2010

УДК 621.396.96

ДВУМЕРНЫЕ КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ И ОБНАРУЖЕНИЕ СЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В.А. ЧЕРДЫНЦЕВ, А.В. МАРТИНОВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 14 апреля 2010

Проведен анализ двумерных корреляционных функций и предложены алгоритмы автокорреляционных обнаружителей случайных последовательностей. Дано сравнение качественных показателей энергетических и автокорреляционных обнаружителей случайных последовательностей.

Ключевые слова: двумерные корреляционные функции, случайные последовательности, скрытые периодичности, энергетический и автокорреляционный обнаружители.

Введение

Обнаружение выборочных функций случайных процессов — одна из задач радио- и гидролокации. Для передачи информации в качестве переносчика дискретных сообщений также могут использоваться случайные процессы. Алгоритмы обнаружения сигналов на фоне шумов в указанных случаях сводятся к энергетическому приему, суть которого состоит в сравнении двух гипотез: наличие в наблюдаемом процессе суммы случайного сигнала и шума либо наличие только шума. Качество энергетического обнаружителя определяется эффективной базой сигнала $B_{2}=\Delta F \cdot T$, где ΔF — полоса спектра сигнала, T — время наблюдения [1].

С появлением новых классов сигналов, например, хаотических последовательностей, наряду с традиционными методами корреляционного приема используют алгоритмы синхронного отклика, работающие, однако, при относительно малых уровнях шума [2].

В зашумленных каналах передачи обнаружение хаос-последовательности может осуществляться на основе энергетического приема. Алгоритмы автокорреляционного приема псевдослучайных и случайных двоичных последовательностей позволяют существенно повысить качество обнаружения за счет выделения колебаний тактовой частоты последовательности [3, 4]. Такой подход может быть использован применительно к хаос-последовательностям, а также случайным последовательностям, формируемым тактируемыми генераторами шума.

Цель статьи:

1) выявить особенности двумерных корреляционных функций случайных последовательностей, показать наличие в них скрытых периодичностей и оценить их параметры;

2) сравнить качественные показатели автокорреляционных и энергетических обнаружителей случайных последовательностей.

Двумерные корреляционные функции случайных последовательностей

Случайная последовательность (СП) h(t) — процесс, смена состояний которого происходит с тактовым интервалом τ_{\Im} , определяющим длительность элемента последовательности. Примером СП является хаотический процесс, описываемый отображением *n*-го порядка [2]:

 $h_k = f(h_{k-1}, \ldots, h_{k-n}), k, n = 1, 2, \ldots; t_k - t_{k-1} = \tau_{\mathcal{P}},$

№ 3 (49)

где *f* — некоторая нелинейная функция, определяющая плотность распределения вероятности (ПРВ) мгновенных значений последовательности.

Другим примером СП может служить марковский процесс $X(t_k)$, у которого область значений — непрерывное множество, а область определения — дискретное. Марковская *n*-мерная последовательность $X_k=X(t_k)$ в дискретном времени описывается уравнением

$X_{k+1} = \Phi_k(X_k, W_k, t_k),$

где Φ_k — *n*-мерная неслучайная вектор-функция своих аргументов; $W_k(t_k)$ — взаимонезависимые выборки *m*-мерного случайного процесса с известными ПРВ.

Пример реализации случайной последовательности h(t) показан на рис. 1.

Рис. 1. Пример реализации случайной хаос-последовательности

Определим двумерную корреляционную функцию (ДКФ) случайной последовательности h(t) с длительностью T:

$$\Psi \ \tau, \Omega = \int_{0}^{T} h(t)h(t-\tau)\exp(-j\Omega t)dt.$$

Модуль ДКФ, нормированной относительно энергии СП, представляет функцию неопределенности (ФН) последовательности [1].

Применительно к задачам радиолокации обычно рассматривают сечения ФН в области [τ , Ω] большой корреляции (| τ |~ τ_k , Ω ~0), характеризующие разрешающую способность по дальности и скорости [1].

В работах [3, 4] показано, что ДКФ двоичной случайной последовательности h(t) содержит регулярные компоненты в полосе $|\tau| < \tau_{\Im}$ на частотах $f = kf_{T}$, k = 1, 2, ..., n, $f_{T} = 1/\tau_{\Im}$. На рис. 2 приведен фрагмент модуля ДКФ, показывающий присутствие регулярных компонент на частотах $\Omega = 2\pi f_{T}$ в полосе задержек $|\tau| \le \tau_{\Im}$ при фиксированном значении T для случайной последовательности, представленной на рис. 1.

