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Spin 1/2 particle with two mass states:
interaction with external fields
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In the paper, a model for spin 1/2 particle with two mass states is developed on
the base of Gel’fand—Yaglom approach in the theory of relativistic wave equations
with extended sets of irreducible representations of the Lorentz group. In the end,
the main generalized equation is presented in spin-tensor basis and with the use of
the Dirac matrices. Besides 16-component wave function, we introduce two auxil-
iary bispinors, they determine initial 16-component wave function, and in absence
of external field for these bispinor we derive two separate Dirac-like equations with
masses M and Ms. It is shown that in presence of external fields, electromagnetic
one and gravitational non-Euclidean background, (with non-vanishing Ricci scalar
curvature), the main wave equations is not split into separated wave equations, in-
stead a quite definite mixing of two Dirac-like equations with additional Pauli inter-
actions terms arises. This mixing also remains in presence only electromagnetic field,
as well it remains in presence of gravitational field. It is shown that a generalized
Majorana type wave equation with two mass states exists as well, such a general-
ized Majorana equation is not split into separated equations if Ricci scalar does not
vanish. The procedure to solve the system of equations for two linked bispinors is
discussed, which is based to of exclusion method. The problem ultimately reduces

to a second order differential system for only one bispinor function.

PACS numbers: 02.30.Gp, 02.40.Ky, 03.65Ge, 04.62.4+v
Keywords: Lorentz group, extended sets of representations, generalized wave equation,

electromagnetic field, gravitational field, neutrinos with different masses

1. Spinor field with two mass states in GGel’fand—Yaglom ap-
proch

In the context of existence the similar neutrinos of different masses, in the present
parer we examine existing in the frames of theory relativistic wave equation a possibility
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Spin 1/2 particle with two mass states ...

to describe a spin 1/2 particle with two mass states [1].

The model for particle with single value of spin s = 1/2 and two mass states is created
on the base of the following linking scheme for Lorentz group representations (see notation
in [2, 3])

1 1
1) —(1.=
(27 ) < ’2)
| | (1)
1 1
0,=)—(=,0).
( ’2) (27 )
We numerate representations in (1) as follows
1 1 1 1
0.)~1L (50~2 (G0~ (13) )

The first order wave equation has the structure (I',0, — M)¥ = 0. For spin blocks C''/2
and C%/2 of the matrix I'y

I,=(CVL)a (C** e L)

related to the scheme (1), we have the following structure in the Gel’fand—Yaglom basis
2, 3]

/2 1/2
10/2 Clé 01:/3 ?/2 32
oYz — o 0 0y 3/2 _ 0 ¢35y 3
=1 172 12> €7 = 352 ) (3)
1 0 0 c3h c5 0
0 c}éz c}éz 0

where elements are not yet fixed. By reason of uniqueness of spin S = 1/2, we demand
cgf = ciéQ = 0 ; due to relativistic invariance of the wave equation also it follows céf =
c}BQ = 0. Two last conditions means the break of link between representations (%, 1) and
(1,1) in the scheme (1), so that it transforms into slightly other one

=). 4
) @)
From invariance of the model under spatial reflection we obtain additional restriction

12 1/2 12 1/2 12 1/2
Cy1 =Cioy, €9y =C3, Cg =C31 - (5)

Finally, existence of Lagrangian formulation for the model provides us with the next

restrictions
) s mh L y
1/2 . 1/2 34 ¢ 1/2\«x
i’ is real, " = o (e’ (6)
T2

where 7'/ designate the elements of the block '/2 in the matrix of a bilinear form. Taking
in mind all said and using the notations
1/2
0142 =c, c}éQ = ¢, fsi _ , 0==1, (7)

1/2
7715
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we obtain the following representation for the spin block C'/2:

0 C1 Co 0
¢ 5, 0 0 0] (®)
0 6¢; 0 0

Characteristic equation of 4-th degree for the matrix C''/? is bi-quadratic one
A — A? (4 260|co?) + |ea* = 0. (9)
so we have the following four roots:

(A?), = (¢f + 20|caf?) + c1v/cf + 46]ca?

