2007

УДК 531.76

ОБОСНОВАНИЕ ТРЕБОВАНИЙ К ДИНАМИЧЕСКИМ И КОНСТРУКТИВНЫМ ПАРАМЕТРАМ ДАТЧИКА УГЛОВОГО ПОЛОЖЕНИЯ И СКОРОСТИ ДЛЯ ЭЛЕКТРОПРИВОДА СКАНЕРА ТЕПЛОВИЗОРА

Н.П. БУСЕЛ, А.А. ОТДЕЛЬНЫЙ, А.Н. БУСЕЛ

Белорусско-Российский университет пр. Мира, 43, Могилев, 212005, Беларусь

Поступила в редакцию 18 февраля 2007

Получены теоретические оценки максимальных величин скорости вращения и ускорения вала датчика, предопределяющих выбор его конструкции и принципа действия.

Ключевые слова: датчик углового положения и скорости, развертка изображения, привод сканера тепловизора нового поколения.

Введение

Стремление существенно уменьшить габариты новых конструкций тепловизоров высокой чувствительности и разрешающей способности при визуализации изображения в широком поле зрения, заставляет переходить на телевизионный стандарт развертки изображения на частоте f=50 Гц при КПД сканирования не менее 75%. В таких условиях время возврата зеркала сканера тепловизора в исходное положение составляет тысячные доли секунды, что накладывает жесткие ограничения на конструктивные и динамические параметры датчика углового положения и скорости вращения вала электропривода сканера, обусловленные высокими значениями угловых скоростей и ускорений.

Динамические параметры датчика углового положения и скорости

По известным материалам предприятия ЗАО НПФ "Оптоойл" (г. Казань) в одном из проектов тепловизора нового поколения угол обзора $\psi_{max}=30^\circ$, а угол поворота вала φ_1 [1] равен

$$\varphi_1 = \frac{\psi_{\text{max}}}{2} = \frac{0,524}{2} = 0,262 \text{ рад}.$$
(1)

При частоте развертки 50 Гц и КПД 75% движение сканирующего зеркала тепловизора при оптимальном по быстродействию управлении на участке его возврата в исходное положение можно представить так, как это показано на рис. 1.

На рис. 1 обозначены: є, $-\varepsilon$ — ускорения на участке возврата зеркала в исходное положение; $\omega_{\text{раб}}$ — скорость вращения вала привода на рабочем участке; $\omega_{\text{рев}}$ — скорость вращения вала при реверсе привода; ω_1 — скорость вращения вала в момент начала реверса; ω_2 — максимальная скорость вращения вала, ω_3 – скорость в начале следующего цикла сканирования; $\omega_{\text{возвр}}$ — скорость вращения вала сканирующего электропривода при возврате в исходное положение; φ — угол поворота зеркала (вала).

Рис. 1. Параметры движения сканирующего зеркала

Для оценки требований к кинематическим параметрам датчика углового положения и скорости вращения вала привода рассмотрим предельный случай, реализующий оптимальное по быстродействию движение сканирующего электропривода. Численное значение угловой скорости вала с учетом (1) на рабочем участке движения зеркала составляет величину

$$\omega_{pa\delta} = \frac{\phi_1}{t_1} = \frac{0.262}{15 \cdot 10^{-3}} = 17, 4 \text{ c}^{-1}.$$
(2)

. . . .

В идеальном случае при реверсе и разгоне привода на участке возврата зеркала в исходное состояние величины углового замедления и ускорения можно принять одинаковыми. Это позволяет определить предельные кинематические параметры привода, а именно: ε , максимальную ϕ_{max} и минимальную ϕ_{min} величины угла поворота зеркала, а также максимальную скорость вращения ω_{max} вала, которые можно рассматривать в качестве исходных данных, определяющих выбор конструкции датчика углового положения и скорости.

При постоянном замедлении привода на участке реверса от t_1 до t_2 , уравнение движения имеет вид

$$\varphi = \varphi_1 + \omega_1 (t - t_1) - \frac{\varepsilon (t - t_1)^2}{2}.$$
(3)

Рассматривая далее аналогичные уравнения на участке t_2 - t_3 разгона зеркала и обеспечивая возврат его в исходное положение за время t_3 для нашего случая (t_1 =0,015, t_3 =0,02), найдем координаты точки 2: t_2 =0,0175 с, φ_2 =0,131 рад, а также

$$\varepsilon = 55840 \text{ pag/c}^2 \text{ M} \omega_2 = \omega_{\text{max}} = -122 \text{ c}^{-1}.$$
 (4)

Дальнейшее исследование уравнений движения на экстремум позволяет определить максимальный и минимальный углы качания зеркала, а именно: $\phi_{max}=15,2^{\circ}$ и $\phi_{min}=-0,155^{\circ}$. После этого приведем диапазон угла качания зеркала сканера:

$$\Delta \varphi = \varphi_{max} - \varphi_{min} = 15, 2 + 0, 155 = 15, 3^{\circ}.$$
(5)

Таким образом, датчик углового положения и скорости должен работать в диапазоне углов $15,3^{\circ}$ при скоростях до 122 c^{-1} и ускорениях 55840 рад/с².

