от температуры приводят те же причины, что были рассмотрены выше для зависимостей *М*_т от температуры.

Для оценки влияния нестабильности напряжения питания на значения M использовалась величина, равная отношению изменения усиления фототока ΔM к изменению напряжения питания $\Delta U_{\rm n}$, для которого наблюдалось это изменение.

На рис. 4 представлены зависимости $\Delta M/\Delta U_{\rm n}$ от температуры. Наибольшие значения $\Delta M/\Delta U_{\rm n}$ во всем исследуемом диапазоне температур соответствовали ЛФД. Так, максимальное значение $\Delta M/\Delta U_{\rm n} = 3,5$ В⁻¹ для ЛФД соответствовало температуре T = 303 К. Максимальные значения для Si-ФЭУ со структурами n+-n-p+ и p+-p-n+ составляли $\Delta M/\Delta U_{\rm n} = 0,7$ В⁻¹ для T = 245 К и $\Delta M/\Delta U_{\rm n} = 0,18$ В⁻¹ для T = 303 К соответственно. Понижение температуры приводило к уменьшению величины $\Delta M/\Delta U_{\rm n}$ для ЛФД и Si-ФЭУ со структурой n+-n-p+ наблюдался рост значения $\Delta M/\Delta U_{\rm n}$ с понижением температуры в интервале 303÷255 К и уменьшение этих значений в интервале температур 255÷198 К (см. рис. 4).

Рис. 4. Зависимость $\Delta M / \Delta U_{\pi}$ от температуры: 1 – для структуры n+-n-p+; 2 – для структуры p+-p-n+; 3 – для лавинного фотодиода

Заключение

На основании выполненных исследований можно сделать заключение, что Si-ФЭУ независимо от их структуры имели более высокий коэффициент усиления фототока во всем диапазоне температур, чем ЛФД. Также для Si-ФЭУ оказывает меньшее влияние нестабильность напряжения питания на значения коэффициента усиления фототока, чем для ЛФД во всем исследуемом диапазоне температур.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (договор № T17M-076).

Список литературы

- 1. Гулаков И.Р., Зеневич А.О. Фотоприемники квантовых систем: моногр. Минск: УО ВГКС, 2012. 276 с.
- 2. Гулаков И.Р., Холондырев С.В. Метод счета фотонов в оптико-физических измерениях Минск: Университетское, 1989. 256 с.
- 3. Грехов И.В., Сережкин Ю.Н. Лавинный пробой *p-n*-перехода в полупроводниках: моногр. Л.: Энергия, 1980. 152 с.

References

- 1. Gulakov I.R., Zenevich A.O. Fotopriemniki kvantovyh sistem: monogr. Minsk: UO VGKS, 2012. 276 s. (in Russ.)
- 2. Gulakov I.R., Holondyrev S.V. Metod scheta fotonov v optiko-fizicheskih izmerenijah Minsk: Universitetskoe, 1989. 256 s. (in Russ.)
- 3. Grehov I.V., Serezhkin Ju.N. Lavinnyj proboj p-n-perehoda v poluprovodnikah: monogr. L.: Jenergija, 1980. 152 s. (in Russ.)

Сведения об авторах

Асаёнок М.А., аспирант Белорусской государственной академии связи.

Горбадей О.Ю., аспирант Белорусской государственной академии связи.

Зеневич А.О., д.т.н., профессор, ректор Белорусской государственной академии связи.

Адрес для корреспонденции

220114, Республика Беларусь, г. Минск, ул. Ф.Скорины, 8/2, Белорусская государственная академия связи тел. +375-29-567-29-42; e-mail: ama-rul@mail.ru Асаёнок Марина Анатольевна

Information about the authors

Asayonak V.F., PG student of Belarusian state academy of communications

Gorbadey O.Y., PG student of Belarusian state academy of communications

Zenevich A.O., D. Sci, professor, rector of Belarusian state academy of communications

Address for correspondence

220114, Republic of Belarus, Minsk, F. Skorina st., 8/2, Belarusian state academy of communications tel. +375-29-567-29-42; e-mail: ama-rul@mail.ru Asayonak Marina Anatolevna