2 )
(A2), = (cf + 20]ca/?) —201\/C?+45|C2|2. (10)
These roots may be presented differently if one uses the quantities
2+ 46|co|? — /2 + 40| cy)?
= Latvat |cal o La—Vat |ca| ; (11)
2 2
as easily verified that we have identities
=A% g =47 (12)

From the general theory of the wave equations for particles with a spectrum of mass
states [1-3] it is known that here we have models for a fermion with two positive and two
negative masses:

M M v M M
/N £/2 T 2/ £/E

Let us recall that for the ordinary Dirac equation the variant with negative mass may be

My

(13)

transformed to the variant with positive mass by means of a simple linear transformation
over the wave function:

(I7°0y — M)T =0, M>0; W=~"T 7°=700=_—y"
[i7/ %0, — (=M)]¥' =0, (—=M)<0. (14)
As we see later, the variants 6 = £1

1/2 1/2 1/2 1/2
7714 :7732 =+1, 7714 :7734 =-1. (15)

corresponds to nonequivalent models, and the difference between is physically meaningful.

The freedom in parameters ¢, co must be agreed with real-valuedness of the both masses:
A2 >0, A3>0.
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2. The model in the modified Gel’fand—Yaglom basis

The modified Gel’fand-Yaglom basis for particles with half-integer spins is based on
the use of special way of combining and enumeration of the basic vector of initial G-Y
basis. In the case under consideration we should us the following four groups of states

in modified

basis:

(0

(0

3 (lvll)
where in s 5, :

(0,1/2)

w1/2 1/2

(0,1/2)
1/2,—1/2

(1/2,0)

1/’1/2 1/2

(1/2,0)
1/2,-1/2

1,1/2
% 1/2)

oy

/2,1/2
(1,1/2)
/2,—1/2

1/2,1
%/ )

G

/2,1/2
(1/2,1)
/2,—1/2

¢(1 1/2)

2y

3/2,3/2
(1,1/2)
/2,—3/2

¢(1/2 1)

W3

3/2,3/2
(1/2,1)
/2,—3/2

(1,1/2)
¢3/2 1/2
(1,1/2)
@53/2,,1/2

(1/2,1)
¢3/2 1/2
(1/2,1)
¢3/2,71/2

s denotes the values of spins; s3 is a third projection of the spin.

In canonical Gel'fand—Yaglome basis, the vectors are enumerated as follows

%11%2
w(()OI}f ¢011%2
Yot o)
Wie || e
T I
o,
in wl(jél,; we use the notations: I3 = —{,—{+1, ...,

wi
wé
(G

(0
zﬂ(ln)
7vb(112)
2/’(122)
7vb?n)
2/’(212)
Viaz)

ii
)
12
1
22
i
11
2
12
)
22
2
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+ U ==U,-U'+1,..
In spinor basis, the vectors are designated as follows

(1/2,1)
w1/2 1

(1/2,1)
¢1/2 0

(1/2,1)
¢1/2,—1

(1/2,1)
1/’—1/2,1

(1/2,1)
(G 1/2,0

w(l/Z 1)

1/2,—-1

(16)

indices (,1") determine irreducible representations of the Lorentz group;

(18)
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Relationships between these tree bases are given by the formulas

Ui = oW sm)ul,,, (19)
I3, 15 are fixed, m = I3 + 1};
T = (Wl sm)vt) (20)
I,
where s, m are fixed, and I3 + I, = m;
o = oo lesm = S (21)

where the number of indices of the type 1 equals I + l4; the number of indices of the type
2 equals I/ — l%; the number of indices of the type 1 equals [ +/3; and the number of indices
of the type 2 equals [ — 3.

With respect to (2), four groups of vectors in modified basis are presented as

1 1 .2 .2 4 . 4 .3 .3
[ €1/2,1/2> €1/2,—1/2> €1/2,1/2> €1/2,—1/2 I, €1/2,1/25 €1/2,—1/2> €1/2,1/25 €1/2,—1/2 ],

4 L4 .3 .3 4 .4 .3 .3
[ €3/2,3/2> €3/2,—3/2> €3/2,3/2> €3/2,—3/2 I €3/2,1/25 €3/2,—1/2> €3/2,1/25 €3/2,—1/2 J.

In this basis, the spin block Ffll/ 2 has the structure

0 0 ¥ 0o 0o 0o &Y o
o 0o o &Y 0o o o Y
&P 00 0 &P oo 00
ram _ | 0 eyl (10/2) 0 0 ¥ <P/2> 01,
0 0 ¥ o0 o o &P o
0 0 0 P o 0o 0 ¥?
A0 0 0 &Y 0 00 o0
0 &P 0 0o 0 &Y 0o o0
from P-invariance it follows
B = =y = =y

so the above spin block becomes simpler

o o &Y 0o o o Y o

o 0o o &Y 0o o o Y
P00 0 dYY o0 00 o0

ram _| 0 P 0 0o o0 &YYo 0 .

