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sets of irreducible representations of the Lorentz group. The main generalized equation is
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1. Spinor field with two mass
parameters in Gel’fand—Yaglom
approach

In the context of the existence of similar
neutrinos of different masses, in the present parer
we examine a possibility of existing, within the
theory of relativistic wave equations, a spin 1/2
particle with two mass parameters. Existence of
such more general wave equations in comparison
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with commonly used ones is well known — see
references [1-51|

Model for a particle with single value of spin
s = 1/2 and two mass states is constructed on
the base of the following linking scheme for the
Lorentz group representations (see notation in |2,
3]; the horizontal and vertical lines stands for
linking of the respective representations)

(1)

As usual [2, 3] we numerate representations in the
scheme (2) by indices

(075) ~ 1, (570) 2,
1 1
(2,1)N3, (17§)N4' (2)

The first order wave equation has the general
structure

(Ta0y — M)W = 0.

In the theory of relativistic wave equations, the
most important role belongs to the matrix I'y, and
all properties of I'1, 9, I's are determined by the
matrix Iy (see [1-3]).

For spin blocks C'/2 and C®/?2 (for more
detail see [1-3|) of the matrix I'y (symbols
of direct sum @ and direct product ® of
representations are used)

Iy=(C2eL)e (C*?el),

related to the scheme (2), we have the
following structure in the Gel’fand—Yaglom basis
[49], [50] (lower indexes relate to numerated
representations in (2))

0 )’ af? o
1/2 1/2 3/2
o2 — Cz{ 0 0 024/1 32— 0 634/1
A2 0 2] A2
C31 C34 C43
0 0142 c}lz/f 0

where the entries of the matrices are not yet
fixed. Due to uniqueness of spin S = 1/2; we

405
get the constraint cgf = 0%2 = 0 ; due to
relativistic invariance of the wave equation we
obtain the following restriction céf = 6%2 =

0. Two last conditions mean the break of link
between representations (3,1) and (1,1) in the
scheme (2), so that it transforms into another one
1 1 1 1
- 1)—-00,2)—(=z,00—(1,=) .
(GD-05)-G0-05). G
From the invariance of the model under spatial
reflection we obtain additional restrictions

/2 1/2 /2 1/2 /2 1/2
Gl =0ps Gy =05, of =y (4)
Finally, the existence of the Lagrangian

formulation for the model provides us with
the following restrictions

1/2
0%2 is real, 0142 = 777:;4;2 (céf)*, (5)
Tha

where 7'/2 designate the elements of the block

n'/2 in the matrix of the bilinear form. Having in
mind all said and using the notations

1/2

1/2 1/2
A =cr, =, Bo=s 5=21, (6)
Ta

we obtain the following representation for the spin
block C/2;

061620

12_|a 0 0 c

CT =15z 0 0 0 (7)
0 8¢5 0 0

Characteristic equation of 4-th order for
the matrix C'/2 (its roots determine all
possible values for the mass parameters of the
object described by the wave equation under
consideration — for more detail see in [48]-[50])
is a bi-quadratic one

A = A% (& +20]ca]?) + ||’ =0 . (8)

so we get the following roots:
(A2); = (e +20]c2]?) +201\/C? + 45\02\2’
(e 4 26|ca|?) — c1n/ 3 + 4d]co?
(A%)y = : - (9)

2
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These roots may be presented differently if one
uses the quantities

Lot c? + 46|ca|?

c1 — /et + 48]cal? (10)

2 )

n =

Y2 = £
as easily verified, we have identities
=A%, AE =A% (11)

From the general theory of wave equations
for particles with spectra of mass parameters (for
more detail see in [48]-[50]), it is known that here
we have models for a fermion with two positive
and two negative masses:

oo M M
e/ =R
M M

My =

(12)
/A2

+ A2 £V
We will ignore models with negative mass
parameters by the following reason. Let us recall
that for ordinary Dirac equation the variant with
negative mass may be transformed to the variant
with positive mass by means of a simple linear
transformation over the wave function:

MY =0, M>O0;

(170 —
V=", o= 757“75 =,
[i7 %0, — (~M)]W' =0, (=M)<0. (13)
As we see later, the variants § = +1

/2 1/2

Ty =13y =+1, s e

Ty =m3 =—1. (14)

corresponds to nonequivalent models.
The freedom in parameters cq,cy must be
agreed with real-valuedness of both masses:

A2>0, A2>0

2. The model in the modified
Gel’fand—Yaglom basis

The modified Gel’fand—Yaglom basis for
particles with half-integer spins is based on the

use of a special way to combine and enumerate
basic vectors of the initial G —Y basis. In the case
under consideration we should use the following
four groups of states:

in modified basis,

@/’1(;21/132 w%};ﬁz

Dy Yira

¢11/é2132 | wl}é21}2 |
DYy Yy

Dy Dy

wél/zl/Qs/Q wi(’)}Ql/fl/Q (15)
| Wi |

wél/f 13/2 wé}é{l 1/2

where in @Z)Slsls), the indices (I,I') determine

irreducible representations of the Lorentz group;
parameter s denotes the values of spins; s3 is a
third projection of the spin.

