Доклады БГУИР апрель-июнь

.

Nº 2 (14)

ЭЛЕКТРОНИКА

УДК 538.945

КОЭФФИЦИЕНТ ПРОЗРАЧНОСТИ КОНТАКТА СВЕРХПРОВОДНИК /НОРМАЛЬНЫЙ МЕТАЛЛ И КРИТИЧЕСКАЯ ТЕМПЕРАТУРА ТРЕХСЛОЙНЫХ МЕЗОСТРУКТУР. II

В.Н. КУШНИР

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 18 января 2006

На основе точных уравнений микроскопической теории с использованием матричного метода исследовано влияние конечной прозрачности контакта сверхпроводник/нормальный металл на критическую температуру мезоструктур, сверхпроводящих в силу эффекта близости. Полученные теоретические кривые воспроизводят экспериментальные зависимости критической температуры от толщины сверхпроводящего слоя. Определена зависимость коэффициента прозрачности от длины когерентности нормального металла.

Ключевые слова: сверхпроводимость, эффект близости, коэффициент прозрачности, матричный метод.

Введение

В предыдущей работе [1] было исследовано в рамках одномодового приближения микроскопической теории влияние конечной прозрачности контакта сверхпроводник/нормальный металл на критическую температуру трехслойных мезоструктур (SN), сверхпроводящих в силу эффекта близости. В данной работе уравнения микроскопической теории решаются точно с помощью матричного метода. Рассматриваются плоские трехслойные структуры вида NSN (сверхпроводящий слой находится между нормальными слоями).

Уравнения микроскопической теории SN

Выбирается система координат с осью OZ, направленной перпендикулярно плоскости слоев структуры. Левой и правой границам SN соответствуют значения *z*=0 и *z*=*L*.

Критическое состояние сверхпроводящего конденсата в SN описывается (в "грязном" пределе, при отсутствии внешнего поля) следующей системой линейных обыкновенных дифференциальных уравнений [1, 2]:

$$\left(m + \frac{1}{2} - \frac{\hbar D(z)}{4\pi k_B T} \frac{d^2}{dz^2}\right) \Delta_m(z) = N(z) V(z) \sum_{m'=0}^{mD} \Delta_{m'}(z), \quad m = 0, 1, ..., mD.$$
(1)

5

2006

Здесь $mD \equiv [\omega_D/2\pi k_B T - 0.5], \omega_D$ — дебаевская частота; $D(z) = \begin{cases} D_S, & z \in I_S \\ D_n, & z \in I_n \end{cases}$, где I_S, I_n —

области значений z, соответствующие сверхпроводящим и нормальным слоям, D_S , D_n — постоянные диффузии сверхпроводящего и нормального металлов. Аналогично определены и функции N(z) (через плотности числа состояний N_S , N_n на уровне Ферми) и V(z) (через константы V_S , V_n электрон-фононного взаимодействия).

Граничные условия и условия на плоскостях контактов сверхпроводящего и нормального слоев для функций $\Delta_{\rm m}(z)$ имеют вид соответственно [3]:

$$\frac{d\Delta_m(0)}{dz} = \frac{d\Delta_m(L)}{dz} = 0,$$
(2)

$$D(z_{i}+0)\frac{d\Delta_{m}(z_{i}+0)}{dz} = D(z_{i}-0)\frac{d\Delta_{m}(z_{i}-0)}{dz},$$

$$D(z_{i}-0)\frac{d\Delta_{m}(z_{i}-0)}{dz} = \frac{v_{F,n}t_{n}N_{n}}{2} \left(\frac{\Delta_{m}(z_{i}+0)}{N(z_{i}+0)} - \frac{\Delta_{m}(z_{i}-0)}{N(z_{i}-0)}\right).$$
(3)

В формулах (2), (3)
$$z_i$$
 — Z-координаты контактных плоскостей; $v_{F,n}$ — скорость Ферми для нормального металла; t_n — параметр прозрачности SN-границы.