Далее воспользуемся рекомендациями для максимального числа импульсов Z считывания информации на рабочем участке движения зеркала и определим максимальное число N импульсов датчика углового положения вала в пределах оборота [1]:

$$N = \frac{Z}{\Delta \varphi} 360^{\circ} = \frac{692}{15,3} 360 = 16,3 \cdot 10^3.$$
(6)

Ориентируясь при этом на лучшие образцы цифровых инкрементных преобразователей углового положения с числом импульсов на оборот вала N>16000, подчеркнем, что предельное значение скорости вращения вала таких датчиков [3] близко к полученному ранее, однако в реальном электроприводе скорости будут значительно больше. Кроме того, применение цифровых инкрементных преобразователей углового положения затруднительно по причине относительного, а не абсолютного отсчета углового положения и скорости целесообразно строить на основе двухотсчетного оптоэлектронного синусно-косинусного первичного преобразователя, так называемого оптосина [5].

Конструктивные параметры датчика углового положения и скорости

Переходя к конструктивным параметрам оптосина, в качестве исходных данных выберем момент инерции *J*, угловую погрешность бф, определяющую его разрешающую способность и быстродействие.

Для оценки допустимой величины момента инерции оптосина зададимся долей мощности *P* сканирующего электропривода, затрачиваемой на возврат его в исходное положение. Для этого воспользуемся графиком скорости на рис. 1, согласно которому

$$P = \frac{2}{(t_2 - t_1)} J \varepsilon \int_{0}^{t_2 - t_1} \frac{\omega_{\text{max}} - \omega_{pa6}}{t_2 - t_1} t dt =$$

$$= J \frac{2}{(17, 5 - 15) \cdot 10^{-3}} 55, 8 \cdot 10^3 \cdot (122 + 17, 4) \cdot (17, 5 - 15) \cdot 10^{-3} / 2 = 7, 78J \cdot 10^6 \text{ Bt.}$$
(7)

Полагая далее, например, *P*=(10–15) Вт из (6), находим допустимую величину момента инерции оптосина:

$$J = \frac{P}{7,78 \cdot 10^6} = \frac{10 \div 15}{7,78 \cdot 10^6} = (1,28 \div 1,93) \cdot 10^{-6} \,\mathrm{kr} \cdot \mathrm{m2},$$

сравнимую с моментом инерции двухотсчетного оптосина 1–64 [4] у которого $J=1,7\cdot10^{-6}$ кг·м² при габаритах Ø=58 мм и L=45мм.

С позиций допустимой угловой погрешности оптосина как первичного датчика потребуем, чтобы она не превышала половины импульса первого разряда цифрового датчика углового положения на рабочем участке движения сканирующею электропривода, или с учетом (6)

$$\Delta \phi \le 0.5 \frac{360}{16.3 \cdot 10^3} \cdot 60 = 0.622' = 39.7".$$

Обращаясь далее к рекомендациям работы [4], определим максимальную относительную погрешность δu_{max} формирования ортогональных гармонических сигналов точного отсчета оптосина 1–64:

$$\delta u_{\rm max} = k \ p \,\Delta \varphi = 2,91 \cdot 10^{-4} \cdot 64 \cdot 39,7 \,/\, 60 = 12,3 \cdot 10^{-3} \,,$$

где $k=2,91\cdot10^{-4}$ 1/угл.мин — крутизна единичною гармонического сигнала; p=64 — число периодов гармонических сигналов за один оборот вала.

При известной величине относительной погрешности δu_{max} первичных сигналов можно определить долю погрешности $\delta u'_{\text{max}}$, вносимую ступенчатой формой окон неподвижною лимба [6]:

$$\delta u'_{\text{max}} = \delta u_{\text{max}} - 2, 2 \cdot 10^{-3} - 0,064 \cdot \Delta / R_{yCT} =$$

= 12, 3 \cdot 10^{-3} - 2, 2 \cdot 10^{-3} - 0,064 \cdot 1/15, 8 = 6,1 \cdot 10^{-3}, '(8)

где 2,2·10⁻³ — доля погрешности за счет неравномерности потока излучателя; $\Delta = 1$ мкм — эксцентриситет установки вращающегося лимба; $R_{ycr} = 15,8$ — радиус установки оптопары. Величина $\delta u'_{max}$ является исходной для выбора числа ступеней Q аппроксимации окон неподвижного лимба [5] или с учетом(8):

$$Q \ge \sqrt{N_1^2 \delta_{1\text{max}} \cdot 10^{-3} / \delta u'_{\text{max}}} = \sqrt{15^2 \cdot 6 \cdot 10^{-3} / 6 \cdot 10^{-3}} = 14,9,$$

где $N_1=15$ — число ступеней так называемого базового лимба; δ_{1max} — погрешность за счет ступенчатой формы окон неподвижного лимба.

Конструктивный расчет окон неподвижного лимба сводится к определению радиусов, ограничивающих высоту каждой из ступеней аппроксимирующей фигуры (рис. 2), и рассмотрен в работе [6].