In canonical Gel'fand—Yaglom basis, the
vectors are enumerated as follows

w || s
i | o | | i
ol | | WO et
wiim || wln || s |
o R | et
1/’(—11221)/2 1/’(_11//221)_1
in %ZZ) we use the notations: I3 = —I,—1 +

Al ==, U +1,...,+I.
In spinor basis, the vectors are designated
as a long column with the following components
which we represent in a line as

{1/} ¢ @Z}b 7/}1”7[)(11 ¢12 ¢(122)a 77[)(211)’

Vi) Yoz

29 i1 i2 22
1719511’ 1 Yo, Yo, 2}
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Relationships between these tree bases are
given by the formulas

i) = S Wl sm), (17)
I3, 15 are fixed, m = I3 + I5;
T Ll
R S R
A
where s, m are fixed, and I + I = m;
w(z,z') _ (20)!
Usds) | (1 +13)(1 — 3)!
(2r)! i.12..9)
x [(l’ S =y Yoy (19

where the number of indices of the type 1 equals
I' 4 I4; the number of indices of the type 2 equals

J

o o0 d¥¥ o o o &Y o
o o o &Y 0o o o Y

S0 0 0 AP 0 00 0

pam | 0 &Moo 0 0 0 P 0o

y o o &Y o0 o o &P o |

o 0o o0 &Y o o o AV

&% 0 0 o & o o0 o0

o &P 0o o o J&YY o o

from P-invariance it follows

I! — I§; the number of indices of the type 1 equals
[ 4+ l3; and the number of indices of the type 2
equals [ — [3.

With respect to (2), four groups of vectors
in the modified basis are presented as

[ 6%/2,1/23 61/2,—1/2? '5%/2,1/23 E%/2,—1/2 I,
[ 6411/2,1/2? 6411/2,—1/2? Gz1))/2,1/23 E?/2,—1/2 ],
[ 6%/2,3/2? 6g/z,fz/% 63/2,3/23 63/2,73/2 I,
[ 6%/2,1/2§ 631/2,,1/2; 63/2,1/23 63/2,71/2 J-

In this basis, the spin block I‘il/ 2 has the
structure

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Cgl/ )= ng/ )a C§4/ )= ng/ )v '34(12/ )= C:(n/ )a C:(),4/ )= 04(13/ )?
so the above spin block becomes simpler
(1/2)  (1/2)
1/2 c c
i/ — G L) |[©@7a (20)
G2~ Cu3

Requirement of the existence of the Lagrangian form for the model gives an additional constraint

1/2

0(1/2) _ ”:g4/ :

2 7 (1/2)
e

()
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Further, with the shortening notations, we obtain

(1/2)

(1/2) _ (1/2) _ M3a = _ _ (1/2) _| @@ C2
Clg = =C¢C1, C3  =C2, a2~ 6, o0==1, F4 = 5o 0(1/2) & V4 . (21)
M2 2 C43
Let us consider the spin block F513/ 2),
o 0o & 0o o o 0 0
o 0o o0 & o 0o 0o o0
A 0 0 0o 0 0 0 0
(3/2) o &% o 0o 0o 0 0 0
Ly = (3/2)
0 0 0 0 0 0 ¢y 0
o o 0 0 o0 0 0 &7
o 0o o0 0 &P 0o 0o o0
o 0o o0 0 o &% o o
From P-invariance it follows
(3/2)
3/2 3/2 3/2 c 0
&P =P, 1P = 4:6 (3/2) | @74
€43
Due to identity cg/ 2~ 26%/ 2), from the uniqueness of the spin value S = 1/2 we derive the constraints
cg/ 2 0, cfé/ 2 — 0. Let us simplify the notation as follows
051/22) =, =ivBag=c, TV = 5601; C()2 @y =CUD @, (22)
Characteristic equation for C(1/2) ig
det |2 T T2 AN — 1) = Sleaf2 = 0
—dcs A ! 2 ’
for the roots we get (compare them with (10)—(11))
N = cl—i—\/c%—i—4<5]02]27 N = LT c? + 48|cz)? ; (23)
2 2
note two identities
A9 = —(5‘02‘2, AM+A=c, A —X= \/0%4—4(5‘02‘2 , (24)
where ¢1, ¢y are parameters of the model. The minimal equation for C(*/2) has the form
(¢ = x) (¢ = x) =0 (25)
whence with (24) in mind we get another representation for the minimal polynomial equation
2
<c<1/2>) — 0 _§ley2 =0, (26)
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The minimal polynomial equation for the matrix I‘fll/ 2 reads
[(T872) = 23] [(r$?) - 23] = 0. (27)
Correspondingly, the minimal polynomial equation for the matrix I'y looks as follows
Ly(T = A1) (T =29 =0. (28)

