УДК 518.12, 621.385

МЕТОД БЛОЧНОЙ МАТРИЧНОЙ ПРОГОНКИ ДЛЯ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

А.К. СИНИЦЫН

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 23 мая 2006

Предложен эффективный алгоритм решения краевой задачи для системы парных линейных обыкновенных дифференциальных уравнений с нелинейностью в правых частях. Рассмотрены два варианта устойчивых конечно разностных схем, приводящих к необходимости решения системы линейных алгебраических уравнений с матрицей, имеющей блочно-ленточную структуру. Для решения таких систем разработана экономичная модификация метода Гаусса с выбором главного элемента — методб блочной матричной прогонки. Идея алгоритма заключается в реализации метода Гаусса на упакованных массивах, в которые помещаются ненулевые элементы матриц.

Ключевые слова: дифференциальные уравнения, краевая задача, метод сеток, нерегулярные волноводы.

Введение

В основе решения задач оптимизации ряда электровакуумных приборов и пассивных элементов СВЧ техники лежит теория возбуждения отрезка нерегулярного волновода. Согласно этой теории, решение уравнений Максвелла для возбуждаемого волнового поля посредством метода Галеркина-Канторовича сводится к совместному решению системы парных обыкновенных дифференциальных уравнений первого порядка либо системы уравнений второго порядка и уравнений движения электронов [1, 2]. Особенность парной системы состоит в том, что она описывает изменение амплитудных коэффициентов разложения волнового поля по собственным волнам регулярного волновода, причем каждая пара уравнений первого порядка соответствует двум амплитудам (электрической и магнитной составляющих) одной собственной волны. Естественно, что граничные условия задают связь для каждой пары таких амплитуд. При отсутствии электронного потока, т.е. при описании пассивных устройств, правые части уравнений равны нулю и система линейна. Метод пристрелки при решении рассматриваемой краевой задачи неустойчив из-за наличия экспоненциально нарастающих составляющих, т.е. задача Коши некорректна. Для решения таких задач ранее предлагались методы направленной ортогонализации [3], различные варианты дифференциальной прогонки, которые однако, имеют ограниченное применение. Ниже предлагается универсальный, устойчивый алгоритм на основе использования метода блочной матричной прогонки.

Решение краевой задачи для системы парных дифференциальных уравнений первого порядка

Постановка задачи. Запишем систему парных дифференциальных уравнений для комплексных амплитуд в виде [1, 2]

$$\frac{d\vec{u}}{dz} - G(z)\vec{u} = \vec{f}(\vec{u}, z), \tag{1}$$

$$\vec{u}(z) = \left\{ u^1, ..., u^{2M} \right\} = \left\{ \dot{A}_1, \dot{B}_1, \dot{A}_2, \dot{B}_2, ..., \dot{A}_m, \dot{B}_m, ..., \dot{A}_M, \dot{B}_M \right\} \quad \vec{f} = \left\{ \dot{f}^1, \dot{f}^2, ..., \dot{f}^{2M-1}, \dot{f}^{2M} \right\}.$$

Элементы комплексной матрицы G размером 2M являются функциями от z. Связь с уравнениями движения электронов реализуется через вектор $\vec{f}(z)$. Граничные условия к (1) задаются следующим образом:

$$\alpha_m^0 u^{2m-1}(0) + \beta_m^0 u^{2m}(0) = \gamma_m^0, \quad \alpha_m^L u^{2m-1}(L) + \beta_m^L u^{2m}(L) = \gamma_m^L, \qquad m = 1...M .$$
 (2)

Конечно-разностная схема второго порядка. Выберем равномерную сетку $\left\{z_i=(i-1)h,\ h=L/n,\ i=1...n+1\right\}$, $\left\{\vec{u}_i=\vec{u}(z_i)\right\}$ — таблица значений искомого решения в узлах сетки. Для расчетов выберем конечно-разностную неявную схему второго порядка точности:

$$\frac{\vec{u}_{i+1} - \vec{u}_i}{h} = \frac{(G\vec{u} + \vec{f})_{i+1} + (G\vec{u} + \vec{f})_i}{2} \ . \tag{3}$$