Рис. 2. Профиль окна подвижного лимба

Выбирая нечетное число ступеней аппроксимации окна неподвижного лимба и задаваясь из конструктивных соображений величиной радиуса установки оптронных элементов и максимальной высотой h ступеней аппроксимирующей фигуры окна, площадь средней ступени $S_{0.5\pm Q/2}$ [5] можно вычислить следующим образом:

$$S_{0,5+Q/2} = \frac{\pi R_{ycm}}{2 p Q} (2 \pm \frac{h}{R})h.$$
(9)

При этом знак "+" соответствует окну, расположенному выше радиуса установки оптопар, а знак "-" — соответственно ниже.

При известной согласно (9) площади средней ступени можно перейти к определению радиусов R_i, определяющих высоты остальных ступеней

$$R_{j} = \sqrt{R^{2} \pm R h(2 \pm \frac{h}{R}) \sin \varphi_{j_{2n}}},$$

где $\phi_{j_{j_{j_j}}}$ — электрический угол, соответствующий середине *j*-й ступени.

Формируя таким образом ортогональные гармонические сигналы $U_m \sin(p \phi)$ и $U_m \cos(p \phi)$, для получения сигнала о скорости вращения вала достаточно пропустить эти сигналы через фазосдвигающие усилители, а затем перемножить исходные сигналы на сдвинутые по фазе γ выходные сигналы усилителя, после чего произведения вычесть. В результате получим величину *u*, зависящую от скорости вращения вала:

 $u = U_m \sin(p\varphi) U_m \cos(p\varphi - \gamma) - U_m \cos(p\varphi) U_m \sin(p\varphi - \gamma) = U_m^2 \sin\gamma.$

Для обеспечения приемлемой линейности характеристики такого тахометра достаточно ограничить фазовый сдвиг ү на уровне 30° [7].

К вопросу оценки быстродействия или инерционности датчика углового положения и скорости можно подойти с двух позиций.

Согласно одной из них, оценим постоянную времени т фазосдвигающего усилителя при максимальном фазовом сдвиге исходных гармонических сигналов, а именно:

$$\tau = \mathrm{RC} \le \frac{\mathrm{tg}(\gamma/2)}{\mathrm{p}\,\omega} = \frac{\mathrm{tg}(30^{\circ}/2)}{64 \cdot 122} = 3,43 \cdot 10^{-5}\,\mathrm{c}.$$
(10)

С другой стороны, полагая известной максимальную угловую скорость вращения $\omega_2=122 \text{ c}^{-1}$ электропривода, можно оценить долю постоянной времени фазового сдвига τ фазосдвигающего усилителя по отношению к периоду *T* гармонических сигналов точного отсчета датчика углового положения и скорости:

$$\tau/T = \frac{3,43 \cdot 10^{-5}}{2\pi/64 \cdot 122} = 0,0426$$

Таким образом, можно утверждать, что постоянная времени фазосдвигающего усилителя не оказывает существенного влияния на динамические свойства тахометра предлагаемой конструкции и в первом приближении его можно считать безинерционным.

Заключение

Отметим, что предлагаемый вариант реализации датчика углового положения и скорости сканирующего электропривода тепловизора на основе оптосина 1–64 в полной мере соответствует динамическим параметрам электропривода, а наличие грубого отсчета с одним периодом гармонических сигналов [4] в пределах оборота позволяет реализовать на его основе абсолютный датчик углового положения требуемой точности.

THE SUBSTANTIATION OF DYNAMIC AND DESIGN PARAMETERS OF THE ANGULAR POSITION AND SPEED SENSOR FOR THE SCANNER INFRARED IMAGER ELECTRIC DRIVE

N.P. BUSEL, A.A. ADDZELNY, A.N. BUSEL

Abstract

The theoretical estimation of the maximal values of rotation speed and acceleration of the gauge predetermining the choice of its action has been received.

Литература

1. Алеев Р.М., Иванов В.П., Овсянников В.А. Основы теории анализа и синтеза воздушной тепловизионной аппаратуры. Казань, 2000.

2. Разработка теоретических основ создания датчика угла и скорости для сканирующего электропривода тепловизионных приборов нового поколения: Отчет о НИР (заключительный). Белорусско-Российский ун-т; Руководитель Н.П. Бусел. ГБ 055ф; № ГР 2005 2656. Могилев, 2006.

3. Преобразователи угловых перемещений. Каталог изделий СКБ ИС. СПб., 2002.

4. Бусел Н.П. // Перспективные технологии, материалы и системы: Сб. науч. тр. Могилев, 2005. С. 62-64. 5. Бусел Н.П. // Вестн. НТУ "ХПИ", Харьков, 2005. С. 21-23.

6. Разработка эскизно-технического проекта на датчики углового положения "Оптосин 1-64", изготовление макетного и десяти опытных образцов датчиков: Отчет о НИР (заключительный). Белорусско-Российский ун-т; Руководитель Н.П. Бусел. ХД 0249; № ГР 2002 3040. Могилев, 2005.

7. Бусел Н.П. // Вестн. Могилевского ГТУ. 2002. № 2. С. 21-25.