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Abstract 

The model of low-energy quantum gravity leads to small additional 
effects having essential cosmological consequences: redshifts of remote 
objects and the additional dimming of them may be interpreted without 
any expansion of the Universe and without dark energy. The theoretical  
luminosity distance of the model fits the observational Hubble diagrams 

with high confidence levels. In the model, the ratio H(z)/(1 + z) should 
be equal to the Hubble constant. The constancy of this ratio is confirmed 

with high probabilities by fitting the compilation of H(z) observations. 
A deceleration of massive bodies due to forehead and backhead collisions 
with gravitons is re-computed here. 

P ACS : 98.80.Es, 04.50.Kd, 04.60.Bc 

 
1 Introduction 

In my model of low-energy quantum gravity [1, 2], gravity is considered as the 
screening effect. It is suggested that the background of super-strong interacting 
gravitons exists in the universe. Its temperature should be equal to the one of 
the CMB. Screening this background creates for any pair of bodies both attrac- 
tion and repulsion forces due to pressure of gravitons. For single gravitons, these 
forces are approximately balanced, but each of them is much bigger than a force 
of Newtonian attraction. If single gravitons are pairing, an attraction force due 
to pressure of such graviton pairs is twice exceeding a corresponding repulsion 
force if graviton pairs are destructed by collisions with a body. This peculiar- 
ity of the quantum mechanism of gravity leads to the difference of inertial and 
gravitational masses of a black hole. In such the model, the Newton constant 
is connected with the Hubble constant that gives a possibility to obtain a the- 
oretical estimate of the last. We deal here with a flat non-expanding universe 
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fulfilled with super-strong interacting gravitons; it changes the meaning of the 
Hubble constant which describes magnitudes of three small effects of quantum 
gravity but not any expansion or an age of the universe. 

In this model, the geometrical distance/redshift relation is: 

r(z) = ln(1 + z) · c/H0, (1) 

where H0 is the Hubble constant, c is the velocity of light, z is a redshift. The 
luminosity distance/redshift relation has the view: 

DL(z) = c/H0 · ln(1 + z) · (1 + z)
(1+b)/2

 ≡ c/H0 · f1(z), (2) 

where f1(z) ≡ ln(1 + z) · (1 + z)(1+b)/2; the ”constant” b belongs to the range 0 
- 2.137 (b = 2.137 for very soft radiation, and b → 0 for very hard one). 

2 Deceleration of massive bodies due to fore- 

head and backhead collisions with gravitons 

Due to forehead collisions of a massive body with gravitons, the body accelera- 
tion w by a non-zero velocity v had been found [1] to be equal to: 

w = −cH0(1 − v
2
/c

2
). (3) 

But recently it was shown in [3] that this value is too large to provide, for 
example, the observed stability of the Earth-like orbit. Here I would like to re-
analyze this problem. 

The dependencies (1) and (3) have been gotten starting from the equation: 

dE = −(H0/c)Edr, (4) 

describing average energy losses of a photon (or a body, as it was supposed 
in [1]) with an energy E on a way dr. While for a photon its momentum p 
and energy E are proportional, for massive bodies it is not so. A transferred 
quantity by collisions is the momentum, and we should express its differential 
dp before calculations of the body deceleration: 

dp = −(H0/c
2
)Edr. (5) 

Besides of forehead collisions, the body should also experience backhead colli- 
sions with gravitons; it means that for massive bodies we can write the following 
similar expression: 

dp = −(H0f /c
2
 − H0b/c

2
)Edr, (6) 

where H0f and H0b correspond to forehead and backhead collisions with gravi- 
tons. This equation is written in the CMB frame K, in which the CMB is 
isotropic - in the sense that deviations from the isotropy cannot be made smaller 

in any other frame. We shall use here also the rest frame of the body K
' 

, which 
moves relatively to K with the velocity v. 
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Figure 1: The graph of the function g(η). 

 
The Doppler effect should lead to the different values of energies of gravitons 

which are incident from the front and from the back in K
' 

.   We can find the 
difference of H

'     

and H
'   

in K
'  

and re-calculate it for K.  So as H0f , H0b  and 
' ' 

0f 0b have the same dimensions as Δt
−1

 and Δt
'−1, where Δt and Δt

' 

are 
the time intervals between two events in these frames, we have: 

H0f − H0b = (H
'   

− H0b) · (1 − η ) , (7) 

where η ≡ v/c. 
Because the number of gravitons (per unit of surface area per unit of time) 

falling on the body from the front or from the back is the same in K
' 

as in K, 

their spectrum f1(ϵ) in K
' 

may be presented as: 

f1(ϵ) = f (ϵ/κ, T ) = (1/κ
3
) · f (ϵ, κT ), 

where f (ϵ, T ) is the Planck spectrum in K by the temperature T, ϵ is the 

graviton energy; κ ϵ
' 