Параметр порядка сверхпроводящего состояния выражается через величины $\Delta_m(z)$:

$$\Delta(z) = 2k_B T \cdot V(z) \sum_m \Delta_m(z) .$$
(4)

Поскольку коэффициентные функции в (1) — кусочно-постоянные, можем получить в явном виде общее решение задачи (1)–(3). Для этого строим точные решения для каждого из слоев структуры и сшиваем их посредством условий (3). Построив, таким образом, матрицант $\hat{\mathbf{R}}(z)$ уравнения (1) [4], и используя далее граничные условия (2), получим систему алгебраических уравнений

$$\begin{pmatrix} \mathbf{\Delta}(L) \\ \mathbf{0} \end{pmatrix} = \hat{\mathbf{R}}(L) \begin{pmatrix} \mathbf{\Delta}(0) \\ \mathbf{0} \end{pmatrix},$$
 (5)

где вектор-функция $\mathbf{\Delta}(z) \equiv (\Delta_0(z), \Delta_1(z), \dots, \Delta_{\mathrm{mD}}(z), \Delta_0'(z), \Delta_1'(z), \dots, \Delta_{\mathrm{mD}}'(z))^T$.

Из условия существования нетривиальных решений системы (5) определяется набор значений T, наибольшее из которых и есть критическая температура T_c .

Выражение для матрицанта $\hat{\mathbf{R}}(L)$ многослойной структуры вида NSN...NSN через матрицанты $\hat{\mathbf{S}}(z)$ и $\hat{\mathbf{M}}(z)$ S- и N-слоев, и через матрицы $\hat{\mathbf{P}}_{ns}$, $\hat{\mathbf{P}}_{sn}$ условий сшивания (3) имеет вид

$$\hat{\mathbf{R}}(L) = \hat{\mathbf{M}}(d_n) \left[\hat{\mathbf{P}}_{ns} \hat{\mathbf{S}}(d_s) \hat{\mathbf{P}}_{sn} \hat{\mathbf{M}}(d_n) \right]^{Nbl}.$$
(6)

В формуле (6) *Nbl* — количество бислоев; d_s — толщина S-слоя; d_n — толщина N-слоя. Для матриц $\hat{\mathbf{M}}(d_n)$ и $\hat{\mathbf{S}}(d_s)$ легко получить следующие формулы:

$$\hat{\mathbf{M}}(d_n) = \begin{pmatrix} diag \left[ch \left(\frac{d_n}{\xi_n^{(m)}} \right) \right] & diag \left[\xi_n^{(m)} sh \left(\frac{d_n}{\xi_n^{(m)}} \right) \right] \\ diag \left[\frac{1}{\xi_n^{(m)}} sh \left(\frac{d_n}{\xi_n^{(m)}} \right) \right] & diag \left[ch \left(\frac{d_n}{\xi_n^{(m)}} \right) \right] \end{pmatrix},$$

$$(7)$$

$$\hat{\mathbf{S}}(d_{s}) = \begin{pmatrix} \hat{\mathbf{C}}diag \left[ch\left(\frac{d_{s}}{\xi_{s}^{(m)}}\right) \right] \hat{\mathbf{C}}^{T} & \hat{\mathbf{C}}diag \left[\xi_{s}^{(m)} sh\left(\frac{d_{s}}{\xi_{s}^{(m)}}\right) \right] \hat{\mathbf{C}}^{T} \\ \hat{\mathbf{C}}diag \left[\frac{1}{\xi_{s}^{(m)}} sh\left(\frac{d_{s}}{\xi_{s}^{(m)}}\right) \right] \hat{\mathbf{C}}^{T} & \hat{\mathbf{C}}diag \left[ch\left(\frac{d_{s}}{\xi_{s}^{(m)}}\right) \right] \hat{\mathbf{C}}^{T} \end{pmatrix}.$$

$$\tag{8}$$

В (7), (8) использованы следующие обозначения:

$$\xi_{n}^{(m)} = \xi_{n}^{(m)}(T) = \xi_{n} \sqrt{\frac{T_{s}}{(2m+1)T}}, \quad \xi_{n} = \sqrt{\frac{\hbar D_{n}}{2\pi k_{B} T_{s}}},$$

$$\xi_{s}^{(m)} = \xi_{s}^{(m)}(T) = \xi_{s} \sqrt{-\frac{T_{s}}{2T \mu^{(m)}(T)}}, \quad \xi_{s} = \sqrt{\frac{\hbar D_{s}}{2\pi k_{B} T_{s}}}.$$
(9)

