УДК 621.391

ФОРМИРОВАНИЕ И ОБРАБОТКА ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ С ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКОЙ ЧАСТОТЫ В ПОМЕХОЗАЩИЩЕННЫХ СИСТЕМАХ РАДИОСВЯЗИ

С. ДАЛАБАЕВ¹, В.А. ЧЕРДЫНЦЕВ², В.В. ДУБРОВСКИЙ²

¹Синьцзянский университет, КНР

²Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь,

Поступила в редакцию 27 октября 2006

Предложены методы повышения помехозащищенности приема в системах передачи цифровой информации за счет использования фазоманипулированных сигналов с межбитовой псевдослучайной перестройкой рабочей частоты, а также адаптивных компенсаторов узкополосных помех в частотных подканалах обработки сигналов. Объектом разработки является компьютерно-измерительная система для анализа амплитудно-частотных и фазочастотных характеристик четырехполюсников. Представлено описание внешнего вида и структурной схемы компьютерно-измерительной системы для анализа амплитудно-частотных и фазочастотных характеристик четырехполюсников. Описан принцип работы компьютерноизмерительной системы и алгоритм измерения амплитудно-частотных и фазочастотных характеристик четырехполюсников. Представлено программное обеспечение, разработанное для компьютерно-измерительной системы.

Ключевые слова: псевдослучайная перестройка рабочей частоты, фазовая манипуляция, квазикогерентный прием, квадратурная обработка, помехозащищенный прием, адаптивный компенсатор помехи.

Введение

В существующих системах цифровой радиосвязи применяют расширение спектра сигнала на основе псевдослучайной перестройки рабочей частоты (ППРЧ). Формирование и обработка таких сигналов предполагает, как правило, наличие случайной начальной фазы, поэтому для передачи информации используют ортогональные сигналы, а при приеме — некогерентную обработку [1].

Современная элементная база позволяет обеспечить передачу двоичной информации фазоманипулированными многочастотными сигналами с их квазикогерентной обработкой, т.е. вместо частотной (ЧМ) использовать фазовую манипуляцию (ФМ). За счет этого можно снизить вероятность ошибки приема информационных символов, а энергетической выигрыш при действии шумовой помехи составляет более 3 дБ по сравнению с некогерентным приемом ЧМ сигналов.

Как известно, интенсивная сосредоточенная (узкополосная) помеха, обусловленная действием внешних источников, при попадании в частотный подканал приема сигналов ППРЧ приводит к полному поражению информационного блока, что существенно снижает эффективность работы системы связи [1]. Вместе с тем, учитывая "свободные" от сигнала зоны в частот-

2006

но-временной матрице сигнала с ППРЧ, можно обнаруживать узкополосную помеху и качественно оценивать ее параметры для последующей компенсации в зоне действия полезного сигнала. При этом возможно использовать алгоритмы нелинейной компенсации, инвариантные к частоте узкополосной помехи [2].

Цель статьи состоит в обосновании структурной схемы квазикогерентного приема ФМ сигналов с межсимвольной ППРЧ, обеспечивающего относительно высокую помехозащищенность в условиях действия сосредоточенных помех.

Постановка задачи

Пусть на входе приемника действует аддитивная смесь r(t) сигнала $s(t, X, \vec{\beta}, \vec{\omega})$ и помехи n(t)

$$r(t) = s(t, X, \vec{\beta}, \vec{\omega}) + n(t).$$
⁽¹⁾

Сигнал представляет известную функцию времени, информационного параметра X и сопутствующих векторных параметров $\vec{\omega} = \{\omega_1, ..., \omega_n\}$ – частоты и $\vec{\beta} = \{\beta_1, ..., \beta_n\}$ – начальной фазы, где n – число возможных значений частоты и фазы. Закон изменения рабочей частоты сигнала считается известным и определяется псевдослучайной последовательностью чисел (ПСПЧ). Структурная схема сигнально-кодовой конструкции с псевдослучайной перестройкой рабочей частоты (ППРЧ) приведена на рис. 1. Схема включает генератор сетки частот $\vec{\omega}$ (ГСЧ), источник информации (ИИ), многоканальный фазовый модулятор (МФМ), коммутатор (Ком.), управляемый генератором ГПСП.