3. Relationships between three bases

We start with the explicit form of the matrix I'y in the modified basis and represent it as the

following 4x4 block matrixes

Gi1 G2 0 0

G-y _ Go1 0 00

4710 0 00

0O 0 00

with nontrivial components given by

0 0c O 0 0 ca O 0 0 éc5 O
10 0 0 10 0 0 e 10 0 0 4
Gu=1lc 00 0“2 | 0 0 0 ’G21_5c§ 0 0 0
0 cg 00 0 c2c 00 0 dc5 0 O

Using the formula (19), we can examine the transition to the canonical basis

Veanon = B+\I"G—Y
where again the matrix B™ is represented in the block form as

By 0 0 0
0 Bay B3 By
0 B3z B3z Bsg
0 By By3 By

Bt =

where B is 4x4 identity matrix and rest nontrivial components can be written as

0 0 00 1000 0
1

-L 0 00
B V3 B_ooooB_\/g
22 — 0_\/%007 23_0000724_0
2 0000 1
2.0 00 7
0% 00 0000 0 /2
00 00 0100 0 0
Ba2=\g 0 o o B3=lo010P= |0 o
00 =0 0000 0 0
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2 1
00 0 \/; 0000 00 0 75
00 —/2 0 0000 00 55 0
By = ~V3 734320000,3442
00 O —% 00 0
00 0 0 0001 000 0

We are to find the matrix I'y in the canonical basis and represent it in the block matrix form as

Fii Fia Fiz Fuy
canon _ p+1G-Y n _ __ Fy 0O 0 0
P =BT B==1p, 0 0 o0
Fy 0 0 O
where nontrivial components Fj; are the following 4x4 matrices
00 ¢ 0 RO 000 % 0
- 00 0 ¢ - r 0 00 O Foo— |eay/2
11_610 0 0|’ 12_0% 0 CQ\/%’ 13 = 0 00 0} 14 — 203
0 C1 0 0 0 0 CQ\/% 0 % 00 O 0
00 gc 0 0 00 dcs 0 60;\/%
00 ——3 0 V3
el 7 R R N I
27100 0 =&y/EsP T o 00 0 T 0 5cy
6C§ _\/g
006,/2¢ 0 5 000 0 5

Now we relate canonical and spinor bases:

\Pcanon = A%;;m )

00

00

00
00

o o O

P

oo O O

with matrix A represented in the block diagonal form as A = diag(Aj1, Ags, Ass, Agq), where Ajq is
4x4 identity matrix and rest three matrixes are diagonal and the following Ags = diag(1,v/2,1,1),

Asz = diag(v/2,1,1,v/2),A4 = diag(1,1,v/2,1).
For I'y in spinor basis we get

fi1 fiz fi13 fua

spinorial __ g —1ycanonical 4 __ f21 0 0 0
pypineriel — gnipgmenieat g — 920
far 0 0 O

in the block matrix form with nontrivial 4x4 matrix components given by

00 ¢ O 8 8 8 8 0 00 e/3
000 ¢ B - - 0o 00 o0
fll_C1 0 0 O 7f12_0_62 g 0 02 §7f13_ 0 00 0
0 ¢ 00 0 0 —en/? 0 cg\/goo 0

Henuneiinblie siBjieHnst B CJIOXKHBIX cuctemax 1. 20, Ne 4, 2017
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0 —c % 0 0 00 gc* 0 0 502\[ 00
. 5 00 —72; 0 5oz 2
f14=c2\/; 0 _62\/;va21—00 5 2ex|0 fu= _62\/; o 0 0.
0 0 0 0 372 0 ~2 00
0 0 0 0 00 5\/>c2 0 0 0 00
Thus, in spinor form the wave equation has the structure
ab 2 o (ab) a b 2 e
C1 6 \I]b —+ 50286 Qpc —+ M \IJ = 0 s C1 8(11) d) + 5028 & ,¢(ab) —+ M wa = 0 s
§ i o . 5 o . .
f%cm? AP + M Py =0 75 R0 e O W)+ M Wy =0, (29)
where the derivative operator in spinor form is determined by the formula 0y, = —i0,(0*)ap, o’ stands

for the Pauli matrices, o = il5.