Здесь температурные функции $\mu^{(m)}(T)$ есть корни характеристического уравнения

$$\psi\left(\frac{\omega_D}{2\pi k_B T} + 1 + \mu^{(m)}(T)\right) - \psi\left(\frac{1}{2} + \mu^{(m)}(T)\right) = \psi\left(\frac{\omega_D}{2\pi k_B T_S} + 1\right) - \psi\left(\frac{1}{2}\right),\tag{10}$$

 T_s — критическая температура сверхпроводящего материала; $\psi(x)$ — действительная часть дигамма функции. Матрицы $\hat{\mathbf{C}}$ в (8) определяются выражениями

$$C_{j}^{(m)} = \frac{s^{(m)}}{j + \frac{1}{2} + \mu^{(m)}}, \quad s^{(m)} = \left[\sum_{j=0}^{mD} \left(j + \frac{1}{2} + \mu^{(m)}\right)^{-2}\right]^{-1/2}$$
(11)

и являются ортогональными: $\hat{\mathbf{C}}^T \hat{\mathbf{C}} = \hat{\mathbf{C}} \hat{\mathbf{C}}^T = \hat{\mathbf{1}}$. Матрицы "сшивания" определяются формулами

$$\hat{\mathbf{P}}_{sn} = \begin{pmatrix} \hat{\mathbf{1}} & \gamma_b \xi_n \hat{\mathbf{1}} \\ \hat{\mathbf{0}} & p \hat{\mathbf{1}} \end{pmatrix}, \ \hat{\mathbf{P}}_{ns} = \begin{pmatrix} \hat{\mathbf{1}} & \gamma_b \xi_n p^{-1} \hat{\mathbf{1}} \\ \hat{\mathbf{0}} & p^{-1} \hat{\mathbf{1}} \end{pmatrix}.$$
(12)

В (12) использованы параметры

$$p = \frac{\rho_s}{\rho_n} \quad \gamma_b = \frac{\ell_n}{3\xi_n} \frac{2}{t_n}, \tag{13}$$

где ρ_s , ρ_n — удельные сопротивления сверхпроводящего и нормального материалов; ℓ_n –длина свободного пробега электрона в нормальном металле.

В данной работе рассматривается критическое состояние 3-слойных структур NSN (Nbl = 1). Можно показать, что критической температуре соответствует симметричное решение

системы (5), так что $\Delta(L) = \Delta(0)$. Тогда для трехслойной структуры система (5) редуцируется к любому из двух видов, дающих одну и ту же критическую температуру:

$$\begin{bmatrix} \hat{M}_{t}(d_{n}) + p^{-1}\hat{M}_{b}(d_{n})\hat{S}_{t}(d_{s}/2)\end{bmatrix}\hat{S}_{I,I}(d_{s}/2)\Delta(0) = \mathbf{0},$$

$$\begin{bmatrix} \hat{M}_{t}(d_{n}) + p^{-1}\hat{S}_{t}(d_{s}/2)\hat{M}_{b}(d_{n})\end{bmatrix}\hat{M}_{I,I}(d_{n})\Delta(0) = \mathbf{0}$$

$$3 \text{десь}$$
(14)

 $\hat{S}_{t} = \hat{S}_{I,I}^{-1} \hat{S}_{II,I}, \quad \hat{M}_{t} = \hat{M}_{I,I}^{-1} \hat{M}_{II,I}, \quad \hat{M}_{b} = \hat{\mathbf{1}} + \gamma_{b} \xi_{n} \hat{M}_{t},$

где матрицы с римскими индексами означают соответствующие квадратные блоки матриц $\hat{\mathbf{S}}$ и $\hat{\mathbf{M}}$.