При фазовой манипуляции двоичной информационной последовательностью $X(t) = \{\pm 1\}$ на входах коммутатора образуются колебания вида

$$s(t, X, \beta_i, \omega_i) = a_i X \cos\left[\omega_i t + \beta_i\right], i = \overline{1, p}.$$
(2)

Схема многоканального фазового модулятора (МФМ) приведена на рис. 1. В дальнейшем будем считать начальные фазы β_i колебаний (2) случайными величинами на интервале времени T_{β} , равномерно распределенными в пределах [0, 2 π], а значения частот ω_i и амплитуды a_i – известными. Помеха n(t) представляет сумму белого гауссовского шума $n_0(t)$ со спектральной плотностью $N_0/2$, импульсной помехи $\eta(t)$ и гармонической помехи y(t) с неизвестной амплитудой a_{II} , частотой ω_{II} и начальной фазой β_{II} :

$$y(t) = \theta(t)a_{\Pi}\cos[\omega_{\Pi}t + \beta_{\Pi}].$$
(3)

Здесь $\theta(t) = \{0,1\}$ определяет наличие и отсутствие помехи.

С учетом указанных условий (1)–(3) необходимо определить алгоритм и структурные схемы приема и обработки сигнала с межсимвольной ППРЧ.

Для простоты представления рассматривается случай двухчастотной ППРЧ. Начальные фазы β_1 и β_2 и соответствующие частоты сигналов ω_1 и ω_2 считаются постоянными в течение сеанса связи. Предполагается, что начальная синхронизация генератора ПСП осуществлена с требуемой точностью.

Для *i*-го частотного подканала наблюдаемый процесс в начале представим в виде

$$r_i(t) = a_0 g_i(t-\tau) X(t) \cos\left[\omega_i t + \beta_i\right] + n_0(t), \ i = 1, 2,$$
(4)

где $g_i(t-\tau) = \{0,1\}$ – функция включения *i*-го подканала, зависящая от случайной задержки τ_{il} , определяется псевдослучайной последовательностью; X(t) – информационная последовательность. Таким образом, амплитуда принимаемого сигнала отлична от нуля в определенных границах, известных при идеальной синхронизации генератора ПСП. Во время сеанса связи также определенными являются паузы в передаче *i*-го символа. Минимальный интервал наличия (отсутствия) сигнала равен длительности T_g элемента ПСП g(t). За время T_g укладывается N информационных символов $X(t) = \{\pm 1\}$, т. е. $T_g = NT$, где T – длительность информационного символа.

Априорные данные о случайных параметрах сигнала определим следующими уравнениями:

$$\frac{d\omega_i}{dt} = 0, \qquad \frac{d\beta_i}{dt} = 0, \qquad i = 1, 2; \tag{5}$$

$$\frac{d\tau(t)}{dt} = n_{\tau}(t) \,. \tag{6}$$

Здесь задержка $\tau(t)$ представление винеровским процессом, где $n_{\tau}(t)$ – формирующий белый гауссовский шум со спектральной плотностью $N_{\tau}/2$.

Алгоритмы и структурные схемы обработки сигналов с псевдослучайной перестройкой рабочей частоты

При указанных выше условиях алгоритмы оптимального приема могут быть получены на основе марковской теории нелинейной фильтрации [3]. Для наблюдаемого процесса (4), содержащего аддитивную шумовую помеху $n_0(t)$, уравнение для оценок параметров с учетом (5) и (6) представляются в следующем виде:

$$\frac{da_{i}^{*}(t)}{dt} = \sigma_{a}^{2}(t)\frac{2}{N_{0}}\left[r(t)X^{*}(t)g(t-\tau^{*})\cos\left[\omega_{i}t+\beta_{i}^{*}(t)\right]-\frac{a_{i}^{*}(t)}{2}\right];$$
(7)

$$\frac{d\beta^{*}(t)}{dt} = -\sigma_{\beta}^{2}(t)\frac{2a_{i}^{*}(t)}{N_{0}}r(t)X^{*}(t)g(t-\tau^{*})\sin\left[\omega_{i}t+\beta_{i}^{*}(t)\right];$$
(8)