4. The wave equation in spin-
tensor form

It is convenient to present eq. (29) differently

clﬁab\I/b+6280w“b)+M\I/“—O
e1 0, 0 + B0, vl gy + M 0 =0,

63(6)” e+ 05 P) + M gl =0
n %5 0 e+ 0 ) + M Wy =0, (30)
where
Bo=1\/2/3ca, Bs=—fV2/3c5.  (31)

J

(

To translate equations in (30) to spin-vector
form, we are to use the known formulas

WP = (0" + ot y),
1

G = 2(0' e + o)

Yo = gHaby U, = agbxpz .

b (32)

Instead of the first equation in (30), we
obtain

. 1 . - .
1 oW, + 3B W+ o) + M, =0,

be = p

Claab

Whence it follows
52

ﬂg
2

ab
10 ch

ClaabJubc\Ifﬂc + —

. 1 . . .
oy . 4 5523% (MW + oMW ) + M UZB\IJZ =0.

( ohieQ ; \I/b+ a L U) + M oW, =0,

b ;
( 0'5686 ‘Ilub + {au\lj,u,a) + M UZE\I/M =0.

Nonlinear Phenomena in Complex Systems Vol. 20, no. 4, 2017
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In new representation, the 16-component wave function makes up the vector-bispinor ¥, = {\IJZ, U},
and the last two equations are written with the use of the Dirac matrices as follows

10V ¥y + g (=0 ¥y — 20,0) + My, ¥, = 0.

Introducing the notation d= Yu¥,, and taking into account the identity 7,7y, + 7,7, = 20,,, we rewrite
the previous equation as

B2

(c1 + )é( V) = 2B82(0utpp) +iM (v, ¥,) =0 (33)

Now, we consider third and fourth equations in (30): having in mind the formulas (32), we get

Bs o o) =0,

o (Oho ¥ o it 5 (0 Ve o2 W) =0

(6{,‘ “qu’ud + abguad\y#d)
B3

We multiply the first equation bya)‘g, and the second one — by a)‘i‘:, so obtaining

2
/63 /\a

. . M
@U’\l?(aga“w\ll“d + 05N ) + 5 — (o ”a\IJC + U“C\I/a) =0,
(o " \de + 800" i + 7aAg(Ugb\IJW + 0t ) = 0.

These equations can be rewritten as

53 . . . . M . .

5 [_(O_)\ababd)o_ucd\yud _ OCbO-g\do-Mad\I],ud] + 5 [ )\ab !IL)a\IIfL _ O_;cho_g\d\ljz =0,
B3 . . . . M . .

5 [—(Uibﬁba)agdlllﬁ - acba’\bacr:d\llﬁ} + > [—(U;\bauba)\lluc - afba/\ba\IJua] =0,

which after simple transformation may be presented in vector-bispinor form as

B3 [a)\('m\l’u) - i%\é('ﬁtq}u)] +M {\I/)\ - %7)\(7#‘1/#) =0. (34)

Thus, we have arrived to the following set of equations, describing particle with one value of spin
and two mass states (the first equation is multiplied by %’YA)

1 (e 2 ) 100w = Fon@) + ) =0, 3
B | om0, - iwémm] #r | w, - iw( w)|=0. (30)

Summing equations in (35)—(36), we get
MUy + B307(7, ) + % <01 + % - 63) MO P,) — %w(%%) =0. (37)
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We notice that multiplying this equation by iw\, we obtain

Ba

- ?(&L\P#) =0,

1 1 B2\ 4
EMPY/»L\IJ:U' + Z <Cl =+ 2> 8('7#\11“)

which is equivalent to the above equation (35):