После приведения подобных членов в (3) получим систему линейных алгебраических уравнений (если не считать, что \vec{f} зависит от \vec{u}):

$$\left(-E - \frac{h}{2}G_i\right)\vec{u}_i + \left(E - \frac{h}{2}G_{i+1}\right)\vec{u}_{i+1} = \vec{d}_i; \quad \vec{d}_i = \frac{h}{2}(\vec{f}_{i+1} + \vec{f}_i); i=1...n.$$
(4)

Система (4) дополняется граничными условиями вида

$$\alpha_m^0 u_1^{2m-1} + \beta_m^0 u_1^{2m} = \gamma_m^0; \quad \alpha_m^L u_{n1}^{2m-1} + \beta_m^L u_{n1}^{2m} = \gamma_m^L. \tag{5}$$

Структура матрицы конечно-разностной схемы (4), (5) имеет вид, представленный на рис. 1.

$\alpha^0 \beta^0$	0	0	0	•	0	0	0	0
	$E - \frac{h}{2}G_2$		0	•	0	0	0	0
0	$-E-\frac{h}{2}G_2$	$E-\frac{h}{2}G_3$	0	•	0	0	0	0
	•							
0	0							
0	0	0	0	•	0	0	0	$\alpha^L \beta^L$

Рис. 1. Матрица СЛАУ при решении системы парных ОДУ первого порядка

Решение краевой задачи для системы дифференциальных уравнений второго порядка

Постановка задачи. В некоторых случаях, например при решении задачи возбуждения симметричных H волн, задача приводится к системе уравнений второго порядка относительно одной из амплитуд (обозначим далее A_m):

$$E(z)\frac{d^{2}\vec{u}}{dz^{2}} + Q(z)\frac{d\vec{u}}{dz} + G(z)\vec{u} = \vec{f}(\vec{u}, z),$$
(6)

$$\vec{u} = \left\{u^{1}, ..., u^{M}\right\} = \left\{A_{1}, A_{2}, ..., A_{m}, ..., A_{M}\right\} \; , \quad \vec{f} = \left\{f_{1}^{A}, ..., f_{M-1}^{A}, f_{M}^{A}\right\};$$

M — количество учитываемых собственных функций. Комплексные в общем случае матрицы E, Q и G имеют размерность $M \times M$.

Граничные условия к (6) задаются в виде

$$\alpha_m^0 \frac{\partial u^m(0)}{\partial z} + \dot{\beta}_m^0 u^m(0) = \dot{\gamma}_m^0; \quad \alpha_m^L \frac{\partial u^m(L)}{\partial z} + \dot{\beta}_m^L u^m(L) = \dot{\gamma}_m^L; \quad m = 1...M.$$
 (7)

Конечно-разностная схема. Для расчетов выберем трехточечную конечно-разностную центральную схему второго порядка точности:

$$E_{i}\frac{\vec{u}_{i-1} - 2\vec{u}_{i} + \vec{u}_{i+1}}{h^{2}} + Q_{i}\frac{\vec{u}_{i+1} - \vec{u}_{i-1}}{2h} + G_{i}\vec{u}_{i} = \vec{f}_{i}, \quad i = 2...n.$$
(8)

После приведения подобных членов в (8) получим систему линейных алгебраических уравнений (если не считать, что \vec{f} зависит от \vec{u}):

$$(E_i - \frac{h}{2}Q_i)\vec{u}_{i-1} + \left(-2E_i + h^2G_i\right)\vec{u}_i + \left(E_i + \frac{h}{2}Q_i\right)\vec{u}_{i+1} = h^2f_i = \vec{d}_i \quad i=2...n.$$
(9)

Граничные условия второго порядка точности:

$$\alpha_m^0(-3u_1^m + 4u_2^m - u_3^m) + 2h\dot{\beta}_m^0 u_1^m = 2h\dot{\gamma}_m^0, \quad \alpha_m^L(3u_{n1}^m - 4u_n^m + u_{n-1}^m) + 2h\dot{\beta}_m^L u_{n1}^m = 2h\dot{\gamma}_m^L. \tag{10}$$

Структура матрицы конечно-разностной схемы (9), (10) имеет вид, представленный на рис. 2.