! 0o 0 ¥yY o0 o 0o ¥ o0

o 0 o0 ¥ o o o0 &Y
P00 0 &YYo 00 0

1/2 1/2

0 P 0 0o 0 &Y 0o o
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1/2 1/2
D) (2

1/2
N A1/2) <1/2)
42 4

® Vs - (22)

Requirement of existence of Lagrangian form for the model gives additional constraints

(1/2) X
(1/2) _ T34 (1/2)\" .
Cyo - (1/2) (CIB ) )
UsP)

so with the notations

(1/2) _ (1/2) _ sy
M2
we obtain
- 5 . 23
4 5¢3 0%/2) @ V4 (23)
Let us consider the spin block I'; (8/2),
o o & 0 o 0o 0 0
o 0o 0 & 0o o 0 0
& 0 0 0 0 0 0 0
r@2 _ | 0 P00 0 0 0 0 0
= (3/2)
o 0 0 0 0 0 & o0
o 0 0 0 0 0 0 A&
o 0o 0 0 & 0o 0o o0
o 0o 0 0 0 & 0o o0
From P-invariance it follows
(3/2)
3/2 3/2 3/2 c 0
C§4/ )= 0513/ )7 Fz(1/ )= 4?6 (3/2) | © V4 -
C43

Due to identity 0(3/2) = 20( /2)
(3/ ) (1/2)

, from the uniqueness of the spin value S = 1/2 we derive

constraints c, = 0. Let us simplify the notation as follows

cgl/;) = ¢, 612/2) = iV3c13 = ¢y ; : (24)

so that
F(1/2) _| a & 25
4 ocy 0 (25)

Thus, the matrix ['y has only one spin block

C1 C

(1/2) _
I
dcs 0

& v = c? @ Va- (26)
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Characteristic equation for C(1/?) i

)\—Cl —C2

_ oy 2 _
_50; A = /\()\ Cl) 5’CQ| O,

det ‘

for the roots we get (compare them with (11)-(12))

c1+ 1/ + 40|y ? c1— /3 + 40|co?
)\1: ) AQ: )

(27)
note two identities

)\1)\2 = _5|C2|2a A1 + )\2 = (1, )\1 - )\2 = \/ C% + 45|02|2 ) (28)

(1/2) has the form

where ¢y, ¢y are parameters of the model. The minimal equation for C'
(C12 —\) (O~ \) =0 (29)

whence with (28) in mind we get another representation for the minimal polynomial
equation

(COM) — e, 0O gl = 0. (30

The minimal polynomial equation for the matrix F( 2 4

(657) 4] (57) -] -o: =

Correspondingly, the minimal polynomial equation for the matrix I'y looks as follows

Dy(TG = A) (TE—A3) = 0. (32)

3. Relationships between three bases

We start with the explicit form of the matrix I'y in modified basis

0 0 ¢ 0 00 e 0 ........
0 0 0 ¢ 000 <cy........
6100002000 ........
0010006200 ........
0 06, 0 0000 ........
0 0 0650000 ........
¢ 0 0 0 0000 ........

FG_Y:oacgoooooo ........

4 00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
00 0 0 0O0O0O0........
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Using the formula (21), we can examine transition to canonical basis

\chanon - BJF\I]GfY

We are to find the matrix I'y

sl

% :

<V|
w
wn

S

=

L

al-

in canonical basis

annon — B—i—rf—YB —

C1
C1
C1 —% C2
2
C1 —C2 3
_503
V3 ) ’
2 x
_6\/;02 .
2
_ 0y/3
oc
V3
ocy
V3
2 x
. 6\/;02
2 %
_60’2‘
V3
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1. .
2
3
1
V3
1
V3
2
3
R
A .
2
V3
1
V3
1
V3
2
3
1
% —ng
CQ% . —
2
3
€2
V3
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No we relate canonical and spinor bases:

\Ilcanon - Awspin )

1.
A
V2
1
For I'y in spinor basis we get the form
Fipzn — Afll—\zclanonA —
2 2
C1 C24/ 3 —1/3C2
2 2
C1 . . . . gCQ — 562
2 2
C1 . . . . *02\/; . \/;02
2 2
. C1 . . . . — 302 . (&) 3 -
03
V6
2 5 %
—4/50¢3
25 %
50¢5
NG
V6
25 %
30¢5
2 5 %
och
V6
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Thus, in spinor form the wave equation has the structure

. 2 L . ; 2 .
¢ 0% W, + \ﬁ@ag P L MU =0, ¢ % Y+ \/;@abé Yiapy + M by =0,

L+ ) + MY =0, Cy(OF e + D% hy) + M iy =0, (33)

\/— Co \/— Gy
where the derivative operator is spinor form is determined by the formula 9,, =
—i0,(0")ap, 07 stands for the Pauli matrices, o* = ils.