1 A M
1 (e 3 ) 100w = Fn@) + i) =0.

This means that in fact we have only one independent equation (37), whereas eq. (35) is just its
consequence. Let us rewrite this main equation (37) in a different form

b1 B2

4 YoVu Vv 0¥y — ?’Yp OV, +MY,=0, (38)

Bavu 0¥, +

where the shortening notation 3; for coefficients is used

51201+%—ﬁ37 522\/302, 532—5\/303 (39)

Equation (38) may be presented symbolically as (I',0, +m)¥ = 0, its more detailed form is

0
{ |:/83’7V & (e'u’l/)p,a + %7)\’7#’71/ & (eAyy)p,U - %7V X (eyﬂu)p,a] w + M6 ,a} V,=0. (40)

5. Transforming the wave equation to the Petras structure

The structure of the matrices I, in eq. (40)

Bayy @ et + %an ® P — %% ® e"H (41)

is rather complicated: it includes triple products of the Dirac matrices. There exists special
transformation which reduces the wave equation to a form without such triple products. New basis
and respective wave equation should be determined as follows:

—1
U =RV, I/ =RI[,R7,

1
R=1®1+ avyyys ® e, Rt =11 +byv, e, b=-— ) (42)
1+4a
Let us find
v /81 /82 1%
RT,, = [Byy ® € + 2 ® € — 2y, © €]
PO LV @ PO STA @ R R T
+alBzrp0m ® €7 + = Eye Y ya ® e%e 5 Voo @ €7,
Taking into account the identities e”?et" = d,,e”", 7,7, = 4 we get
- 782 1 o (D1 PsT
BTy, = B3y @ e — B2 (5 + 2a)y, ® 2 + (7 + affs + abi)yp 00 @ €7 (43)

Nonlinear Phenomena in Complex Systems Vol. 20, no. 4, 2017
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Similarly, we derive the structure of the matrices F;L:

RF#R_1 = f3(1 4+ 4b)7y, @ e/ — Bg( +2a)y, ® et

+ {il + a1+ B3) +b(B1 — @) + 4ab(B1 — & + ﬁ?’)} T VY @ 7 (44)

Due to (42) we have 4ab = —a — b, so the relation (44) reduces to the form

RFMR_1 = P3(1 4+ 4b)y, @ /P — 52( + 2a)y, @ e”t + {il [;2 bﬁg} Vo YuYo @ 77 . (45)
[
Now, we demand that the coefficient at triple its roots are
product of Dirac matrices vanishes, this results in
 —Cx4/C? —8B15, A7
= RT, R~ = B3(1 + 4b)y, ® et “= 82 ’ (47)
_52( + 2a)y, @ et (46) with designation C' = (89 + 231 + 2/33. Respective

expressions for b are:
and parameters a and b must obey two

constraints:
b= —-(B1+2Ba)
@ +a @ —bB3=0 = 463
- _ —(B2 4283 —281) £ V/C? — 8613 (18)
1633
b= P + 20, Z;a&, a+b+4ab=0. Now, turning to the formula (46),
3
Excluding b, we get a quadratic equation for a: T}, = B3(1 4 4b)y, ® et — 52( +2a)y, @M,
Bo+2(B1+Bs3) | B
a® + 2a + ——=0; we find
82 832
— — 201 —203) + -8
1 +(B2 — 281 —2083) £ /C%2 -8
5ol +20) = (B2 — 2B 53;1) PiBa _ (—A+B): (19)

notice that for B we have two different in sign expressions (for definiteness, below we use the variant
with the upper sign) Thus, in Petras basis, the matrices I‘L may be written in a rather symmetric form

=(A+ By, e+ (A-DB)y, e+ MV =0; (50)
correspondingly, the wave equation reads

(A+B)v,0,¥,+(A—B) v, 0,¥Y,+ M ¥, =0. (51)
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6. On parametrization of possible mass values
Recall main notations for parameters:
M M
My =—, M- M >0
1 )\1 ) 2 = )\2 y
A= c1+ c%+46]02]27 Mo — c1 — \/ ¢} + 40]co? 7 (52)
2 2
)\1)\2 = —5|02|2, )\1+)\2 =C1, )\1 —)\2 = \/C%+45|62|2 5 (53)
also
2 2,
bo=\2a B=—t2a m=@+Z_g) (54)
and parameters A and B
1
1 [—(52 — 281 — 2B3) £ /(B2 + 2B1 + 2B3)% — 8B1 3 ] =+A+ B,
1
7 [+82— 28— 268) £ V(B + 281 T 285) 851 | = —A+ B (55)
First, we consider the model when § = —1, ¢; = p, ca = ¢ = o, in this case we have
Bo = \/if B3 = \/> B = \/> ;
— 402 — 452
)\1:/”— V/;O'>07 )\2_#>07
MA2 =02, M+ X =p, Al — Ao = \/p2 — 402,
and
2
(B2 —2B1—2B3) = =2p, (B2+201+283) =2(p+ \/;7) ;
4
V(B2 + 21 + 283)% — 86182 = 24/p* + 502 . (56)
So, the expression for A, B in terms of Ai, Ao read
AL+ A (4/3)0 A+ A2)2 4+ (4/3) A\
2 2 2 2
The ratio of two masses is
M M Mo A1 1+\/1*40'2/p2
Ml = 7’ M2 = 7’ —_— = = . (58)
A1 A2 My A2 1—+/1—402%/p?
It is convenient to introduce an angular parametrization
402 s
2 2 2 :
S W_?a 4o Sp ) 76(075)7 (59)
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then the ratio of the masses is given by

