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THE NEGATIVE DIFFERENTIAL RESISTANCE IN FERROMAGNET / 
WIDE-GAP SEMICONDUCTOR/ FERROMAGNET NANOSTRUCTURE 

T. Sidorova, A. Danilyuk 
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus 

Abstract – The model of charge carrier transport in ferromagnet/wide-gap semiconductor/ ferromagnet 
nanostructure based on two-band Franc-Keine model and phase function method was proposed. It is 
calculated, that tunneling barrier, formed by the wide-gap semiconductor band-gap, does not represent 
potential step, but the energy band-gap. Their upper border is the bottom of the conduction band EC, and the 
bottom part is top of the valence band EV. Inside this zone wave vector of the electron is an imaginary value. 
According to the dispersion law states located in the midgap sustain the largest attenuation. That is why when 
the Fermi level of the analyzed structure lies in the bottom part of the band-gap, bias voltage V shifts levels 
of the tunneling electrons to the low barrier area. This shifting is a reason of the tunneling current reduction 
and leads to the negative differential resistance effect. It is shown that areas of the negative differential 
resistance effect appears at the current-voltage bias dependence in case of qV> EF. Here areas of negative 
differential resistance should be expected at the voltage values bigger than Fermi energy value of the emitting 
electrode for the electrons zone with the spin-up. 

I. INTRODUCTION 

Ferromagnet /wide-gap semiconductor/ ferromagnet nanostructures attract a great interest 
during the last decade regarding their prospects for creating information-processing devices, including 
spintronic devices. Previously, the tunneling magnetoresistance (TMR) in such nanostructures was 
calculated generally using one-band insulator model.  

In this article the charge carrier transport model in the ferromagnet / wide-gap semiconductor/ 
feromagnet based on two-band Franc-Keine model and phase function model is proposed [1]. It is 
taken into account, than tunneling barrier with the width d, which was founded by the band gap, does 
not represent potential step, but the energy band-gap. Their upper border is the bottom of the 
conduction band EC, and the bottom part is top of the valence band EV. Inside this area the wave vector 
of the electron is an imaginary value. According to the Franc-Keine law it is defined as [2] 
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where kz, kp – are wave vector components which are perpendicular and parallel to the barrier, 
correspondingly, E – is a full electron energy, mi – the electron effective mass, EG - is the band-gap 
width. 

The current value is calculated taking into account the transverse component of the tuning 
electron energy based on the transport equation: 
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where Ep – is an electron energy component which is parallel to the tunneling barrier surface, m and mi 
– are the electron effective masses in electrode and in the wide-gap semiconductor correspondingly, q 
– is an electron charge, h – is the Planck constant, fL(E), fS(E) – are the Fermi-Dirac distribution 
functions for left and right electrodes, P(E, Ep, V) – tunnel transparency of the barrier. 

II.  MODEL 

To find the transmission coefficients we develop a model on the basis of phase functions. The 
model accounts for the barrier parameters, the image force potential and allows include the potential 
relief at the interfaces and in the volume of the wide-gap semiconductor. The main feature of the phase 
function is possibility to obtain the transmission coefficients. For In the phase function method not 
a wave function, but only its changes as a result of potential actions are calculated. 



 74 

To evaluate the spin dependent transmission coefficient we solve the Schrödinger equation for 
each spin component: 
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 (3) 
where z is a coordinate of the tunneling direction; σ – is the spin index (spin –up and spin-down); Vsc – 
is the scattering potential. Effective potential in this case is equal to:  
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The tunneling transmission coefficient is: 
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where aσ and bσ functions are defined by the equations based on the Phase function method: 
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Using system of equations (2), (5), (6), (7) current-voltage characteristics are calculated in 
dependence from position of Fermi level. We considered the cases when Fermi level of nanostructure 
is located close to valence band maximum or conduction band minimum. 

III.  RESULTS AND DISCUSSIONS 

The dependence of tunneling current on the voltage applied to the transition for the case when 
EF is located above the midgap is expected to be monotonically increasing function (Fig.1). But when 
EF is situated below the midgap an additional canal through the valence band of the wide-gap 
semiconductor can appear. Current density of the main canal monotonically increases (Fig.1). Current 
density of the additional canal (Fig.2) for the applied voltage of 0.1 V…3 V increases monotonically, 
but at the further increasing of the applied voltage up to the 5 V the maximum appears, after which the 
tunneling current decreases. It means that the region of the negative differential resistance is formed. 
The smaller is the thickness of the wide-gap semiconductor d, the larger is effect of the negative 
differential resistance. 
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Figure 1 – Current –voltage characteristic 
of the main canal in dependence of the thickness 

of the wide-gap semiconductor for the case when EF 
is situated below the midgap.  

Figure 2 – Current –voltage characteristic 
of the additional canal in dependence 

of the Fermi level position, for the case when EF 
is situated below the midgap 
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Thereby when Fermi level EF of the nanostructure is situated below the midgap on the 
dependence of the tunneling current from the applied V for the case when qV > EF, the regions of the 
negative differential resistance appear, that can be explained by the appearance of the additional canal 
of the charge carrier transport through the valence band. [2]. According to the dispersion law (1) states 
located in the midgap sustain the largest attenuation in the barrier. Therefore if Fermi level of the 
observed nanostructure is located near the bottom of the band-gap the bias voltage V shifts the levels 
of the tunneling electrons to the area of the lower barrier transparence. This shifting is a reason of the 
tunneling current decrease, which is the reason of the effect of the negative differential conductivity.  

The tunneling magnetoresistance of the ferromagnet /wide-gap semiconductor/ ferromagnet 
nanostructures taking into account the appearance of the additional canal of the transport through the 
valence band of the wide-gap semiconductor was calculated. TMR of the main canal monotonically 
decrease from 0.15 up to 0.3 (Fig.3), but for the additional canal TMR changes insignificantly (Fig. 4). 
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Figure 3: TMR of the main canal in dependence of the 
wide-gap semiconductor thickness for the case when EF is 

situated above the midgap 

Figure 4. TMR of the additional canal in 
dependence of the wide-gap semiconductor 

thickness for the case when EF is situated above the 
midgap  

For the wide-gap semiconductor thickness equal to 1.5 nm and 2.5 nm the TMR of the 
additional canal is almost constant. For the intermediate thickness equal to 2 nm two extrema are 
observed at the TMR curve of the additional canal for the voltage bias equal to 1 V (0.25) and 4 V – 
4.3 V (0.1). These extrema can be explained with the availability of the maximum correlation between 
minimal and maximal value on the current-voltage characteristic in the region of the negative 
differential resistance at this considered thickness. 
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