4. The wave equation in spin-tensor form

It is convenient to re-write eq. (33) differently

e 9 Wy + By 8 YD+ MW =0, ¢ 5 0 + 20" Yy + M b =0,

Bhv ot v Mk =0, B@puorote) Moy =0, (39

where

[ = \/2/_3 c2, [3= —f\/2/_3 Cs- (35)

To translate equations in (34) to spin-vector form, we are to use the known formulas

b 1 b1, ¢ ey @
\I]gb ) = §(O-M2\Il,u + o-'ua\IjZ% \Ij(bc) =

L, e a
§(O-Nb \IJMC + O-Hc ‘Ijﬂb)

s 7R PN (36)

Instead of the first equation in (34), we obtain

1
claababc i 25286(0““\Ifb + a“b\I/“) + M oMy ub =0,

. 1 ) . .
10,00 . + 5628”0. ("W + 0" Wya) + M 0 W) =0
Whence it follows

Ba

. . ; 2 . .
Aol + (=0t 0, W+ Z0,U) + M o, =0,

P

c é 2 '
10 bo-ub U, + 2 . (—ot 0 b\:[jub + ZaM\IIW) + M UZE\PZ =0.

In new representation, the 16-component wave function makes up the vector-bispinor
v

o | (37)

|

nb

and the last two equations are written with the use of the Dirac matrices as follows

/B ( 7/1461/71/ Qauwu) + M’yﬂ\]:l 0 .

C1 aurYI/rY,u\Iju + = 2
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Introducing the notation D = 7. ¥, and taking into account the identity v,7v, +v,7. =
20,,, we re-write the previous equation as

%)5’(7#@#) = 262(0pthu) + iM (7, V) =0 . (38)

(Cl +
Now, we consider third and fourth equations in (34): taking in mind the formulas (36),
we get

M i e g

5 ; (ab . \Ifd dpo’ Wi + 7(agbqfuc + agbqfw) =0.
We multiply the first equation byc??, and the second one — by a , SO obtaining
523 oM (Of o pd + (950““’1\11,“1) + 70)‘2(0“;\1/; + U“lf‘IJZ) =0,
%akg(agagdll’z + agasd\lfz + 70)‘5(051’\1/“0 +0t0,,) =0.
These equation can be re-written as
%[_(O_/\ababa>o,ucd‘lj o aCbabaUuadqjud] 4+ 7[ /\ab l;mqu O,ucbo,baqja — 0
Bs

—(o a“ba)\lfuc — o U)‘i’a‘lfw] =0,

A aba d ba d
5[_(%1}8 Yo “\If — 0,0 “\I/] o .

>
which after simple transformation may be presented in vector-bispinor form as

B3 [@(’m%) — i%é(w%)] +M [‘I’A — i%(%‘l’u)} =0. (39)

Thus, we have arrived the the following set of equation, describing particle with one
value of spin and two mass states (the first equation is multiplied by iw)

1 (a4 2) 00,8,) = 2@ + ) =0, (10)
Bs [&(w%) - i%é(w%)} +M [% - ;l%(%%)} =0. (41)

Summing equations in (40)—(41), we get
MU+ 5a0r0 ) + 1 (e + 2= 30) mdl) - Zn@m) =0 (a2

We notice that multiplying this equation by i%\, we get

1 1 A
ZM'YM\I';L + 1 (Cl + %) Oy ¥p) — o (3 v,)=0,

which is equivalent to the above equation (40):
B
2

! _’VA@MW) + %’YA(%L\I]#) =0/

1 (Cl + %) VAé(’Vu\I’u) -
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This means that in fact we have only one independent equation (42), whereas eq. (40)
is just its consequence. Let us re-write this main equation (42) differently

B

i} ]
2

B3V 0¥, + 1

YoYuYo Ou¥y — =7, 0¥, + M¥, =0, (43)

where the shortening notation f; for coefficients is used

51_01—1-%—53, 52_\/202, 53_—5\/203- (44)

Equation (43) may be presented symbolically as (I',0,, +m)¥ = 0 , its more detailed
form is

v B v 6 v 0
{ |:537V ® <€u7 )p,o + ZIVAV;/VV b2y (6/\, )p,a - ?271/ ® (6 “u)p,cr % + Mép,o \I]o =0.