Рис. 2. ФН случайной последовательности

Уровень регулярных компонент в спектре произведения функции $h(t)h(t-\tau)$ зависит от величины $|\tau| < \tau_{\Im}$ и от длительности *T* последовательности. Средняя мощность колебания на частоте kf_{T} определяется выражением

$$P_{k}(\tau) = \left[\frac{\left\langle a^{2}\right\rangle}{\pi k}\right]^{2} \sin^{2}\left(\frac{\pi k\tau}{\tau_{y}}\right), \ \left|\tau\right| < \tau_{y},$$

где $\langle a^2 \rangle$ — средняя мощность СП, величина которой определяется плотностью распределения вероятности (ПРВ) случайной последовательности. Для СП наибольшая мощность P_1 колебаний тактовой частоты достигается при $|\tau| = \tau_{\Im}$. В случае двоичной СП средняя мощность $P_1(\tau_{\Im}/2) = a^4/\pi^2$. Если ПРВ является гауссовской с нулевым средним и дисперсией $\sigma^2 = a^2$, то $\tau = \tau_{\Im}/2$ обеспечивается такая же средняя мощность колебаний тактовой частоты, как в случае двоичной СП.

Таким образом, при различных ПРВ можно получить требуемый уровень выделяемых регулярных компонент СП. При формировании СП с заданной ПРВ целесообразно использовать критерий минимизации информации Фишера:

$$I_{\Phi} = \int_{-\infty}^{\infty} \left[\frac{d \ln W(h)}{dh} \right]^2 W(h) dh = \min_{W_{\Pi}(h)}.$$

При фиксированном значении т в области $|\tau| \le \tau_{\Im}$ помимо первой гармоники колебаний тактовой частоты выделяются компоненты на кратных частотах. На рис. 3 приведена спектральная диаграмма процесса $h(t)h(t-\tau)$ при $\tau = \tau_{\Im}/2$, представляющая сечение модуля ДКФ последовательности, представленной на рис. 1. Выделенные спектральные составляющие частоты и ее нечетных гармоник соответствуют спектру меандровой последовательности m(t), содержащейся в СП₁ $h_1(t) = h(t)h(t-\tau_{\Im}/2)$.

Рис. 3. Спектральная диаграмма процесса $h(t)h(t-\tau)$ при $\tau = \tau_{\Im}/2$

В рассматриваемом случае справедливо представление

$$h(t)h(t-\tau_{\Im}/2) = m(t) + h_2(t)$$

где $h_2(t)$ — случайная последовательность с тактовым интервалом $\tau_{\mathcal{Y}}/2$, m(t) — меандровая последовательность.

(1)

Преобразование (1) может быть положено в основу построения обнаружителей СП в каналах с помехами.

Обнаружение случайных последовательностей

Задача обнаружения СП сводится к обнаружению СП₁ $h_1(t)$ в аддитивном шуме $n_1(t)$. После предварительного фильтра (ПФ) наблюдаемый процесс r(t) = h(t) + n(t) преобразуется в $r_1(t) = r_1(t)r_1(t-\tau_3/2)$ с последующей фильтрацией компонент колебаний тактовой частоты СП.

Упрощенный вариант автокорреляционного обнаружителя (AO) представлен на рис. 4 [5]. Узкополосный фильтр (УФ) настроен на тактовую частоту $f_{\rm T} = 1/\tau_{\rm 3}$ СП.

Рис. 4. Автокорреляционный обнаружитель СП

Полоса пропускания $\Delta f \, \Psi \Phi$ определяется требуемым временем накопления: $\Delta f \approx 1/T$. Детектор огибающей (ДО) и пороговое устройство (ПУ) с порогом l_{Π} обеспечивают в момент T принятие решения о наличии $\Theta^* = 1$ или отсутствии $\Theta^* = 0$ СП в наблюдаемом процессе.

Рассматривая меандровую последовательность как сигнал $m(t-\tau)$ со случайной задержкой, равномерно распределенной в интервале $|\tau| \le \tau_{\Im}/2$, оптимальный алгоритм обнаружения можно представить следующим образом:

$$L^{2} \underset{\Theta^{*}=0}{\overset{\Theta^{*}=1}{\underset{\Theta^{*}=0}{\overset{\Theta$$

Структурная схема автокорреляционного обнаружителя СП с квадратурными каналами (АОК), соответствующая алгоритму (2), представлена на рис. 5. Генератор колебаний тактовой частоты (ГТЧ) и фазовращатель (ФВ) вырабатывают ортогональные колебания $sin(2\pi f_T t)$ и $cos(2\pi f_T t)$, которые преобразуются в компараторах в меандровые последовательности $m_C(t)$ и $m_S(t)$. Квадратурная обработка в этом случае обеспечивает накопление спектральных компонент преобразованной СП на тактовой частоте f_T и на частотах $(2k-1)f_T$, k = 1, 2, ...