% _ I+cosy
M; 1—cosy tan?(y/2)

€ (1,00) . (60)

Now, let us examine the second model, when § = +1, ¢; = p, c2 = ¢ = o, for this case we have

2 2 3 /2
62 - \/g0—7 53_ _\/g0—7 /81 _p+ 2\/;0_7

P+ p* +40? p—\p*+4o?
M= =T <0,
MAz=—02, A +X=p, A —X=+p?+40?; (61)

and

3

VB2 #3825~ 8P = 24 — 0% (62)

So, the expressions for A, B in terms of A1, Ay are

(B2 — 261 — 2P3) = —2p, (B2 +2B1 +263) =2(p + \FG) :

p
A:—:
2 2

e R (T LR R P LR CYORPE
3 - ) - .

. (63)

The ratio of two mass is

M M My A V1402 1+ /114022
My =50, M 2 M _ptypitder 1R VITAG/e o gy

:—<0’ —_— =
A1 A2 My A p—/p2+402 1—+V1+402/p?

Let us introduce the following parametrization

My  1+coshl' 1

sinh?T' =402/p%, T €(0,00), = =—
o/p ( ) M; 1—coshT tanh?(T'/2)

€ (—o0,—1) . (65)

In the paper we follow only the case of positive masses.

7. Independent components of the wave function

From this point, having in mind further extension of the model to a generally covariant case, we
use the metrical tensor in Minkowski space with the signature (+,—, —, —). Correspondingly, the wave
equation (51) is written as

(A+B)~°0,Y, +(A-DB)~v, 0¥, +iMV,=0 (66)
where we use Dirac matrices taken in the spinor basis, and the wave function is the vector-bispinor

&) &) &) &)
Vol®) = | po(@) m(z) ml) ms(a)

, =
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First, we convolute eq. (66) with ":
A(A = BY@"W,) + [(A+ B+ iM](179,) = 0,0 = "), (67)
and second, we act on eq. (66) by the operator 9”:
(A+ B)O(PU,) + [ (A— B)d+iM |(*¥,) = 0,0 =039, . (68)

In order to exclude the term with the operator [J, we should make additional calculation. Let us
act on eq. (67) by the operator 0; taking into account the following identity

90 = °0u" 95 = 0y (7"‘75 ;757“ i . 7/37‘1> O
we produce
(A+ B)O(7,%,) = —4(A = B)d(1,¥,,) — iMO(7,P,) - (69)
Now, we can substitute the relation into (68):
[3(A—B)d —iM | (8°¥,) +iMO(y"¥,) =0, (70)
additionally let us write down eq. (67) as
[(A+B)d+iM ] (v*¥,) + 4(A — B)(8°¥,) = 0. (71)
It is convenient to introduce special notation for two bispinor functions:
(V°¥,) = @1,  (0°F,) = Do, (72)
then the system (70)—(71) is written as follows

[3(A— B)d —iM &y +iMOP, =0, (73)
[(A+B)d+iM]® +4(A—B)®y=0. (74)

Let us make some transformations over these two equations (73)—(74); multiply the first one by
4(A —b), and the second one — by iM, and sum up the results (the fist equation (73) of the system
remains the same); in this way we arrive at a new system

. 12 .
(54 = 3B)0 @y + —-(A - B)?0 &y +iM &, =0, (75)
i
—iMO ®) — 3(A— B)) By +iM 3 =0. (76)
The last system may be presented in the matrix form

(5A —3B) (12/iM)(A — B)?
—iM —3(A— B)

A~

d =0. (77)

D)

B

. Py
—i—zM' By

The matrix W in the equation

(5A —3B) (12/iM)(A — B)?