(45)

5. Transforming the wave equation to the Petras structure

The structure of the matrices I', in eq. (45)

VoA ® € — %% ® e (46)

B

53’71/ ® et + A

is rather complicated: it includes the triple products of the Dirac matrices. There exist
special transformation which reduces the wave equation to a form without such triple
products. The new basis and respective wave equation should have the structure

¥'=RU, I, =RI,R,

1
1+4+4a

R=I®I+aym,®e’, R'=I10I1+by,y, @, b=-— (47)

Let us find

R, = |:ﬁ3")/y ® et + %*yp%% ® P — %% ® e”’“} +

+a [ﬁs%%% ® e7et” + %’Vp%%%% ® et — %%%% ® e”"’e”’“} .

Taking into account identities e” e’ = d,,e”", 7,7, = 4 we get
_ JTR% 1 st B 0,0
RUy = By ® e = Ba(5 + 2a), ® €2 + (7 + abs + abi)ymre @ 7. (48)
Similarly, we derive the structure of the matrices I';:

1
RTWR™ = 1+ 4b)3, @ e = Bl +2a)7, @ e +

+ {% +a(Br + Bs) + b(Br — %) + dab(B1 — % + ﬁs>} Mo ® T (49)
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Due to (47) we have 4ab = —a — b, so relation (49) reduces to the form

1
RER™ = 1+ 4b)3, @ e — Bl +2a)y, @ e +

- {% + a% B bﬁg} Vo VYo & em? .

(50)

Now, we demand that the coefficient at triple product of Dirac matrices vanishes, this

results in
T/ R R! P 1 Pt
.= Rl = [5(1+4b)y, ® e —52(54—2@)%@6 .

and parameters a and b must obey two constraints:

B Ba Bi+ 2a5,
—4a=—bB=0 =" b+4ab=0.
4+a2 Bs - A a+0+4a
Excluding b, we get a quadratic equation for a:
+2(6, + o}
a2—|—2a62 (B 63)+—1 =0;

82 8

its roots are

a

_—¢= VSC;_%&, C = P+2B1 +2Bs .
2

Respective expressions for b are:

_ 1 (B2 285 —2B1) £/C? 8515
= @(51 + 205a) = 165,

Now, turning to the formula (51),

b

1
Ty = Bs(1 4 4b)y, ® e = Bo(5 + 2a)7, @ e+

we find

(B2 — 281 —2B5) £/C?* = 8B13> _

Bs(1 4 4b) = — - = (+A+ B),
bl 420y = 2T (g,

(51)

(52)

(54)

(55)

notice that for B we have two different in sign expressions (for definiteness, below use the

variant with upper sign) Thus, in Petras basis, the matrices FL nab be written in rather

symmetric form
I, =(A+B)y,®e"" + (A= B)y, e + MV =0;
correspondingly, the wave equation reads as

(A+ B) 7,0,%, + (A= B)~, 8,9, + MU, =0

222
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6.

Recall main notations for parameters

M M
)\1 ) 2 )\2 3 >0 )

M1:

c1 + /2 + 48]y |?
A=

c1 — /3 + 40| co|?
Ao =

)\1)\2 = _5|62|2

Mt A=, M — A=A+ 40
also

52:\/2027 53:—5\/2037 B = (01‘1‘@—@%

2
and parameters A and B
1

1 [+ =280 28) £ /(B + 28+ 2857 — 8815 | = —A+ B

First, we consider the model when

5=—1,

*
c1 = p, Cy = Cy = O,

By = \/5 P = \/z 51_0——\/j

\ ,0+\/,0 —402 " —\/p? — 40?
1= 7 -

5 > 0,
>‘1)‘2:02’ M+X=p, M —A=+p?>—40?

in this case we have

and

(B2 — 261 — 203) = —2p, (ﬁ2+251+253)=2(0+\/§ ),

o
3

V(B2 + 281 + 2B5)2 — 88182 = 24/ p* + 302 .