Таким образом, критическая температура соответствует нулевым, и одновременно минимальным собственным значениям матриц

$$\hat{R}_{SM} \equiv \hat{M}_{t}(d_{n}) + p^{-1}\hat{S}_{t}(d_{s}/2)\hat{M}_{b}(d_{n})$$

$$\hat{R}_{MS} \equiv \hat{M}_{t}(d_{n}) + p^{-1}\hat{M}_{b}(d_{n})\hat{S}_{t}(d_{s}/2).$$
(15)

Критическая температура и коэффициент прозрачности структур Pd/Nb/Pd [5] и Cu/Nb/Cu [6]

С помощью вышеизложенного метода вычислим зависимости $T_{c}(d_{s})$ для тех же структур, что и в работе [1] — это два набора (ps1 и ps2) образцов Pd/Nb/Pd, полученных методом напыления, и два набора (cs1 и cs2) образцов Cu/Nb/Cu, полученных методом молекулярнолучевой эпитаксии. Для параметров структур используются оценки, извлеченные из экспериментальных данных [5, 6]. Во всех случаях с уверенностью можно полагать, что длина когерентности $\xi_{s} = \xi_{Nb} = 64$ Å. Критическая температура массивного ниобия принята равной T_s =8,44 К для набора ps1, T_s =8,3 К — для набора ps2, T_s =9 К — для наборов cs1 и cs2. Эти значения меньше приведенных в [5, 6] критических температур массивного ниобия (неограниченных размеров) и, по мнению автора, лучше соответствуют критической температуре толстой пленки сверхпроводящего материала. Тем более, расчеты и по точным уравнениям, и по одномодовому приближению [1] не подтверждают асимптотических значений, приведенных в [5, 6]. Значения длин когерентности нормального материала ξ_n при расчетах варьировались в пределах 260–300 Å для Cu и 60–80 Å — для Pd. В [1] приведены доводы в пользу известной свободы в выборе этого параметра. Однако основной довод состоит в том, что структуры вида S/N...N/S, использованные для определения ξ_n , резко отличаются по своим свойствам от рассматриваемых структур. Удельные сопротивления нормальных металлов ρ_{Pd}=5,0 μΩ·см, $\rho_{Cu}=1,3 \mu \Omega \cdot cm$. Удельное сопротивление ниобия в структуре Cu/Nb/Cu $\rho_{Nb,mbe}=3,6 \mu \Omega \cdot cm$; для структуры Pd/Nb/Pd использовалось уточненное значение р_{Nb.sput}=5,0 µΩ·см [7]. Параметр прозрачности t_n является подгоночным (он связан с квантовомеханическим коэффициентом прозрачности Tформулой $T = t_n/(1+t_n)$.

Моделирование экспериментальных данных проводилось следующим образом. Для заданного ξ_n подгонкой значения критической температуры при заданной толщине d_s находился параметр \mathcal{T} . Для структуры ps1 достигалось совпадение теоретического и экспериментального значений $T_c(300 \text{ Å})$, для структуры cs1 — $T_c(200 \text{ Å})$. Далее для полученной пары значений (ξ_n , \mathcal{T}) выстраивалась вся кривая $T_c(d_s)$. Для структур ps2 и cs2 использовались параметры (ξ_n, T) структур ps2 и cs2 соответственно. Результаты приведены на рис. 1,*a*, *б* и 2,*a*, *б*. Из рис. 1,*a* видно, что теоретические кривые $T_c(d_S)$ точно воспроизводят экспериментальную зависимость. Кроме того, оказалось, что кривые $T_c(d_S)$, построенные для последовательности пар значений (ξ_n , T), практически накладываются друг на друга. Это отражено на рис. 1,*a* и 2,*a*. На них приведены теоретические зависимости для двух пар значений (ξ_n , T): одна из них соответствует параметру $\xi_n=60$ Å, использованному в [5] при моделировании экспериментальных данных, другая соответствует полной прозрачности границы S/N, т.е. параметру T=1. Аналогичная ситуация имеет место и для наборов cs1 и cs2; поэтому на рис. 1,*b*, 2,*b* приведена одна кривая для значения длины когерентности $\xi_n=260$ Å, использованного в [6] при моделировании экспериментальных данных. Данному значению соответствует коэффициент прохождения T=0,242 — это несколько меньше приведенного в [6]; а, например, значению $\xi_n=300$ Å соответствует коэффициент T=0,353.