Y salp |0 dwetiMe=0

-
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is to be reduced to a diagonal form with the help of a linear transformation in 2-dimensional space:

P
D)

S11 S12
521 S22

@
D)

further we get SW =W'S |

. =5B, I(SWSTHP +iMd =0;

W' = diag(Wh, W), or

S11 S12 (5A— 3B) (12/ZM)(A - B)2 . W1 0 S11 S12
S91 S99 —iM —3(A - B) T 0 Wal|sa soa |’
This is equivalent to linear sub-systems:
. 12
[(5A — SB) — Rl]sll — ’LM812 =0 N W(A — B)2511 + [—3(A — B) — R1]512 =0 ;

[(5A — 3B) — R2]821 — iMSQQ =0 y
From vanishing of the determinant of the matrix

det M

we obtain two eigenvalues W7 and Wo:

(A —3B) — Wy (12/iM)(A—-B)?| _
—3(A—B)—-Wy |

12
’LM(A — B)2521 + [—3(A — B) — R2]$22 =0.

0

W2 —2AW —3(A%> = B?) =0, W) = A—\/4A2 —3B2 Wy = A+ \/4A2 - 3B2.

To fix elements of the matrix 5, it suffices to use only one equation from each subsystem:

[(5A — 3B) — R1]311 — iM812 =0 y

its solution (one from possible) reads

[(bA —3B) — Ra]sa1 —iMsa =0

4A - 3B +VAAZ —3B?

M

4A — 3B — /4A? — 3B?

5A - 3B - W;
su=1, sp2= i

5A — 3B — Wy
321:17 522 = iM

Thus, we have arrived to separate Dirac-like
equations

(78)

these are what we need, because two identities
are readily verified W7 = Ay, Wy = Ay . New

M

(primed) bispinors relate to initial ones by the
formulas

5A —3B — )\
o =P B ()
1 1+ iM 25
5A — 3B — \g
o, =0 B () 79
2 1+ i 2, (79)
where
b, = yp\pr, Py, = 8p\11p.
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Initial wave equation (66), being written in the form

(A+ B)0,®1 + (A — B)y,®y + iM¥, =0, (80)

provides us with possibility to determine the complete 16-component vector-bispinor ¥ through the
known bispinors ®; and ®s.

8. Interaction with external fields

We start with equation in Minkowski space
(A+B)~0,%, +(A—=B) v, 0°'V,+iM ¥, =0. (81)

Extension to a generally covariant case (we are to use the tetrad formalism [51]) and to presence of an
external electromagnetic field can be performed as follows

(A+ B) DyvP(x)¥,(x) + (A = B) v (x)DPY, +iM ¥, (x) =0 ; (82)
we use notations [51]
Do = Vo +To(z) +ieAa(z), D=~%ax)Dy, D*D,=10. (83)
Note two commutation rules [51]
V(z)Dy = D,y () , Dogap(x) = gap(x) Do .
First, we convolute eq. (82) with :
(A= B)(D"W,) + [ (A+ B)D +iM ] (99,) =0 (34)
Act on eq. (82) by the operator DY, this results in
(A+ B)O(’W,) + [ (A~ B)D +iM |(D*¥,) =0. (85)

In order to exclude the term with the operator [, we should make additional calculation. Let us
act on eq. (84) by the operator D; taking into account the following identity

(A+ B)DD(+*¥,) = —4(A — B)D(D"¥,) — iMD(1*¥,,) . (86)

Taking into account the identity; (see [51]; Fog(x) stands for the tensor of an external electromagnetic
field R(z) is the Ricci scalar)

~ A asfB B a B _ ABAa
DD = DoDs |12 ;7 AN e > T —O0-%), 2(z)= {—ieFagaaﬁ(x)—l—f}, (87)
we derive the formula
(A+ B)O(y"¥,) = —4(A — B)D(D"¥,) — iMD(y*¥,) + (A + B)%(z)(yT,) . (88)

Using the last relation, we may exclude form (85) the term with the operator [J.
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In this way we obtain two equations

(A+ B)D®; +iM®, +4(A— B)®y =0, (89)
3(A — B)D®y — iM®y + iMD®; + (A + B)S(z)®; =0 ; (90)

where the notations are used
V() ¥p(x) = @1(z),  DP(2)V,(x) = P2(x) (91)

In (89)-(90), let us multiply the second equation by 4(A — B), multiply by M the first equation,
and sum up the results; the second equation remains the same. In this way, we derive the system