Рис. 5. Автокорреляционный обнаружитель СП с квадратурными каналами

Если ограничиться накоплением колебаний тактовой частоты, то в схеме исключаются компараторы (sign). В этом случае схемы рис. 4 и 5 становятся эквивалентными.

Оценим качественные показатели обнаружителей СП. Для схемы рис. 5 отношение сигнал/шум на выходе узкополосного фильтра определяется выражением [5]

$$q_{y\phi} = \frac{2}{\pi^2} \frac{q^2}{1+2q} \frac{\Delta F}{\Delta f},$$

где q — отношение сигнал/шум на выходе П Φ , имеющего полосу пропускания ΔF . Полоса пропускания узкополосного фильтра Δf существенно меньше, чем ΔF . Отношение $\Delta F/\Delta f = T/\tau_{2} >> 1$, поэтому обнаружение СП возможно при относительно малых значениях q.

Известно, что при гауссовском шуме в схеме рис. 5 статистика L^2 определяется гаммараспределением $W(x, \alpha, v) = \alpha(\alpha x)^{\nu-1} \Gamma^{-1}(v)$ при v = 1, $x = L^2$ [1]. Анализ показывает, что в рассматриваемом случае вероятности ложной тревоги $P_{\rm JT}$ и правильного обнаружения $P_{\rm IIO}$ определяются выражениями

$$P_{\rm JIT} = \exp\left[-\frac{l_{\rm II}}{a_m^2 \sigma_{\rm II}^4 \rho_{\rm II}^2(\tau) T^2}\right],\tag{3}$$

$$P_{\rm no} = \exp\left[-\frac{l_{\rm n}}{a_m^2 T^2 a_m^4 + \sigma_{\rm n}^4 \rho_{\rm n}^2(\tau)}\right],\tag{4}$$

где a_m — амплитуда меандровой последовательности; σ_n^2 — средняя мощность шума на выходе автокорреляционного преобразователя; $\sigma_n^2 \rho_n(\tau) = \langle n(t)n(t-\tau) \rangle$, $\rho_n(\tau)$ — коэффициент корреляции шума n(t) на выходе фильтра.

Соотношение (3), (4) сводятся к формуле

$$P_{\rm IIO} = P_{\rm JIT}^{1 \over 1 + q_m^2},$$

где q_m — отношение сигнал/шум на входе ПУ, $q_m = \frac{1}{4} \frac{q^2}{1+2q} \frac{T}{\tau_{\Im}}$.

Таким образом, обнаружитель АОК, представленный на рис. 5, обеспечивает более высокое качество по сравнению с обнаружителем АО (рис. 4).

Характеристики обнаружения рассмотренных устройств и энергетического обнаружителя, включающего фильтр, квадратор, интегратор и пороговое устройство, показаны на рис. 6 при заданной вероятности ложной тревоги $P_{\rm JT}$ = 0,01.

Заключение

Энергетический приемник осуществляет обработку случайной последовательности без учета скрытых в ней регулярных компонент. Такие компоненты выявляются в результате анализа двумерных корреляционных функций и сосредоточены в области $[|\tau| < \tau_{\Im}, \Omega = k/\tau_{\Im}, k \ge 1]$.

Алгоритмы и устройства обнаружения СП, учитывающие указанные энергетически емкие компоненты ДКФ, обеспечивают при прочих равных условиях существенное снижение величины порогового отношения сигнал/шум с ростом эффективной базы $B_{\Im}=T/\tau_{\Im}$ случайной последовательности.

Рис. 6. Характеристики обнаружения энергетического и автокорреляционных обнаружителей

TWO-DIMENSIONAL CORRELATION FUNCTIONS AND DETECTION OF RANDOM SEQUENCES

V.A. CHERDYNTSEV, A.V. MARTSINOVICH

Abstract

The analysis of two-dimensional correlation functions is executed and algorithms of autocorrelative detectors of random sequences are offered. Comparison of quality indicators of power detectors and autocorrelative detectors of random sequences is given.

Литература

1. Ван-Трис Г. Теория обнаружения, оценок и модуляции. Т. Ш. Пер. с англ. / под ред. Горяинова В.Т. М., 1977.

2. Дмитриев А.С., Панас А.И. Динамический хаос: новые носители информации для систем связи. М., 2002.

3. Чердынцев В.А., Ходасевич Р.Г. // Радиотехника и электроника. 1975. Т. 20.

4. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ. / под ред. В.В. Маркова. М., 1979.

5. Чердынцев В.А. Статистическая теория совмещенных радиотехнических систем. Минск, 1980.