So, expression for A, B in terms of \;, Ay are

A:B:)\1+/\2
2 9
g VPt (E/3)0% _ V(AL+A2) + (4/3) M Ay
_ : _ .

The ration of two masses is

M

M, =

M M, N

14 /14022
SV VL VA Vi ‘

1—1—402/p?

223

On parametrization of possible mass values

4[ (52—251—253)i\/(52—1-251—1-253)2—861&} =+A+ B,

(58)

(59)

(60)

(61)

(62)

(64)

(65)
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It is convenient introduce an angular parametrization

4 2
sin’y = - 40 <p’, yE(0,5);

p 2
then the ratio of the masses is given by

My  1+cosy
M, 1—cosy tan?(y/2)

€ (1,00) .
Now, let us examine second model, when
d=+1, ca=p, c=c3=o0,

for this case we have

2 2 3
522\/;(77 532—\/;07 51=P+§

_ P p? + 40?2

2

o PEVP A
1= )
2

2

/\1)\2:—02, M+X=p, AN —d=vp>+4do?;

and

(B2 — 261 —203) = —2p, (B2 + 261+ 263) = 2(p + \/27) ;

V(B2 +2B1 +205)2 — 86132 = 24/ p* — %02 )

So, expressions for A, B in terms of Aj, Ay are

AP _MtA
2 2
B_ VPR —(4/3)02 /(AL + A)? + (4/3) M),
N 2 N 2 '
The ration of two mass is
M M
1 /\1 ) 2 )\2 )

M, ﬁ_p+\/p2+402_1—1—\/1—1—402//)2<0

Let us introduce the following parametrization

sinh®T' = 40?/p?, T' € (0,00) ;

M,  1+coshl' 1
M;  1—coshl'  tanh?(I'/2)

My X _p—\/p2—|—402 B 1 —+V1+402/p?

€ (—o0, —

(71)

(73)

(74)

Later we explain the meaning of one positive and one negative mass (for the model

with § = —1) in the theory under consideration.

224



Spin 1/2 particle with two mass states ...

7. Separating independent components of the wave function

From this point, taking in mind further extension of the model to generally covariant
case, we use metrical tensor in Minkowski space with signature (4, —, —, —). Correspond-
ingly, the wave equation (57) is written as

(A4 B) 40,V + (A—B) v, ¥, +iM U, =0 (75)

where we use Dirac matrices are taken in spinor basis, and the wave function is the
vector—bispinor

50
B0 =) o) mie) mio) | =0 0 | ®
First, we convolute eq. (75) with v
4A=B)(0T,) 4+ [ (A+ B)d+iM|(y*¥,) =0, =19, , (77)
and second, we act on eq. (75) by operator 0”:
(A+ B)O(NY,) + [ (A= B)d+iM](y*¥,) =0, O=09,. (78)

In order to exclude the term with operator L1, we should make additional calculation.
Let us act on eq. (77) by operator 9; taking into account the following identity

A A anp B anB _ B
aazyaaayﬁaﬁzaaaﬁ(77 7 My ’M):D

2 2

we produce

~

(A+ B)O(3,¥,) = —4(A - B)I(3,T,) — iMd(y,V,) . (79)

Now, we can substitute the relation into (78):
[3(A— B)d —iM | (0°,) +iMO(*¥,) =0, (80)

additionally let us write down eq. (77) as well
[(A+ B))+iM ] (1*¥,) + 4(A — B)(0’¥,) = 0. (81)

It is convenient to introduce special notation for two bispinor functions:

(vPV,) = &4, (0°V,) = &y, (82)

then the system (80)—(81) is written as follows

[3(A— B)) — iM |®y + iMOD, =0, (83)
[(A+B)0+iM]® +4(A—B)®, =0. (84)

Let us make some transformations over these two equation(83)—(84); multiply the first
one by 4(A — b), and the second one — by M, and sum up the results (the fist equation
(83) of the system remains the same)4 in this way we arrive at the new system

~ 12 ~
(5bA — 3B)0 &, + W(A — BP0 @y +iM &, =0, (85)
—iM8 & — 3(A — B)d By +iM & =0 . (86)
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The last system may be presented in the matrix form

~

5| (5A—3B) (12/iM)(A - B)?

—iM ~3(A— B)

oy
Dy

The matrix W in the equation

(5A —3B) (12/iM)(A — B)?