Рис. 1. Экспериментальная и теоретическая зависимости критической температуры от толщины сверхпроводящего слоя: *a* — для набора ps1 структур Pd/Nb/Pd; *б* — для набора cs1 структур Cu/Nb/Cu

Рис. 2. Экспериментальная и теоретическая зависимости критической температуры от толщины сверхпроводящего слоя: *a* — для набора ps2 структур Pd/Nb/Pd; *б* — для набора cs2 структур Cu/Nb/Cu

Интересно отметить, что одномодовое приближение с уточненными параметрами T_s , $\rho_{\rm Nb}$, приведенными выше, столь же хорошо описывает экспериментальные результаты, как и точные уравнения теории (см. рис. 3,*a*, δ). При этом, однако, коэффициент прозрачности оказывается завышенным.

Рис. 3. Экспериментальная зависимость критической температуры от толщины сверхпроводящего слоя и теоретические кривые, полученные в одномодовом приближении: *а* — для структур Pd/Nb/Pd; *б* — для структур Cu/Nb/Cu

Связь между параметрами ξ_n , T, соответствующими экспериментальной зависимости $T_c(d_s)$ для структуры ps1, отображена на рис. 4; на том же рисунке приведена важная с экспериментальной точки зрения зависимость $\gamma_b(\xi_n)$. Этот график позволяет по измеренному значению ξ_n получить коэффициент прозрачности T.

Рис. 4. Зависимость коэффициента прозрачности и параметра γ_b от длины когерентности нормального металла

Заключение

На основе точного решения уравнений критического состояния в трехслойных структурах типа сверхпроводник/нормальный металл рассчитаны зависимости критической температу-

ры от толщины сверхпроводящего слоя. Теоретические зависимости хорошо описывают данные на структурах Pd/Nb/Pd, Cu/Nb/Cu. Получена зависимость коэффициента прозрачности контакта сверхпроводник/нормальный металл от длины когерентности нормального слоя. Автор признателен проф. С.Л. Прищепе, проф. С. Attanasio, С. Cirillo за предоставленные экспериментальные данные.

SUPERCONDUCTOR/NORMAL METAL CONTACT TRANSPARENCY AND CRITICAL TEMPERATURE OF TRILAYER MESOSTRUCTURES. II

V.N. KUSHNIR

Abstract

The effect of superconductor/normal metal contact finite transparency on proximity mesostructures critical temperature estimated. The matrix method of microscopic theory is used. The theoretical curves fit the experimental T_c versus superconducting layer width data very satisfactory. The transparency versus normal metal coherent length explained.

Литература

1. Кушнир В.Н. // Докл. БГУИР. 2005. № 4 (12). С. 5.

2. Koperdraad R.P.W. and A. Lodder // Phys. Rev. B. 1995. Vol. 51. P. 9026.

3. Куприянов М.Ю., В.Ф. Лукичев // ЖЭТФ. 1988. Т. 94. С. 139.

4. Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М., 1972.

5. Cirillo C., S.L. Prischepa, M. Salvato and C. Attanasio // Euro. Phys. J. B 2004. Vol. 38. P.59.

6. Tesauro A., A. Aurigemma, C. Cirillo, S.L. Prischepa, M. Salvato and C. Attanasio // Supercond. Sci. Technol. 2005. Vol. 18. P. 152

7. *Cirillo C.* — частное сообщение.