. 12 5 , 4(A? — B?) B
D {(5A — 3B)<I)1 + ZM(A — B) (I)Q} + ZM(I)l + TE($)(I)1 = O,
D {~iM®; — 3(A — B)®y} +iM®y — (A + B)X(z)®; = 0. (92)
In matrix form, the system reads
T dy Vio|le]
DW’(D2 +iM x| g —|—(A+B)Z(m)'V2OH(I)2 =0, (93)
where
| (5A—=3B) 12(A - B)?/iM B oo|_|HB g
W_‘ —iM -3(A-B) |’ V= -10] | -1 0l (94)

Linear transformation over function ®;, ®o, which reduces the system to a diagonal form, is known
(see in previous section). Symbolically, the problem under consideration is presented as

DW®+iMIL®+ (A+B)S(z) VO =0, & =59,

DW'® +iM I, &' + (A+ B)S(z) V'®' =0,

g_|1la -1 _ iM b —a a_5A—3B—>\1 b_5A—3B—)\2
1| DD VR e U O R iM T iM ’
, MO iM 1 b(8—a) —a(B—a)
W/ = SWS 1 — 1 ’ Vl — SVSl —
'0 A2 A — X | D(B—b) —a(B—b)

In this way, we arrive at a simplified system

(D +iM)®, + X(x)(A+ B) M“YAQ (B8 — a)(b®, — ad)) =0,
(AaD +iM)®)y + X (x)(A + B) AliMAz (B —b)(b®P] —a®h) =0. (95)

Recall that

Y(z) = —ieFaB(x)aaﬁ(x) + R(z) , B=
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Also notice that equation (82) written in the form
i(A+ B)D,®; + i(A— B)y,(z)®y — MV, =0, (96)

gives possibility to determine 16-component vector-bispinor ¥, through bispinors ®; and ®s.
Taking in mind the identities

4A-B) 5A-3B-\

iM(8 - a) = iM[=— —

=M —A-B,

4A—B) 5A-3B-\

iM(8 - b) = iM[—— —

=X\ —A—B,

we may rewrite equations (95) in a different way

. M—A-B
MD +iM)®, + X(2)(A+ B) 22— 2 (b@, — a®)) =0,
1 N — 2\ 1 2
1= A2
. M—A-B
(&D+M@§+EQXA+B%%—jrﬂw%—a%y:U (97)
1 — A2
Let us introduce shortening notations
/\1 —A-B )\2 - A-B
A+ B)——— = Aq, A4+ B)———— =Ag; 98
then the above equations read
(iD — Mp)®) + S(x)A (V' @) —a' @) =0,
(iD — Mo)®) + S(x)As (V' @) — ' @4) =0, (99)
where
a,_5A—3B—)\1 b,_5A—BB—)\2
N M ’ N M ’

In the end, let us note that equations (99) allow for restrictions to Majorana case. Indeed, in any
Majorana basis for Dirac matrices, (iv*)* = 4(i7*), and real (imaginary) bispinors are determined by
the formulas

(P)7 =+ (P1), (23)" =+ (D3) . (100)

Because such fields correspond to neutral particles, the term with Fi, g vanishes and we have the identity
Y*(z) = +3(x). So we conclude that equations (99) for particles with two masses preserve their Lorentz-

invariant form for neutral Majorana particles as well.
[

9. Conclusion wave equation for spin 1/2 fermion, which is
characterized by two mass parameters, is derived.

In the paper, starting from the general On the base of 16-component wave function, two
Gel’'fand-Yaglom approach a new 16-component auxiliary bispinors are introduced, they determine

initial 16-component wave function, and in the
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absence of an external field for these bispinors
we derive two separate Dirac-like equations with
different masses M7 and Ms.

It is shown that in the presence of external
fields, electromagnetic field and gravitational non-
Euclidean background with non-vanishing Ricci
scalar curvature, the main equation is not split
into separated equations, instead a quite definite
mixing of two Dirac-like equations arises.

It is shown that a generalized equation for
Majorana particle with two mass parameters
exists as well, such a generalized Majorana

equation is not split into two separated equations
if Ricci scalar of space-time model does not
vanish.

It is desirable to get explicit solutions of
such generalized wave equations in the presence
of some external fields: magnetic, electric, or
gravitational ones.

Also, it is desirable to elaborate a model for
a spin 1/2 particle with three mass parameters, as
more interesting physically in the context of three
type of neutrinos with different masses.
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