Y Csap |0 OWeriMe—0

i

is to be reduced to a diagonal form with the help of a linear transformation in 2-
dimensional space:

/ / R
‘ Pr | s s ‘ Pl v =58, H(SWS )P +iMD =0
0, So1 S22 | | D2
further we get
_ ! ! Wl 0
SW=w<s, W = 0 W,
or
S11 S12 (514 — ?)B) (12/ZM)<A — B)2 i W1 0 S11 S12
S921 S92 —iM —3(A — B) - 0 W2 S921 S92
This is equivalent to linear sub-systems:
[(514 — 3B) - Rl]SH — iMSlg =0 s
12 9
W(A — B) S11 + [—3(A — B) - Rl]Slg =0 )
[(514 — ?)B) - R2]821 — iMSQQ =0 y
12
W(A — B)2821 -+ [—S(A - B) — RQ]SQQ =0.
From vanishing the determinant of the matrix
_ _ - Y
dot (A —=3B) - Wy (12/iM)(A—-B)* | _ 0

—iM —3(A—B)—-Wy |
we obtain two eigenvalues W; and Wh:
W2 —2AW — 3(A? — B?) =0,
Wi=A—V4iA2—3B2, W, = A+ V4A? 3B

To fix elements of the matrix S, it suffices to use only one equation from each subsystem:
[(514 — BB) — Rl]SH — iMSlg =0 s [(514 — SB) — RQ}SQl — iMSQQ =0.

and a solution (one from possible) is

5A - 3B - W, 4A — 3B ++/4A2% — 3B2
su=1, sp2= M = iM ’
5A—-3B—-W, 4A—3B —+/4A%2 —3B?
S91 =1, 522 = ; = - .
1M M
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Thus, we have arrived to a couple of unlinked Dirac-like equations

M M
(70, + in)@l =0, (0o + i@)% =0 (83)

these are what we need, because two identities are readily verified W7 = A\, Wy = As .
New (primed) bispinors relate to initial ones by the formulas

5A—-3B — X\

5A — 3B — A\g
M )

=9
! 1 M

q)Qa (DIQ = q)l + @2 ; (89>
where & = V¥, &, = 0°V,. Initial wave equation (75), being written in the form
(A+ B)0, P+ (A— B)y, P2 +iMV, =0, (90)

provides us with possibility to determine the complete 16-component vector-bispinor W
through known bispinors ®; and ®,.

8. Interaction with external fields

We start with equation in Minkowski space
(A+B)v°0,Y,+(A—B) v, 0V, +iM ¥, =0. (91)

Extension to generally covariant case (we are to use the tetrad formalism [4]) and to
presence of external electromagnetic field is done as shown

(A+ B) D" (2)¥, () + (A— B) v, (2) DV, +iM VU, (x) =0 ; (92)
we use notations
Do = Va+Ta(x) +ieAg(z),  D=r%x)Dy, DD, =10. (93)
Note two commutation rules
V' (x) D, = Dy’ () Dogap(x) = gas(x) Do -
First, we convolute eq. (92) with v":
(A= B)(DPW,) + [(A+ B)D +iM | (/%,) = 0. (94)
Act on eq. (92) by operator DY, this results in
(A4 B)O(v*¥,) + [ (A— B)D +iM |(D"¥,) =0 . (95)

In order to exclude the term with operator L1, we should make additional calculation.
Let us act on eq. (94) by operator D; taking into account the following identity

(A+ B)DD(y*¥,) = —4(A — B)D(D*¥,) — iMD(y*¥,,) . (96)
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Taking into account the identity; (see [4]; Fns(z) stands for the tensor of external elec-
tromagnetic field R(x) is the Ricci scalar)

A A anB B a~fB A BA
DD:DQD5[77+77+77 77}=
}, (97)

2 2
(A+ BYO(RY,) = —4(A — B)D(DW,) — iMD(*¥,) + (A + B)S(2)(*¥,) . (98)

|

=0-%(), X(x)= {—z'eFagao‘B(x) +

we derive the formula

Using the last relation we may exclude form (95) the term with operator .
In this way we obtain two equations

(A+ B)D®, +iM®, +4(A— B)d, =0, (99)
3(A — B)D®y — iM®y + iMD®, + (A + B)S(z)®, =0 ; (100)

where the notation are used
Y (2)¥,(z) = @1(x),  D(2)¥,(z) = Pa(x) (101)

In (99)-(100), let us multiply the second equation by 4(A — B), the first equation
multiply by ‘M, and sum up the results; the second equation remains the same. In this
way, we derive the system