$$\frac{d\tau^*(t)}{dt} = \sigma_{\tau}^2(t) \frac{2a_i^*(t)}{N_0} r(t) X^*(t) \frac{\partial g(t-\tau^*)}{\partial \tau^*} \cos\left[\omega_i t + \beta_i^*(t)\right]; \tag{9}$$

$$X^{*}(t) = \operatorname{sign} Z(t), \ i = 1, 2;$$
 (10)

$$Z(t) = P_1(t) - P_2(t) = th \left[\frac{2a_i^*(t)}{N_0} \int_{(k-1)T}^{t \le kT} r(t)g(t-\tau^*) \cos\left[\omega_i t + \beta_i^*(t)\right] dt \right].$$
(11)

Здесь P_1 и P_2 – апостериорные вероятности состояний X = 1 и X = -1 соответственно; σ_a^2 , σ_β^2 , σ_τ^2 – апостериорные дисперсии оценок параметров сигнала, зависящие от времени.

Приведенные уравнения преобразуем с учетом квадратурной обработки сигнала в каждом из частотных подканалов, настроенных на частоты ω_1 и ω_2 . Поскольку амплитуда a_{0i}^* и начальная фаза β_i^* остаются постоянными или меняются относительно мало за время сеанса связи, то необходимые для качественной оценки интервалы $T_{\beta,a}$ определяются исходя из максимально допустимых значений дисперсий $\sigma_{\beta}^2(T_{\beta})$ и $\sigma_a^2(T_a)$:

$$\sigma_{\beta i}^{2}(T_{\beta}) = \frac{N_{0}}{a_{0i}^{*}T_{\beta}}; \qquad \sigma_{a}^{2} = \frac{N_{0}}{T_{a}}.$$

где T_{β} , T_a — время усреднения параметров β и a соответственно.

Представим сигнал в (4) квадратурными составляющими $S_c(t)$ и $S_s(t)$:

$$S_{i}(t) = S_{ci}(t)\cos\beta_{i} + S_{si}(t)\sin\beta_{i};$$

$$S_{ci}(t) = a_{i}X(t)g(t - \tau^{*})\cos\omega_{i}t;$$

$$S_{si}(t) = -a_{i}X(t)g(t - \tau^{*})\sin\omega_{i}t.$$
(12)

Полагая, что $T_a = T_\beta = MT$, N > M > 1, алгоритм оценивания приема сигнала в *i*-м частотном подканале на основании (7)–(11) можно представить в следующем виде:

$$X_{Ki}^{*} = \operatorname{sign}\left\{g(t-\tau^{*})J_{cKi}\sum_{j=K-M}^{K}J_{cji}X_{j}^{*}g_{i}(t-\tau^{*}) - g_{i}(t-\tau^{*})J_{ski}\sum_{j=K-M}^{K}J_{sji}X_{j}^{*}g_{i}(t-\tau^{*})\right\},$$
(13)

где

$$J_{ci} = \int_{(k-1)T}^{kT} r(t) \cos \omega_i t dt , \ J_{si} = \int_{(k-1)T}^{kT} r(t) \sin \omega_i t dt .$$
(14)

$$\frac{d\tau^*(t)}{dt} = \frac{\sigma_\tau^2 a_i^*}{N_0 \Delta \tau} r(t) X^*(t) \Big[g(t - \tau^* + \Delta \tau) - g(t - \tau^* - \Delta \tau) \Big] \times \\ \times \Big[\cos \omega_i t \cdot \cos \beta_i^* - \sin \omega_i t \cdot \sin \beta_i^* \Big],$$
(15)

37

$$a_{i}^{*} = \sqrt{J_{c\Sigma i}^{2} + J_{s\Sigma i}^{2}}; \qquad (16)$$

$$\cos\beta_i^* = \frac{J_{c\Sigma i}^2}{a_i^*}, \ \sin\beta_i^* = \frac{J_{s\Sigma i}^2}{a_i^*}; \tag{17}$$

$$J_{c\Sigma i} = \frac{1}{M} \sum_{j=k-M}^{k} J_{cj} X_{j}^{*} g_{j}(t-\tau^{*}), \quad J_{s\Sigma i} = \frac{1}{M} \sum_{j=k-M}^{k} J_{sj} X_{j}^{*} g_{j}(t-\tau^{*}).$$
(18)

Здесь σ_{τ}^2 — дисперсия оценки задержки.