/ϵ is the ratio of new and old (in K
'   

and K) graviton 
energies. This spectrum is a result of the stretching/compression of the Planck 
spectrum by the same temperature T along the ϵ axis in κ times. For gravitons 

which are incident from the front and from the back in K
' 

, we have: 
κ 

1 + η 
)

0.5
,κ 

1 − η 
)

0.5
. (8) 

 f = (  
1 − η 

b = (  
1 + η 

In this model, the Hubble constant is equal to: 

H = 
 1 

0
 2π 

∫ ∞ 

h̄ωf (ω, T )dω =  
 1  

D · ϵ̄  · (σT 
4
), 

H 
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where D is a constant, ϵ¯ is an average graviton energy, σ is the Stephan- 
Boltzmann  constant,   and  ϵ   =   h̄ω. Replacing  f (ω, T )   →  f1(ω),   we  have: 

ϵ¯ → κ · ϵ¯, σT 
4
 → κ · σT 

4
. As a result we get: 

'   

= κ
2
 · H0 = H0 · (1 + η/1 − η), (9) 

'   

= κ
2
 · H0 = H0 · (1 − η/1 + η). (10) 

Then we can rewrite Eq.(6) as: 

dp = −(H0/c
2
)(κ

2
 − κ

2
) · (1 − η

2
)

0.5
Edr = −(H0/c

2
) · 4η(1 − η

2
)
−0.5

Edr.  (11) 

Taking into account that by vǁw, where w ≡ dv/dt, dp/dt is equal to: 

dp/dt = mw · (1 − η
2
)
−1.5

, (12) 

and E = mc
2
 · (1 − η

2
)−0.5, dr = vdt, we get finally for the deceleration w: 

w = −w0 · 4η
2
 · (1 − η

2
)

0.5
, (13) 

where w0     H0c = 6.419  10−10  m/s
2
, if we use the theoretical value of H0 in 

the model. For small velocities we have now: 

w   −w0 · 4η
2
. (14) 

The  function g(η)      4η
2
   (1     η

2
)0.5   in  Eq.   (13)  has  the  maximum  value 

of 1.54 by η = (2/3)0.5 = 0.816, i.e. the maximum deceleration is equal to: 
w max = 1.54 w0. The graph of this function is shown in Fig.  1.  As it was 
shown in [3], by w 10−4 w0 the stability of the Earth-like orbit will be high 
enough. By v =  4 105 m/s we have now: w 7 10−6 w0. The numerical 
calculations of [3] with the new formula for w will be repeated soon. 

The mass discrepancy in spiral galaxies is observed at very low accelerations 
less than 10−10 m/s

2
 [4], i.e. this boundary acceleration has almost the same 

order of magnitude as the maximum deceleration   w max   10−9 m/s
2
 in the 

model. Now it is unclear may these quantities be connected between themselves 
or not. 

 
3 The Hubble diagram of this model 

To fit this model, observations should be corrected for no time dilation as: 
μ(z)         μ(z) + 2.5    lg(1 + z), where lg x       log10 x.   In my paper [5], results 
of fitting the Hubble diagram for different data sets of remote objects with 
the model of low-energy quantum gravity are summarized in Table 1; its part 
is shown here. For best fitting values of b in a case of 44 long GRBs, values 
of distance moduli are overestimated in both calibrations: on 0.225 for the 
Amati calibration, and on 1.18 for the Yonetoku calibration. It leads to the 
corresponding underestimation of the Hubble constant. 

H 

H 
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Data set b χ
2
 C.L., % < H0 > ±σ0 

SCP Union 2.1 [6] 2.137 239.635 100 68.22 ± 6.10 
JLA [7] 2.365 30.71 43.03 69.54 ± 1.58 
109 long GRBs [8] 2.137 70.39 99.81 66.71 ± 8.45 
44 long GRBs [9], 2.137 40.585 57.66 69.73 ± 37.23 

the Amati calibration 1.885 39.92 60.57 60.31 ± 31.93 
44 long GRBs [9], 2.137 43.148 46.5 70.39 ± 38.79 

the Yonetoku calibration 1.11 32.58 87.62 38.84 ± 18.55 
quasars [10] 2.137 23.378 13.73 69.53 ± 10.87 

 
Table 1: Results of fitting the Hubble diagram with the model of low-energy 
quantum gravity. The best fitting values of b for 44 long GRBs are marked by 
the bold typeface. 