$-3\alpha^0 + 2h\beta^0$	$4\alpha_0$	$-\alpha_0 0$	0	•	0	0	0
	$-2E_2 + h^2G_2$					0	0
0	$E_3 - \frac{h}{2}Q_3$	$-2E_3 + h^2G_3$	$E_3 + \frac{h}{2}Q_3$	•	0	0	0
•	•	•	•	•	•	•	•
0	0	0	0	•	$E_n - \frac{h}{2}Q_n$	$-2E_n + h^2G_n$	$E_n + \frac{h}{2}Q_n$
0	0	0	0	•	$lpha^L$	$-4\alpha^L$	$3\alpha^L + 2h\beta^L$

Рис. 2. Матрица СЛАУ при решении системы ОДУ второго порядка

Метолика решения

Для решения таких систем линейных уравнений с блочно ленточной матрицей (рис. 1, 2) была разработана экономичная модификация метода Гаусса с выбором главного элемента — метод блочной матричной прогонки. Идея алгоритма заключается в реализации метода Гаусса на упакованном массиве, в который помещаются ненулевые элементы матриц. Алгоритм метода Гаусса с выбором главного элемента обеспечивает устойчивость

методов (3) и (8), даже если не выполняется условие преобладания диагонального элемента, необходимое для реализации классического метода прогонки. Если матрицы G и Q слабо заполнены, то целесообразно упаковывать ненулевые элементы в массив из односвязных динамических списков. При сильно заполненных матрицах G и Q более эффективна реализация метода Гаусса при использовании упаковки в ленточные матрицы размером $(n+1)\times(8m)$

Решение нелинейных систем уравнений (1), (6) получается в результате следующего итерационного процесса. Вначале при $\vec{f}=0$ решается краевая задача (1), (2) или (6), (7) и находится \vec{u}^0 . После этого для найденных $\tilde{\vec{f}}^0=\vec{f}(\vec{u}^0,T)$ опять решается таже задача с правой частью $\vec{f}^0(T)$ и находится $\tilde{\vec{f}}^1(T)$. Итерации повторяются до сходимости. При итерациях используется последовательная нижняя релаксация $\vec{f}^{k+1}=\omega_r\,\tilde{\vec{f}}+(1-\omega_r)\,f^k$; $\omega_r=0,2-0,6$.

Опыт расчетов и выполненные тестовые испытания указывают на сохранение устойчивости алгоритма при размерах неупакованной матрицы до $(10^6 \times 10^6)$.

BLOCK MATRIX RUN METHOD FOR A SYSTEMS OF THE ORDINARY DIFFERENTIAL EQUATIONS SOLUTION

A.K. SINITSYN

Abstract

The effective algorithm of a solution of a boundary value problem for a system of the conjugate linear ordinary differential equations with nonlinearity in right members is offered. Two variants steady certainly the difference circuits reducing in necessity of a solution of a system of the linear algebraic equations with a matrix, having block — tape structure are considered. For a solution of such systems economic modification of a method of Gauss with a choice of a principal element — a block matrix run method is developed. The idea of algorithm consists in realization of a method of Gauss on the packed arrays in which non-zero elements of matrixes are located.

Литература

- 1. Кураев А.А. Мощные приборы СВЧ. Методы анализа и оптимизации параметров. М., 1986.
- 2. Батура М.П., Кураев А.А, Синицын А.К. Моделирование и оптимизация мощных электронных приборов СВЧ. Минск, 2006.
- 3. *Ильинский А.С.*, *Слепян Г.Я*. Колебания и волны в электродинамических системах с потерями. М., 1983.
- 4. Синицын A.K. Современные информационные технологии. Проекционно-сеточные методы решения уравнений математической физики. Конспект лекций для аспирантов и магистрантов БГУИР. Минск, 2004