A 12 9 , 4(A? — B?) B
D {—iM®, —3(A— B)®y} +iM®y — (A + B)X(2)®, = 0. (102)
In matrix form the system reads
- D, . b, ViOo||®|
DVV’(I)2 +iM x I o, —|—(A+B)Z(x)‘vonq)2 =0, (103)
where
(5A —3B) 12(A — B)%/iM B0 B
= = = 3 1 4
W ‘ —iM —3(A— B) v -10 -1 0 (104)

Linear transformation over function ®, ®5, which reduces the system to a diagonal
form, is known (see in previous section). Symbolically, the problem under consideration
is presented as

DW® +iM I, ®+ (A+ B)S(z) VO =0, @ =59,

DW'® +iM I, ® + (A+ B)S(z) V'®' =0,

g_|ta G_ M | b —a| _5A-3B-M\ ,_5A-3B-\
N2k YD P I T O iM T iM ’
_ A 0 iM | b(B—a) —a(f —a)
W =swst=|" .V =8VS =
‘ 0 Ao M=o | b(B—b) —a(B—D)
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In this way, we arrive at the simplified system

(uD -+ M), + S(0)(A + B) (6 - a) (0] — adh) =0,
(D +iM)B, + S(r)(A + B) 5 M (5 B) (b, —a®) =0 (105)
1 — A2
Recall that . VA B
S(2) = —ieF(2)0™ (&) + % g % |

Taking in mind identities

4A-B) 5A-3B-X\

iM(B—a)=1iM]| i i |l=M—-A-1B,
. _ 4(A—=B) B5A-3B-)y
iM(B—b)=1iM| Y i |=M—-A-B,

we may re-write equations (105) differently

- M—A-B
(MD +iM)®, + S(z)(A+ B)ﬁ(z@; —ad) =0,
- —A-B
(Mo D + iM)®, + % (x) (A + B)ﬁ)(b@’l —a®,) =0. (106)
Let us introduce shortening notations
M —A-B \— A—B
A4+ B)——— = A4, A+ B)—F——=A\y; 107
( )/\1(/\1_>\2) 1 ( ))\2()\2_)\1> 2 ( )

then the above equations read

(iD — My)®, + S(z)Ay (W & —d BY) =0,

(iD — My)®) 4+ S(z)Ay (W &) —d' BY) =0, (108)
where
g _BA=BB-\ . 5A-3B-X
B M T M ’

In the end, let us note that equations (108) allow for restrictions to Majorana case.
Indeed, in any Majorana basis for Dirac matrices, (17%)* = +(i7*), and real (imaginary)
bispinors are determined by the formulas

(P =+ (P)), (P5)" =+ (¥3). (109)

Because such fields correspond to neutral particles, the term with £,z vanishes and we
have identity X*(z) = +X(z). So we conclude that equations (108) for particles with two
masses preserve their Lorentz-invariant form for neutral Majorana particles as well.
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9. On solving the generalized wave equation

Let us discuss possible way of constructing solutions for derived equation. This equa-
tion may be written as follows The system (110) may be re-written differently

[m M+ bAlZ(x)] U (2) — alS(z) Wa(z) =0,

[Zb M, — aAQZ(:c)] Wy (2) + bAsX(z) Wi(z) = 0, (110)

where parameters are determined by the formulas

)\1—A—B )\I_A_B
AM=A+B)"—" — Ny=(A+B)—=——
1= >A1<A1—A2> 2= )A2<A2—A2>

A Mth 5o Vi FX)+ (43

2 7 2 ’
a_5A—BB—)\1 b_5A—BB—)\2
- M ’ N M ‘

The form (110) indicates a possible way to solve the system. We may apply the
exclusion method. First, we are to get an inverse operator ¥~ !(z) for operator 3(z). The
system may be rewritten as

E;A(:U) (Zb — M, + bA12($)> Uy () — Uy(z) =0,
E;A(f) (iD = Mz = ahsS(x)) Wa() + Wa(w) = 0 (111)

whence it follows equations for separated bispinors: functions
[z(zf) ~ My — ahoX)SHiD — My + bAY) + abA1A222] Ui(z)=0,  (112)
[E(if) — My +bAD)STH(iD — My — ahoX) + abAlAQZQ] Uy(z) =0. (113)

It would be desirable to get explicit solutions of such generalized wave equations in
presence of some external fields: magnetic, electric, or gravitational ones.
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