• ФИЗИКА

УДК 621.3.049.77: 621.793

СЕГНЕТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПЛЕНОК ТАНТАЛАТА СТРОНЦИЯ-ВИСМУТА, НАНЕСЕННЫХ МЕТОДОМ ВЧ МАГНЕТРОНОГО РАСПЫЛЕНИЯ

Д.Э. Окоджи¹, Д.А. Голосов¹, С.Н. Мельников¹, С.М. Завадский¹, В.В. Колос², Е.А. Поплевка¹, Ю.А. Жукович²

¹Белорусский государственный университет информатики и радиоэлектроники, Минск ²ОАО «Интеграл», Минск

FERROELECTRIC PROPERTIES OF STRONTIUM-BISMUTH TANTALATE THIN FILM DEPOSITED BY RF MAGNETRON SPUTTERING METHOD

J.E. Okojie¹, D.A. Golosov¹, S.N. Melnikov¹, S.M. Zavadski¹, V.V. Kolos², E.A. Poplevka¹, Yu.A. Zhukovich²

¹Belarusian State University of Informatics and Radioelectronics, Minsk ²JSC "Integral", Minsk

Исследованы характеристики сегнетоэлектрических тонких пленок танталата стронция-висмута (SBT), нанесенных методом ВЧ магнетронного распыления на Pt/TiO_x/SiO₂/Si подложки. Установлены зависимости диэлектрической проницаемости, остаточной поляризации и коэрцитивной силы пленок SBT от режимов последующего отжига. При температуре отжига 800° С получены пленки с остаточной поляризацией $2P_r = 3,02$ мкКл/см², коэрцитивной силой $2E_c = 140$ кВ/см. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь на частоте 1,0 МГц составляли соответственно $\varepsilon = 125$ и tg $\delta = 0,067$. Температура Кюри пленок достигала 310–315° С.

Ключевые слова: энергонезависимая память, FeRAM, сегнетоэлектрики, танталат стронция-висмута, SBT, B4 магнетронное распыление.

Characteristics of ferroelectric thin films of strontium-bismuth tantalate (SBT), which were deposited by means of HF magnetron sputtering on Pt/TiO₂/SiO₂/Si substrates, are investigated. The dependences of permittivity, residual polarization, and coercitivity of SBT films on the modes of subsequent annealing are established. Films with the residual polarization of $2P_r = 3.02$ μ C/cm² and coercitivity of 2Ec = 140 kV/cm are obtained at the annealing temperature of 800° C. The dielectric constant and loss tangent at the frequency of 1.0 MHz were accordingly equal to $\varepsilon = 125$ and tg $\delta = 0.067$. The Curie temperature of the films reached 310–315° C.

Keywords: non-volatile memory, FeRAM, ferroelectric, strontium-bismuth tantalate, SBT, HF magnetron sputtering.

Введение

Сегнетоэлектрическая энергонезависимая память с произвольным доступом (Ferroelectric Random Access non-volatile Memory или FeRAM) является одной из наиболее перспективных типов репрограммируемой памяти [1]. FeRAM имеет ряд преимуществ перед другими разновидностями памяти: высокая скорость чтения записи, большое количество циклов перезаписи, длительное время хранения информации и низкое напряжение питания. Однако до сих пор существует ряд проблем, которые сдерживают крупномасштабное производство FeRAM. Ключевым этапом технологии FeRAM является формирование сегнетоэлектрических конденсаторных структур. Первоначально в качестве сегнетоэлектрического материала FeRAM рассматривался цирконата-титаната свинца (PZT), который обладает высокими значениями остаточной поляризации ($2P_r = 20-40$ мкКл/см²) и относительно низкой температурой формирования сегнетоэлектрической фазы (550-650° С). Однако дальнейшие исследования показали, что пленки РZT

значительно снижают количество накапливаемого заряда после 10^{6} – 10^{8} циклов переполяризации [2]. Поэтому в дальнейшем исследования сосредоточились на альтернативных сегнетоэлектрических материалах на основе висмут слоистых перовскитов, например, танталат стронциявисмута (SBT), который имеет хорошую устойчивость к эффекту усталости (до 10^{12} циклов переполяризации) и низкие токи утечки [3]–[4].

Таким образом, целью работы являлось исследование диэлектрических и сегнетоэлектрических свойств пленок танталат стронциявисмута, нанесенных методом ВЧ магнетронного распыления, с целью определения возможности их использования в FeRAM высокой плотности.

