№ 1 (17)

УДК 539.2; 533.9

МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ СВОЙСТВ СЛОЖНЫХ МАТЕРИАЛОВ МЕТОДОМ РЕНОРМАЛИЗАЦИОННОЙ ГРУППЫ

Н.Т. КВАСОВ¹, А.В. ПУНЬКО¹, В.М. АСТАШИНСКИЙ², В.В.УГЛОВ³

¹Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь,

²Институт молекулярной и атомной физики НАН Беларуси пр. Независимости, 70, 220072, Минск, Беларусь,

³Белорусский государственный университет пр. Независимости, 4, 220080, Минск, Беларусь

Поступила в редакцию 2 февраля 2007

При помощи теории перколяции на основе ренормализационной схемы и ее обобщения на трехмерный случай в работе предпринята попытка разработать алгоритм аналитического расчета коэффициентов перколяционного многочлена, оценена его эффективность; проведены вычисления для некоторых частных случаев. Для системы Fe–Si выполнен расчет упругих характеристик материалов и их критических индексов.

Ключевые слова: перколяция, ренормгруппа, упругие свойства, критические индексы.

Введение

Сложные многокомпонентные материалы на сегодняшний день являются основой твердотельной нано- и микроэлектроники, космической техники, систем хранения и передачи информации и др. областей науки и техники. Однако отсутствие знаний о микроструктуре таких веществ не позволяет прогнозировать известными теоретическими методами их физические свойства, что представляет собой весьма существенную проблему современного материаловедения.

В представленной работе предпринята попытка теоретической оценки упругих характеристик системы Fe–Si, полученной в плотной компрессионной плазме. Этот оригинальный метод создания сложных материалов положительно зарекомендовал себя в ряде областей микро- и наноэлектроники и материаловедения. В основу расчета положено компьютерное моделирование физических свойств, базирующееся на идеях теории перколяции — геометрическом аналоге ренормализационного преобразования.

Методика исследования

Моделирование структуры сложных материалов проводилось на базе решеток со случайным распределением параметров. Узлы моделируют компоненты системы в пространстве, связи между узлами — их контакты с соседями. Размерность решеток составляла **n**×**n** и **n**×**n** для двух- и трехмерного случаев соответственно.

В исходной (квадратной или кубической) решетке размером l_0 каждая связь существует с вероятностью P_0 . Организовывался итерационный процесс, когда на следующем шаге каждая связь заменялась решеткой, полученной на предыдущем. Процесс заканчивается, когда свойства решетки перестают зависеть от номера итерации. В итоге получаем решетку, размеров много больше базовой, на которой можем определить макроскопические свойства.

Рассматривалась задача связей. Множество связей, образованное на каждом шаге, называлось *связывающим*, если существовала непрерывная цепочка из связей между противоположными сторонами (гранями) для d=2 (d=3) соответственно.

Вероятность $P_n = R(l_{n-1}, P_{n-1})$ того, что на *n*-м шаге данное множество связывающее — полином степени N (числа связей на решетке), может быть определено с какой угодно точностью при любом P_0 .

Траектория итерационного процесса заканчивается на *n*-м этапе в неподвижной точке 0 или 1.

$$P_n = \begin{cases} 1, \text{ если } R(P_0, l_0) > P_*, \\ 0, \text{ если } R(P_0, l_0) < P_*. \end{cases}$$
(1)

Неподвижная точка Р. может быть определена из уравнения

$$P_* = R(P_*, l_0) \tag{2}$$

и называется порогом протекания модели размера L_n , т.е. переход множества из несвязного в связное происходит при $P_n = P_*$.

Целью работы было:

1. Определение полинома *R_n* аналитически для некоторых частных случаев.

2. Расчет некоторых физических (например упругих) свойств *реального* сложного вещества и критических индексов этих свойств.

Теоретический анализ

Количество связей *К* в решетке размерностью *n* в *d*-мерном пространстве:

$$K=n^2+(n-1)^2$$
 и $K=n^3+2n$ (n-1)

для *d*=2 и 3 соответственно. В табл. 1 приведены *К* для нескольких решеток.

Таблица 1. Количество связей К в перколяционной решетке n×n в пространстве размерности d

		Раз	мерн	ость р	зешеть	и п
K		2	3	4	5	6
<i>d</i> _	2	5	13	25	41	61
<i>u</i> –	3	12	39	88	165	

Обозначим вероятность наличия каждой из связей перколяционной решетки *p*. Тогда вероятность наступления протекания в данной решетке есть следующий многочлен:

$$R(p) = \sum_{k=0}^{n} A_k p^k (1-p)^{n-k} ,$$

где A_k — количество протекающих решеток, в которых k целых связей (соответственно, n-k разорванных).

Последнее выражение может быть переписано:

$$R(\mathbf{p}) = \sum_{k=0}^{n} A_k p^k (1-p)^{n-k} = \sum_{k=0}^{n} A_k p^k \sum_{s=0}^{n-k} C_{n-k}^s (-p)^s = \sum_{k=0}^{n} \sum_{s=0}^{n-k} A_k C_{n-k}^s p^{k+s} (-1)^s,$$

т.е. R(p) — многочлен от p: $R(p) = \sum_{q=0}^{n} B_q p^q$.