На основании соотношений (13)–(18) на рис. 2 приведена структурная схема для двухчастотного сигнала с ППРЧ. В схеме слежения по задержке (ССЗ) осуществляется синхронизация генератора ПСП (ГПСП), формирующего последовательность $g(t - \tau^*)$ в соответствии с выделяемой на выходе разностного устройства оценки элементов ПСП (см. (15)).

Полосовые фильтры (ПФ₁ и ПФ₂) обеспечивают разделение частотных подканалов приема и независимую обработку сигналов. За счет синхронной коммутации выходов каналов на решающее устройство (РУ) поступают информационные посылки, не подверженные влиянию межканальных помех. Структура подканалов определяется соотношениями (13), (14). На рис. 2 не отражены формирователи оценок $a_i^*, i = 1$ (16)–(18). Оценивание величины ($\cos \beta$)^{*} и ($\sin \beta$)^{*} (см. точки 1, 2, 1', 2') обеспечивается включением обратной связи по информационному параметру X^* и трансверсальных цифровых фильтров (ТЦФ).

Рис. 2. Структурно-функциональная схема устройства приема и обработки ФМ сигнала с межсимвольной ППРЧ

Помехоустойчивость приема сигналов с ППРЧ

В условиях действия интенсивных узкополосных помех в каналы приема включаются аддитивные компенсаторы помех (АКП), коммутация которых осуществляется в соответствии с

где

синхронизированной ПСП. Оценка амплитуды a_{Π}^* помехи осуществляется в течение времени, пока полезный сигнал в подканале отсутствует, что обеспечивает относительно высокую степень компенсации помехи во время действия сигнала. Характеристики АКП *i*-го подканала определяются соотношениями [2]

$$Z_{i}(y) = k \left[y_{i} - a_{\tilde{I} i}^{*} \operatorname{sign} y_{i} \right];$$

$$a_{\tilde{I}}^{*} = \frac{1}{T_{g}} \int_{0}^{T_{d}} |y_{i}(t)| dt.$$
(19)

Здесь *k* — произвольный коэффициент.

Во время включения подканала $g_i=1$ на вход выключателя АКП поступает оценка помехи, сформированная на предыдущем интервале $T_{g_{\perp}}$ Полосовой фильтр П Φ_1 подавляет продукты нелинейного преобразования помехи в компараторе (sign) АКП. Структурная схема *i*-го канала оценки узкополосной помехи с учетом включения полосовых фильтров приведена на рис. 3

Рис. 3. Структурная схема нелинейного оценивателя узкополосной помехи

Устройство позволяет оценивать узкополосную помеху, имеющую среднюю частоту спектра $\omega_i \in \Delta \omega_i$. Характеристика $Z_{0i}(\cdot)$ обеспечивает инвариантность преобразования к частоте помехи. Вместе с тем при клиппировании смеси $r_i(t)$ в спектре появляются составляющие на частотах $\omega_i(2n-1)$, n = 1, 2, 3...; компоненты спектра на частотах вне полосы П Φ_i подавляются (см. рис. 3), обеспечивая снижение ошибки оценивания узкополосной помехи. Коммутатор (Ком.) обеспечивает подключение компенсатора помехи (вычитателя) на время действия сигнала в подканале.

Показателем качества компенсации узкополосной помехи может служить коэффициент подавления помехи μ^2 на выходе компенсатора, определяемый соотношением

$$\mu_i^2 = \sigma_i^2 I_{\hat{0}i} = \frac{1 + a_i^2 / \sigma_i^2}{1 + \sigma_a^2 / \sigma_i^2}.$$
(20)

Здесь σ_i^2 — средняя мощность помехи на выходе фильтра П Φ_i ; $I_{\Phi i}$ — информация Φ ишера; σ_a^2 — дисперсия ошибки оценивания моды a_i .