1 Экспериментальная часть

Схема экспериментальной установки нанесения сегнетоэлектрических тонких пленок методом ВЧ магнетронного распыления приведена на рисунке 1.1. Установка выполнена на базе вакуумного поста Leybold-Heraeus A550 VZK. Камера вакуумной установки была оборудована

© Окоджи Д.Э., Голосов Д.А., Мельников С.Н., Завадский С.М., Колос В.В., Поплевка Е.А., Жукович Ю.А., 2018

внешним фланцевым ионным источником с замкнутым дрейфом электронов на основе ускорителя с анодным слоем (ИИ), который использовался для предварительной очистки подложек. Для распыления сегнетоэлектрических мишеней использовалась ВЧ магнетронная распылительная система RIF.039 с мишенью Ø 39 мм (MPC). Для питания магнетрона использовался ВЧ источник питания (частота 13,56 МГц) с максимальной выходной мощностью 1300 Вт. В качестве мишени использовались диски из сегнетоэлектрической керамики SrBi₂Ta₂O₉ Ø 39 мм и толщиной 4 мм. В качестве подложек использовались структуры Pt (150 нм)/TiO₂ (50 нм)/ БФСС/ SiO₂ (500 нм)/Si. До нанесения слоя сегнетоэлектрика структура нижнего Pt электрода подвергалась предварительному отжигу при температуре 800 °С в атмосфере О2. Время отжига 30 мин.

В ходе экспериментов подложки устанавливались на расстоянии 82 мм от поверхности мишени магнетрона. Камера вакуумной установки откачивалась до остаточного давления 8×10⁻⁴ Па. Предварительно производилась очистка подложек ионным пучком. Для этого рабочий газ Ar подавался ионный источник до рабочего давления 0,02 Па. Время очистки, энергия ионов и ток разряда во всех экспериментах были постоянными и составляли 5 мин (режим вращения подложкодержателя), 500 эВ, 70 мА соответственно.

После очистки подложек производилось нанесение слоев. Распыление сегнетоэлектрической мишени осуществлялось в Ar/O₂ смеси газов. Расход рабочих газов во всех процессах поддерживался постоянным и составлял $Q_{Ar} = 35$ мл/мин, $Q_{O2} = 25$ мл/мин. При этом давление в камере составляло 0,2 Ра. Расход рабочих газов контролировался с помощью автоматических регуляторов расхода газа РРГ-1 (РРГ). В процессе нанесения мощность разряда магнетрона поддерживалась постоянной и составляла 80 Вт. Уровень отраженной мощности не превышал 3 Вт. Время нанесения во всех экспериментах было постоянным и составляло 120 мин. При этом толщина нанесенных пленок составляла порядка 500 нм.

Для формирования сегнетоэлектрической структуры нанесенные пленки подвергались последующему кристаллизационному отжигу в установке ИК нагрева «Изоприн». Температура отжига *T*_{an} изменялась от 700 до 800° С. Время отжига составляло 10 мин.

Толщина нанесенных слоев определялась с помощью оптического интерферометрического профилометра ПОИ-08. Структура и фазовый состав пленок SBT определялись методом рентгеновской дифракции на рентгеновском дифрактометре Ultima IV в СиК_а-излучении. Рентгенограммы снимались при комнатной температуре в диапазоне углов $2\theta = 20-90^\circ$. СЭМ изображения получены с посмощью высокоразрешающего автоэмиссионного растрового электронного микроскопа Hitachi S-4800.

Для измерения электрофизических характеристик сегнетоэлектрических тонких пленок создавались конденсаторные структуры. Для этого на отожженную сегнетоэлектрическую пленку методом ионно-лучевого распыления через маску наносился верхний Ni электрод. Площадь конденсаторов составляла 0,096 мм². Емкость, тангенс угла диэлектрических потерь и вольтфарадные характеристики получены с использованием измерителя иммитанса E7-20 на частотах 25–10⁶ Гц. Значения диэлектрической проницаемости рассчитывались исходя из толщины диэлектрического слоя и емкости конденсаторной структуры по формуле

$$\varepsilon = \frac{Cd}{\varepsilon_0 S},$$

где C – емкость конденсатора, d – толщина слоя сегнетоэлектрика, $\varepsilon_0 = 8,85 \times 10^{-12} \text{ } \Phi/\text{м}$, S – площадь конденсатора.

Для измерения гистерезиса использовался метод Сойера – Тауэра. Кривые гистерезиса регистрировались с помощью цифрового осциллографа С8-46. Кривые гистерезиса получены при напряженности поля 250 кВ/см на частоте 50 Гц.