Таким образом, если перебрать всевозможные протекающие решетки для выбранных dи n, можно точно определить коэффициенты A_k , а приведя подобные слагаемые, и B_q ($k = \overline{1, n}$, $q = \overline{1, n}$).

Решив аналитически уравнение R(p)=p, найдем точное значение порога протекания $p=p^*$.

Еще раз отметим, что, поскольку все действия (сложение, умножение) производятся с целыми числами, результаты будут точными. Представляет интерес аналитическое нахождение коэффициентов многочлена R(p) для решеток и пространств разных размерностей, Так как они обычно рассчитываются приближенно методом Монте-Карло

Для случая *n*=3, *d*=3 перколяционный полином брался в виде

$$R(p) = p^{2} \Big(4 + 8p - 14p^{2} - 40p^{3} + 16p^{4} + 288p^{5} - 655p^{6} + 672p^{7} - 376p^{8} + 112p^{9} - 14p^{10} \Big).$$
(3)

Согласно [1, 2], (3) обеспечивает достаточную точность, хотя получен не аналитически. Порог протекания в этом случае (решение уравнения p=R(p)) равен $p_{\rm C}=0,2085$.

Для расчета упругих свойств микронеоднородных материалов использовалась формула Кернера [1].

Модуль объемной упругости связывающего множества (СМ) на *k*+1 итерации:

$$K_{c}^{(k+1)} = \frac{\left[K_{c}^{(k)}p_{k}A^{(k)} + K_{H}^{(k)}(1-p_{k})B^{(k)}\right]}{\left[p_{k}A^{(k)} + (1-p_{k})B^{(k)}\right]},$$
(4)

где

$$A^{(k)} = \frac{1}{3K_c^{(k)} + 4M_c^{(k)}}; \quad B^{(k)} = \frac{1}{3K_H^{(k)} + 4M_c^{(k)}};$$
(5)

K — модуль упругости; M — модуль сдвига; индексы c и h относятся к связанному (CM) и несвязанному (HCM) множеству соответственно.

Модуль сдвига СМ на k+1 итерации:

$$M_{c}^{(k+1)} = M_{c}^{(k)} \frac{\left[\frac{p_{k}}{N_{c}^{(k)}} + (1 - p_{k})\frac{M_{H}^{(k)}}{D^{(k)}}\right]}{\left[\frac{p_{k}}{N_{c}^{(k)}} + (1 - p_{k})\frac{M_{c}^{(k)}}{D^{(k)}}\right]},$$
(6)

$$N_{c}^{(k)} = 15(1 - v_{c}); \qquad D^{(k)} = (7 - 5v_{c})M_{c} + (8 - 10v_{c})M_{H}.$$
(7)

Коэффициент Пуассона СМ:

$$\mathbf{v}^{(k)} = \frac{3K_c^{(k)} - 2M_c^{(k)}}{6K_c^{(k)} + 2M_c^{(k)}}.$$
(8)

Таким образом, выбрав некую $p_0 \neq p^*$, итеративно получаем $p_{i+1} = R(p_i)$, $\Phi_{i+1} = \Phi_i(p_i)$, приходя, таким образом, к Φ_n . Здесь Φ — некоторая физическая величина.

Установлено [2], что в критической точке (пороге протекания) *p** физические величины имеют скейлинговую зависимость:

 $\Phi \approx \left(p - p_C\right)^{\tau} ,$

где т — критический индекс, зависящий только от размерности пространства *d*. Получив набор пар (*p*_i, Φ_i), можем определить т и *s*:

$$\tau = \lim_{p \to p_C} \frac{\Delta(\lg \Phi)}{\Delta(\lg |p - p_C|)},\tag{9}$$

В [3] описывалась ренормализационная схема, являющаяся, как было указано, очень точной для двумерной квадратной решетки.

Рис. 1 Ренормализационное преобразование для перколяции связей на квадратной решетке: *a*) исходная 2×2 ячейка из восьми связей; *б*) ренормализованная ячейка с двумя связями; *в*) части оригинальной ячейки, которые замещают ренормализованную связь AC с соответствующими вероятностями)

Данная схема обобщалась также на трехмерный случай; при этом в качестве базового элемента использовался уголок на рис. 1,*b* с добавленным к нему дополнительным отрезком, перпендикулярным плоскости рисунка с вершиной в А.

В соответствии со всем вышесказанным был разработан следующий алгоритм:

1. Выбор размерностей пространства *d*=2, 3 и решетки *n*. Построение перколяционной решетки.

2. Расчет аналитически коэффициентов перколяционного полинома, если это возможно; в противном случае используется готовое выражение типа (3) или метод Монте-Карло. Факт протекания довольно быстро устанавливается при помощи волнового алгоритма (алгоритм поиска кратчайшего пути).

3. Определение порога (порогов) протекания p^* из уравнения R(p)=p.