 
4 The Hubble parameter H(z) of this model 

If the geometrical distance is described by Eq. 1, for a remote region of the 
universe we may introduce the Hubble parameter H(z) in the following manner: 

 

dz = H(z) · , (15) 
c 

to imitate the local Hubble law. Taking a derivative 
dr

 , we get in this model 
for H(z) :  

 
It means that in the model: 

H(z) = H0 · (1 + z). (16) 

H(z) 
 

 

(1 + z) 
= H0. (17) 

The last formula gives us a possibility to evaluate the Hubble constant using 
observed values of the Hubble parameter H(z). The weighted average value of 
the Hubble constant may be calculated by the formula: 

Σ H(zi) /σ2 

 

The weighted dispersion of the Hubble constant may be found with the same 
weights: 

( H(zi) )2 2 
2 = 1+zi i  (19) 

σ0 

 

The χ
2
 value is calculated as: 

Σ 
1/σ

2
 

.
 

 

( H(zi) )2 

χ
2
 = 
Σ

 1+zi 
− < H0 > 

2 
i 

. (20) 

dr 

σ 

(18) < H0 > . 



6  

± 
± 

± 

± 

0i 

i 0i 

 
 
 

 

 
 

Figure 2: The ratio H(z)/(1 + z) σ and the weighted value of the Hubble con- 
stant < H0 > σ0 (horizontal lines). Observed values of the Hubble parameter 
H(z) (40 points) are taken from Table 1 of [11]. 

 
In [5], I have done these calculations for two data sets of H(z). Here I repeat 

them for the bigger data set of 40 observations of H(z) from the paper [11]. We 
have for this case: 

< H0 > ±σ0 = (62.082 ± 4.092) km s
−1

 Mpc
−1

. (21) 

The weighted average value of the Hubble constant with σ0 error bars are 
shown in Fig. 2 as horizontal lines; observed values of the ratio H(z)/(1 + z) 
with σ error bars are shown in Fig. 2, too (points). The value of χ

2
 in this 

case is equal to 10.69. By 40 degrees of freedom of this data set, it means that 
the hypothesis described by Eq. (16) cannot be rejected with 99.9999% C.L. 

I have used earlier the same values of dispersion for H0 points as the ones of 
H(z). Considering Eq. (17) as a base for indirect measurements of H0, we get 
for the dispersion σ

2
 of H0 points: 

2
  = σ

2
/(1 + zi)

2
. (22) 

Then we shall have for the considered data set: 

< H0 > ±σ0 = (63.152 ± 4.689) km s
−1

 Mpc
−1

. (23) 

σ 
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The value of χ
2
 is now equal to 38.56. By 40 degrees of freedom of this data 

set, it means that the hypothesis described by Eq. (16) cannot be rejected with 
53.511% C.L. The dramatic increase of χ

2
 is mainly due to the last three points 

with z > 2 in Fig. 2 with small σ0i: without them, χ
2
 = 24.857 that gives 

93.633% C.L. by 37 degrees of freedom. 
The Rh = ct cosmological model (a Friedmann-Robertson-Walker cosmology 

with zero active mass) has the same function H(z) as the considered one [12]; 
Rh is the Hubble radius. As it is shown in [12], this function fits 30 cosmic 
chronometers observations with z  < 2 with a larger probability than five other 
considered functions of different models, including the flat ΛCDM. 

Some authors try in a frame of models of expanding universe to find the 
deceleration-acceleration transition’s redshift using the same data sets. The 
above conclusion that the ratio H(z)/(1 + z) remains statistically constant in 
the available range of redshifts is model-independent. 

 
5 Conclusion 

The Hubble diagram for GRBs may differ in the model from the diagram for SNe 
Ia, and some signs of this difference are seen, perhaps, in the case of the 44 long 
GRBs data set. In the model, space-time is flat, and the geometrical distance 
as a function of the redshift coincides with the angular diameter distance. The 
geometrical distance of this model is very different from the one of the standard 
model; for example, the age of the Universe of the standard model: 13.5 Gyr 
corresponds here to z  2.6. 

The found expression for the anomalous deceleration of massive bodies: w = 

w0   4η
2
   (1     η

2
)0.5 should ensure a sufficient stability of the Earth-like orbits. 

It is planned to model numerically a modification of dynamics due to it very 
soon. 

From a point of view of this approach it seems that all attempts to unify 
general relativity and quantum mechanics using them as corner stones of the 
future more general theory are doomed to failure. The future theory should 
be underlaying one for general relativity and quantum mechanics which will be 
specific approximations of it by some restrictions. 
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