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Abstract 

The additional deceleration of massive bodies in the model of low- 
energy quantum gravity due to forehead and backhead collisions with 
gravitons is re-calculated  in this note.  It is shown that this deceleration 

w is equal to: w = −H0c · 4v2/c2 · (1 − v2/c2)0.5, where H0 is the Hubble 
constant, c is the velocity of light, v is the body’s velocity relative to the 
background. 

 

1 Introduction 

In the model of low-energy quantum gravity by the author which is based on 
the conjecture of an existence of the graviton background with the average 
graviton energy of the order of 10−3 eV [1], redshifts of remote objects and 
the additional dimming of them may be interpreted without any expansion of 
the Universe [2]. Also in the model we have for the Hubble parameter H(z) : 
H(z) = H0 (1 + z), where H0 is the Hubble constant, z is the redshift; this 
dependence fits observational data of H(z) with high probability [2]. 

Due to forehead collisions of a massive body with gravitons, the body accel- 
eration w by a non-zero velocity v had been found [1] to be equal to: 

w = −cH0(1 − v2/c2), (1) 

where c is the velocity of light. The value of w by small velocities:  w     Hc = 
6.419 10−10 m/s2

 has the same order of magnitude as a value of the observed 

additional acceleration (8.74 1.33) 10−10m/s2
 for NASA probes (the Pioneer 

anomaly) [3], and it seemed to me that this effect namely of such the magnitude 
may explain the Pioneer anomaly. But recently it was shown in [4] that this 
value is too large to provide, for example, the observed stability of the Earth-like 
orbit. Here I would like to re-analyze this problem. 
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2 Forehead and backhead collisions of a body 

with gravitons 

Dependence (1) has been gotten starting from the equation: 

dE = −(H0/c)Edr, (2) 

describing average energy losses of a photon (or a body, as it was supposed 
in [1]) with an energy E on a way dr. While for a photon its momentum p 
and energy E are proportional, for massive bodies it is not so. A transferred 
quantity by collisions is the momentum, and we should express its differential 
dp before calculations of the body deceleration: 

dp = −(H0/c2)Edr. (3) 

Besides of forehead collisions, the body should also experience backhead colli- 
sions with gravitons; it means that for massive bodies we can write the following 
similar expression: 

dp = −(H0f /c2
 − H0b/c2)Edr, (4) 

where H0f and H0b correspond to forehead and backhead collisions with gravi- 
tons. This equation is written in the CMB frame K, in which the CMB is 
isotropic - in the sense that deviations from the isotropy cannot be made smaller 

in any other frame. We shall use here also the rest frame of the body K
' 

, which 
moves relatively K with the velocity v. 

The Doppler effect should lead to the different values of energies of gravitons 
which are incident from the front and from the back in K

' 

.   We can find the 
difference of H

'     

and H
'   

in K
'  

and re-calculate it for K.  So as H0f , H0b and 
' ' 

0f 0b have the same dimensions as Δt
−1

 and Δt
'−1, where Δt and Δt

' 

are 
the time intervals between two events in these frames, we have: 

H0f − H0b = (H
'   

− H0b) · (1 − η ) , (5) 

where η ≡ v/c. 

If κ     ϵ
' 

/ϵ is the ratio of new and old (in K
'   

and K) energies of gravitons 
falling on the body from the front or from the back, and κ is the same for each 

graviton, their spectrum f1(ϵ) in K
' 

may be presented as: 

f1(ϵ) = f (ϵ/κ, T ) = (1/κ3) · f (ϵ, κT ), 

where f (ϵ, T ) is the Planck spectrum in K by the temperature T, ϵ is the 
graviton energy. This spectrum is a result of the stretching/compression of the 
Planck spectrum by the same temperature T along the ϵ axis in κ times. For 
gravitons which are incident from the front (κf ) and from the back (κb) in K

' 

, 
we have:  

1 + η 
κf = (  

1 − η 
)0.5, κ 

1 − η 

1 + η 

 
)0.5. (6) 

In this model, the Hubble constant is equal to: 

H 
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Figure 1: The graph of the function g(η). 
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∫ ∞ 

h̄ωf (ω, T )dω =  
 1  

D · ϵ̄  · (σT 4), 

where D is a constant, ϵ¯ is an average graviton energy, σ is the Stephan- 
Boltzmann  constant,   and  ϵ   =   h̄ω. Replacing  f (ω, T )   →  f1(ω),   we  have: 

ϵ¯ → κ · ϵ¯, σT 4 → κ · σT 4. As a result we get: 

'   

= κ2
 · H0 = H0 · (1 + η/1 − η), (7) 

'    

= κ2
 · H0 = H0 · (1 − η/1 + η). (8) 

Then we can rewrite Eq.(4) as: 

dp = −(H0/c2)(κ2
 − κ2) · (1 − η2)0.5Edr = −(H0/c2) · 4η(1 − η2)

−0.5Edr. (9) 

Taking into account that by vǁw, where w ≡ dv/dt, dp/dt is equal to: 

dp/dt = mw · (1 − η2)
−1.5, (10) 

and E = mc2
 · (1 − η2)−0.5, dr = vdt, we get finally for the deceleration w: 

w = −w0 · 4η2
 · (1 − η2)0.5, (11) 

where w0 H0c = 6.419 10−10 m/s2, if we use the theoretical value of H0 in 
the model. For small velocities we have now: 

w  −w0 · 4η2. (12) 

H 

H 
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The  function  g(η)    4η2
   (1     η2)0.5  in  Eq.   (11)  has  the  maximum  value of 

1.54 by η = (2/3)0.5 = 0.816, i.e. the maximum deceleration is equal to: 

|w|max = 1.54 · w0. The graph of this function is shown in Fig. 1.   As it was 
shown in [4], by |w|∼ 10−4 · w0 the stability of the Earth-like orbit will be high 
enough. By v = 4 · 105 m/s we have now: w −7 · 10−6 · w0. 

3 Conclusion 

Found expression (12) for the anomalous deceleration of massive bodies in the 
case of small velocities should ensure a sufficient stability of the Earth-like orbits. 
It is planned to model numerically a modification of dynamics due to it soon. 

At present, the main conjecture of this approach about the quantum gravi- 
tational nature of redshifts may be verified in a ground-based laser experiment 
if advanced LIGO technologies will be partly used [2]. The Hubble diagram of 
sources with hard and soft spectra may differ in the model (for example, the 
diagram for GRBs may differ from the one for SNe Ia), and some signs of this  
difference are seen, perhaps, in the case of the long GRBs data set [2]. 
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