Дисперсия σ_a^2 определяется соотношением

$$\sigma_a^2 = \sigma_i^2 (2\tau_{\rm e}/T), \qquad (21)$$

где τ_{κ} — величина, зависящая от нормированной корреляционной функции $\rho(t_1 - t_2)$ процесса $y_i(t)$ и времени *T* интегрирования:

$$\tau_{\hat{e}} = \int_{0}^{T} dt_1 \int_{0}^{T} \rho(t_2 - t_1) dt_2$$
(22)

При относительно большом времени интегрирования $T >> \tau_{\kappa}$ дисперсия σ_a^2 оценки моды может быть снижена до требуемой величины.

Рассмотрим теперь действие импульсной помехи в процессе обработки слабого сигнала. Если пиковая мощность импульсной помехи значительно превышает суммарную мощность составляющих, оставшихся в смеси $r_k(t)$, то целесообразно принять меры к подавлению импульсной помехи после компенсации узкополосных помех. Схема на рис. 3 может быть дополнена устройством подавления импульсной помехи $\eta(t)$ — усилителем-ограничителем. На выходе компенсатора узкополосных помех $r_k(t)$ представляет собой сумму полезного сигнала и импульсной помехи. Плотность распределения вероятности суммы импульсной помехи $\eta(t)$ и шума n(t) в первом приближении представим комбинацией гауссовской и лапласовской ПРВ (распределение Хьюберта):

$$W(x) = \begin{cases} N(0, \sigma_n^2), \ |x| < x_0; \\ L(0, \sigma_\eta^2), \ |x| > x_0, \end{cases}$$
(23)

где x_0 – заданная величина; $N(0, \sigma_n^2)$ – гауссовская ПРВ с нулевым средним значением и дисперсией σ_n^2 ; $L(0, \sigma_n^2)$ – лапласовская ПРВ с нулевым средним значением и дисперсией σ_n^2 .

В соответствии с (23) определяется характеристика $Z_{\eta}(x)$ безынерционного нелинейного преобразователя (БНП), обеспечивающая максимальное отношение сигнал/помеха на входе преобразователя:

$$Z_{\eta}(x) = \begin{cases} bx, \ |x| < x_{0}; \\ bx_{0}, \ x > x_{0}; \\ -bx_{0}, \ x < -x_{0}. \end{cases}$$
(24)

Амплитудная характеристика $Z_{\eta}(x)$ соответствует жесткому ограничению процесса $r_k(t)$ на уровне $\pm bx_0$. Этот уровень определяется соотношением между пиковой мощностью импульсной помехи и средней мощностью шума.

Заключение

Предложенные алгоритмы и структурные схемы обработки сигналов с межбитовой ППРЧ обеспечивают повышение защищенности систем цифровой связи за счет использования фазовой информационной модуляции и квазикогерентного приема с компенсацией узкополосных помех. Фазовая манипуляция на 180° по сравнению с частотной манипуляцией повышает энергетическую эффективность системы как минимум на 3 дБ при действии флуктуационной помехи.

В каналах с сосредоточенными помехами (узкополосными и импульсными) адаптивные компенсаторы помех реализуют модифицированный вариант известной схемы ШОУ (широкополосный фильтр – ограничитель – узкополосный фильтр). При этом компенсация узкополосной помехи осуществляется намного эффективней, чем в известных вариантах за счет использования свободных от сигнала интервалов времени для оценивания параметров помехи. Благодаря этому из пораженного помехой частотного подканала имеется возможность выделить информацию.

FORMATION AND PROCESSING OF PHASE-SHIFT KEYED SIGNAL WITH PSEUDORANDOM FREQUENCY HOPPING IN ANTI-INTERFERENCE COMMUNICATION SYSTEMS

S. DALABAEV, V.A. CHERDYNTSEV, V.V. DUBROVSKY

Abstract

Methods of anti-interference receiving enhancement in digital communications systems are proposed. The enhancement is achieving at the expense of using phase-shift keyed signals with bit pseudorandom frequency hopping as well as adaptive balancers of narrow-band disturbances in signal processing frequency sub-channels.

Литература

1. *Борисов В.И. и др.* Помехозащищенность систем радиосвязи с расширением спектра сигналов методом псевдослучайной перестройки рабочей частоты. М., 2000. 384 с.

2. Чердыниев В.А. и др. Прием сигналов на фоне помех. Минск, 1998. 174 с.

3. Тихонов В.И. Оптимальный прием сигналов М., 1983. 320 с.