2 Результаты и обсуждение

Исследованы характеристики сегнетоэлектрических тонких пленок SBT, нанесенных методом BЧ магнетронного распыления на Pt/TiO₂/ БФСС/SiO₂/Si подложки (БФСС – борофосфоросиликатное стекло). Установлено, что непосредственно после нанесения пленки имели аморфную структуру с гладкой поверхностью (рисунок 2.1, *a*). Анализ нанесенных пленок методом рентгеновской дифракции также подтвердил аморфную структуру пленок (рисунок 2.2). На спектре присутствовали интенсивные пики платины (111) $2\theta = 39,80^{\circ}$, (200) $2\theta = 46,29^{\circ}$, (311) $2\theta = 81,35^{\circ}$, (222) $2\theta = 85,81^{\circ}$ и кремния (200) $2\theta = 32,96^{\circ}$, (400) $2\theta = 69,13^{\circ}$. При кристаллизационном отжиге первоначально формировалась фаза пирохлора. При увеличении температуры фаза пирохлора преобразовывалась в промежуточную фазу флюорита. Формирование фазы Ауривиллиуса наблюдалось только при температуре отжига более 760° С. При формировании сегнетоэлектрической фазы структура пленок SBT становилась зернистой в виде квазисферических кристаллитов размером 200–300 нм (рисунок 2.1, δ). При увеличении температуры отжига размеры зерен увеличивались, что приводило к формированию на поверхности пленки пор размером до 50–70 нм.

Рисунок 2.1 – СЭМ изображение поверхности пленки SBT непосредственно после нанесения (*a*), и после отжига при температуре 780° С (*б*)

Рисунок 2.2 – Дифрактограммы пленок SBT непосредственно после нанесения (*a*) и после отжига при различной температуре: $\delta - 740^{\circ}$ C, $e - 800^{\circ}$ C

Problems of Physics, Mathematics and Technics, № 1 (34), 2018

Нанесение верхнего электрода производилось после кристаллизационного отжига пленок SBT. На рисунке 2.3 представлено поперечное сечение сформированного сегнетоэлектрического конденсатора. Установлены зависимости диэлектрической проницаемости, поляризации и коэрцитивной силы пленок SBT от режимов кристаллизационного отжига. Непосредственно после нанесения пленки SBT являлись линейными диэлектриками. Среднее значение диэлектрической проницаемости пленок на частоте 1,0 МГц составляло $\varepsilon = 22$ при тангенсе угла диэлектрических потерь tg φ порядка 0,04 (рисунок 2.4). При уменьшении частоты отмечалось увеличение ε и снижение tg φ .

Для пленок SBT, отожженных при температурах 600-740° С, и имеющих структуру пирохлора, были характерны высокие значения тангенса угла диэлектрических потерь на низких частотах, до 0,8. При более высоких температурах и формировании структуры Ауривиллиуса диэлектрическая проницаемость резко увеличивалась до 90-100 единиц и далее росла с увеличением температуры (рисунок 2.5). Для образцов отожженных при температуре 800° С диэлектрическая проницаемость пленок достигала 124 единиц. При этом тангенс угла диэлектрических потерь составлял порядка 0,067. При повышении температуры более 820-840° С происходила деградация нижнего электрода, при которой на пленке Pt появлялись разрывы и формирующиеся на поверхности Pt пленки шипы закорачивали конденсаторы.

Рисунок 2.3 – СЭМ изображение поперечного сечения структуры Ni/SBT/Pt после отжига пленки SBT при температуре 780° С

Формирования гистерезиса поляризации также наблюдалось при температурах отжига более 740° С. При увеличении температуры площадь гистерезиса увеличивалась как за счет увеличения остаточной поляризации, так и коэрцитивного поля (рисунок 2.6). На рисунке 2.7 представлены зависимости остаточной и максимальной поляризации от температуры отжига. При температуре отжига 800° С и напряженности поля 250 кВ/см значения максимальной поляризации, остаточной поляризации и коэрцитивной силы составили соответственно $2P_{max} = 9,98$ мкКл/см², $2P_r = 3,02$ мкКл/см², $2E_c = 140$ кВ/см.