4. Выбор $p \neq p^*$. Нахождение физической величины $\Phi_n(p^*)$ в ходе осуществления итеративного процесса: $p_{i+1}=R(p_i)$, $\Phi_{i+1}=\Phi_i(p_i)$.

5. Расчет критических индексов.

Результаты и их обсуждение

Был проведен аналитический расчет коэффициентов перколяционного полинома для решеток с *n*=2, 3, 4 для *d*=2. Результаты приведены в табл. 2, 3.

Использовался класс CLongInt, созданный Томасом Холте. Класс инкапсулирует целое, длина которого задается; обеспечивает весь набор арифметических и битовых операций, в том

числе в нотации С++: +=, -=, ++ и т.д. Реализована возможность представления объекта класса как UINT, Int, Long, ULONG или как строки.

В качестве длины целого было выбрано 128, т.е. получили 16-байтовое знаковое целое.

Правильность работы класса была проверена на уже рассчитанных с типом unsigned int задачах; проверка приведения подобных слагаемых велась в Mathematica.

Было замечено, что при d=2, n=4 в случае использования unsigned int слагаемые приводились неправильно. Как оказалось, данного типа еще хватало для A_k, но в ходе приведения слагаемых B_q выходит за его границы. Это еще более убедило в необходимости использования CLongInt. В табл. 3 приводятся результаты, полученные при помощи CLongInt.

	1.	n			
A_k		2 3		4	
	0				
	1				
	2	2			
	3	8	3		
	4	5	38	4	
	5	1	209	102	
	6		627	1230	
	7		1089	9272	
	8		1078	48718	
	9		677	188512	
	10		283	553496	
	11		78	1252416	
k-	12		13	2198498	
κ—	13		1	3001802	
	14			3204984	
	15			2715264	
	16			1854463	
	17			1032857	
	18			471428	
	19			175870	
	20			53028	
	21			12646	
	22			2300	
	23			300	
	24			25	
	25			1	

Таблица 2. Коэффициенты Ак

B_q		n				
		2	3	4		
	0					
	1					
	2	2				
	3	2	3			
	4	-5	8	4		
	5	2	2	18		
	6		-37	30		
	7		-10	-38		
	8		39	-188		
	9		149	-154		
	10		-352	128		
	11		298	1456		
	12		-117	658		
	13		18	-3252		
	14			-4952		
	15			-1212		
	16			37621		
	17			-1082		
	18			-213712		
	19			483698		
	20			-565880		
	21			414334		
-	22			-198122		
	23		1	60628		
	24			-10850		
	25			868		

В качестве материала, на котором исследовался описанный подход, был выбран Fe–Si.

Расчет его упругих свойств в зависимости от концентрации "жесткого" компонента (железа) велся по формулам (4)-(8) с использованием итеративной схемы (3).

На рис. 2 и 3 горизонтальными пунктирными линиями обозначены соответствующие модули для каждого из компонентов в отдельности.

Из рис. 2 следует, что при изменении объемной концентрации железа в интервале 0,1-0,6 упругие модули материала меняются. В случае превышения порога ~0,6 наступает "насыщение" и значения модулей становятся близки к соответствующим "железным".

Зависимость коэффициента Пуассона от концентрации "жесткого" компонента имеет предсказуемый характер, за исключением некоторой особенности — наличия минимума при *p*≈0.14.

Критический индекс т для упругих модулей, рассчитанный в соответствии с (9), составил: $\tau \approx 2,82$, что согласуется с диапазоном, указанным в [1].

Рис. 2. Зависимость модулей Юнга и сдвига от объемной концентрации железа

Объемная концентрация железа

Заключение

Коэффициент Пуассона

Разработан алгоритм для точного расчета коэффициентов перколяционного многочлена *R*(*p*), по которому выполнены расчеты для ряда частных случаев.

На основе приближенного перколяционного многочлена (3) для Fe–Si определены упругие свойства в широком диапазоне концентраций компонентов. Для реальной физической системы вычислен критический индекс т, определяющий поведение упругих модулей вблизи особой точки.

MODELLING OF PHYSICAL PROPERTIES OF COMPLEX MATERIALS OBTAINED BY INFLUENCE OF COMPRESSION PLASMA FLOW (PERCOLATION THEORY AND RENORMALIZATION METHOD)

N.T. KVASOV, A.V. PUNKO, V.M. ASTASHYNSKI, V.V. UGLOV

Abstract

Algorithm of analytical calculation of percolation polynomial coefficients is developed by means of percolation theory in terms of renormalization scheme from [3] and its generalization to three-dimensional case. Efficiency of algorithm was estimated. Calculations for several special cases were performed. Fe–Si system elastic properties and their critical indexes were calculated.

Литература

1. Новиков В.В. // ФММ. 1997. Т.83, № 4. С.27-40.

2. Новиков В.В. // ФТТ. 1999. Т.41, № 12. С.2147-2153.

3. Stauffer D., Aharony A. // Introduction to Percolation Theory. London: Taylor & Francis, 1992.