Рисунок 2.4 – Частотные зависимости емкости (*a*) и тангенса угла диэлектрических потерь (*б*) сформированных конденсаторных структур Ni/SBT/Pt (без отжига SBT)

Плотность тока утечки J_L пленок SBT при нулевом смещении для всех температур отжига составляла порядка 10^{-6} A/cm². При напряженности электрического поля 100 кB/cm² для пленок SBT со структурой пирохлора плотность токов утечки достигала 10^{-5} A/cm² и резко увеличивалась до 5×10^{-3} A/cm² при формировании смешанной фазы. При дальнейшем увеличении температуры отжига и формировании фазы Ауривиллиуса J_L опять снижалась до 5×10^{-4} А/см².

Температура Кюри нанесенных пленок определялась по максимуму на зависимости емкости конденсаторной структуры от температуры. Анализ температурных зависимостей емкости показал, что при температурах отжига менее 740° С фазовый переход отсутствовал, что свидетельствовало об отсутствии сегнетоэлектрической фазы в пленках. Фазовый переход появлялся при формировании сегнетоэлектрической фазы. Температура Кюри пленок SBT составляла порядка 310-315° С (рисунок 2.8) и незначительно изменялась в зависимости от температуры отжига образцов. Это примерно на 20-25° С меньше, чем сообщалось для объемных образцов SBT, T_K которых составляет 338° С [5]. Характеристика имела широкий температурный интервал фазового перехода.

Рисунок 2.6 – Кривые гистерезиса конденсаторных структур Ni/SBT/Pt отожженных при различной температуре: *a* – 740° C, *б* – 780° C, *в* – 800° C

тисунок 2.7 – зависимость остаточной $21_r(a)$ и максимальной поляризации $2P_{max}(b)$ пленок SBT от температуры отжига

Исследования усталости показали, что нанесенные пленки практически не были подвержены процессам усталости. Пленки выдерживали до

Заключение

Исследованы характеристики сегнетоэлектрических тонких пленок танталата стронциявисмута (SBT), нанесенных методом ВЧ магнетронного распыления на Pt/TiO₂/SiO₂/Si подложки. Анализ пленок методом рентгеновской дифракции показал, что после нанесения пленки имели аморфную структуру. Формирование сегнетоэлектрической фазы наблюдалось только при температуре отжига более 760° С. При температуре отжига 800° С диэлектрическая проницаемость пленок достигала 125 единиц при тангенсе угла диэлектрических потерь порядка 0,067. Остаточная поляризация пленок составила 3,02 мкКл/см² и коэрцитивная сила 140 кВ/см. Температура Кюри пленок достигала 310-315° С. Исследования усталости показали, что нанесенные пленки выдерживали до 10¹⁰ циклов перполяризации, при этом уменьшение остаточной поляризации не превышало 6%.

Полученные сегнетоэлектрические характеристики пленок SBT позволяют использовать данные пленки в конденсаторных модулях FeRAM. Однако для формирования однофазных пленок необходима температура отжига более 740–760° С, а для получения хороших поляризационных характеристик порядка 800° С. Также недостатком пленок SBT является сравнительно низкое значение остаточной поляризации.

ЛИТЕРАТУРА

1. *Fujisaki*, *Y*. Current status of nonvolatile semiconductor memory technology / Y. Fujisaki // Jpn. J. Appl. Phys. – 2010. – Vol. 79. – P. 100001–1.

2. Characteristics of bismuth layered $SrBi_2Ta_2O_9$ thin-film capacitors and comparison with Pb (Zr, Ti)O₃ / T. Mihara [et al.] // Jpn. J. Appl. Phys. – 1995. – Vol. 34, N $_{2}$ 9B – P. 5233.

3. Shrivastava, V. Structural distortion and phase transition studies of aurivillius type $Sr_{1-X}Pb_{x}Bi_{2}Nb_{2}O_{9}$ ferroelectric ceramics / V. Shrivastava, A.K. Jha, R.G. Mendiratta // Solid State Commun. – 2005. – Vol. 133, Issue 2 – P. 125–129.

4. Thermal Stability and Electrical Properties of $SrBi_2Ta_{2-x}Nb_xO_9/IrO_x$ Capacitors with Pt Top Electrode / S.Y. Kweon [et al.] // Jpn. J. Appl. Phys. – 2001. – Vol. 40, No 9A – P. 5275–5280.

5. Growth and characterization of ferroelectric $SrBi_2Ta_2O_9$ single crystals via high-temperature self-flux solution method / Amorin H. [et al.] // $\Phi TT. - 2006. - N_2 3 - P. 501-507.$

Исследования выполнены при финансовой поддержке РФФИ в рамках научного проекта № 16-57-00028-Бел_а, и БРФФИ в рамках научного проекта № Т16Р-094.

Поступила в редакцию 01.02.18.