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The problem of gravitational field energy-momentum as a classical high spin problem
(spin 2) is discussed. In the frameworks of the relativistic theory of gravity, the spherical
gravitational wave and Fock energy–momentum tensor is considered.
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1. Introduction

Basic physical categories both in classical
and quantum theories are that of the energy,
momentum and angular momentum. General
Relativity (GR) which is a classical theory
of gravitation formulated by Einstein, is the
only theory facing serious difficulties with the
energy. Main roots of this difficulties lie in
the Equivalence Principal which leads to the
geometrization of a gravitational field. The
detailed analysis of this situation is presented in
[1].

GR is a gauge theory where a gauge field is
presented with a metric tensor [2]. The Hilbert–
Einstein action for the gravitational field can be
formulated using the Riemann geometry. This
action is the only physically consistent (gauge
invariant) action when this theory describes
selfacting massless field of spin 2.

A complicated problem of constructing
physically correct (nonlinear, gauge invariant)
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field theory of selfacting spin 2 in Minkowski
space–time is the well known classical energy-
momentum problem of high spin theory [2], [3].

There is giant gap still between spin 1 and
spin 2 description [2]. All known results refer to
linearized theory, and without exaggeration we
can say that until now nobody in any field-theory-
like approaches has got positive value of energy
density of strong gravitational waves, and this
fact forms an essence of the problem of high spin
theory.

Thus, there is a difference between physical
description of spin 1 and spin 2. In the
case of vector field the stress tensor Fik and
Hilbert energy-momentum tensor (EMT) does
not contain the the second derivatives of the
potentials Ai. The same is true for the Yang–
Mills fields, which means that there is no energy
problem for vector fields (spin 1).

Quiet different situation arises in the case
of tensor fields (spin 2). Now the Christoffel
symbols cannot be shorten in stress tensor and
they are present in EMT, which contains now the
second derivatives in respect to field components.
In [2] is mentioned that there is no expression
for symmetrical EMT with square dependence on
fields and their first derivatives and the second
derivatives necessarily present. This fact leads
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to principal sign uncertainty in energy density
of radiation and absence a square structure of
energy expression – this is a high spin theory
problem. There is the only one way to solve it
within the frameworks of classical field theory –
to find a formulation of a theory in which the
second derivatives in EMT turn to zero under the
fulfillment of equations of motions and additional
conditions. This just the case of linear theory of
spin 2 with transverse and traceless (TT) gauge.
In the paper we will discuss any approaches to
solving of this problem.

2. Maxwellization of Hilbert
energy-momentum tensor for dynamical
torsion in Riemann–Cartan geometry

It was shown that there is a fundamental
relation between symmetrization of EMT and
non-commutativity of the covariant derivatives
operation and a simple algebraic method to
obtaining the symmetric EMT in general case was
proposed [4], [5].

Let us consider the curvature tensor in the
Riemann–Cartan geometry

R̃l
ijk = Rl

ijk + 2∇[iT
l
j]k + 2T l

[i|m|T
l
j]k, (1)

where Tijk is a contorsion tensor [6], ∇i is
Riemann covariant derivative and

∇[mR̃ij]kn − T l
[m|k|R̃ij]ln − T l

[m/n/R̃ij]lk ≡ 0. (2)

Let us consider the gravitational Lagrangian
L = L(gik, R̃iklm). The Hilbert EMT is obtained
by using the method developed earlier for
Lagrange theories with the help of Lie derivatives
taken with respect to Lagrangian

∇i(G̃ij − [L]kmnSijTkmn) ≡ −[L]kmn∇jTkmn,
(3)

where

G̃ij = Xkmn
i R̃jkmn +Xkmn

j R̃ikmn − gijL, (4)

[L]jmn = ∇iXijmn − T ks
m Xkjsn + T ks

n Xkjsm (5)

is the Lagrange-Euler derivative and

Xijkl =
∂L

∂R̃ijkl

. (6)

Now, we have the expansion G̃ij = Gij+Tij ,
where Gij is a generalized Einstein tensor, Tij is a
Hilbert EMT for dynamical tensor field Tijk. The
second derivatives ∇i∇jTklm disappear under
equations of motion [L]ijk = 0. Hilbert EMT for
dynamical contorsion assumes Maxwellian type
under equations of motions. This is a solution
of above mentioned problem of higher spin for
contorsion field.

Analogously, Gilbert EMT for gauge tensor
fields of Yang-Mills type in the Dirac–Kahler
theory assumes Maxwellian type under equations
of motions [7], [8], although contorsion tensor
Tijk in the Riemann–Cartan geometry and gauge
tensor field Aijk are differently included in
corresponding covariant derivatives.

3. Spherical gravitational wave in
relativistic theory of gravitation

As known, in General Relativity the energy
of gravitational field is described with help
the energy-momentum pseudotensor, but the
expression for corresponding tensor is absent.
It is one of reasons for which the gravitation
interaction may regarded as tensor interaction in
the Minkowski space–time. The most consistently
such approach was realized in so-called relativistic
theory of gravitation (RTG) [9], [10]. This theory
can be regarded as a gauge theory of the
group of Lie variations for dynamical variables.
The related transformations are variations of
the form of the function for generally covariant
transformations. That the action be invariant
for this group under the transformations of
the dynamic variables alone requires replacing
the ”nondynamic” Minkowski metric γik with
expression gik: g̃ik =

√
−ggik =

√
−γ(γik +

kψik), where γ = det γik, g = det gik, k2 is the
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Einstein constant, and thus introducing the gauge
gravitational potential ψik. The expression gik is
interpreted here as the metric of the effective
space–time from which the connection, the
Christoffel bracket, can be uniquely constructed.
The RTG field equations in its massless variant
are the Einstein ones for this effective metric,
added the conditions, restricting the spin states
of the field ψik:

Dig̃
ik = 0, (7)

where Di is the covariant derivative in the
Minkowski space. This conditions play the
significant role in RTG, removing the gauge
arbitrariness of Einstein equations and they
coincide with Fock harmonic conditions in
Galilean coordinates [11].

Although RTG field equations coincide
with General Relativity ones locally, its global
solutions, generally speaking, will be different,
since this solutions are defined on the various
manifolds. RTG, founding on the simple space-
time topology, allows to introduce the global
Galilean coordinate system, that distinguish RTG
from the bimetric theories, in which a flat space
plays the auxiliary role and its topology don’t
definite the character of the physical processes.
This distinction may take place at interpretation
of the field solutions, since the coordinate system
in RTG is defined by Minkowski metric, but it
is fixed by noncovariant coordinate conditions
in GR. Just this situations takes place for
spherical-symmetric gravitational fields. In RG
according the Birkhoff theorem [12] any spherical
gravitational field in vacuum is static. The proof
of this theorem is ground on the transformation
of certain spherically-symmetric metric to the
coordinates in which it has a static form. But
in RTG such transformation is the transfer from
the spherical coordinates in the Minkowski space
with the metric γik = diag(1,−1,−r2,−r2 sin2 θ)
to some "nonstatic" coordinates. The Birkhoff
theorem means that in the case of spherical
symmetry the coordinate system in which the
vacuum metric depends from one coordinate
always exists, but it not means that the field was

static in the starting coordinates.
Hence the task of the investigation of

nonstatic spherical-symmetric solutions, which
was in general view investigated in [13], arises.
In this paper one of the possible nonstatic
spherically-symmetric wave solution,containing
one arbitrary function, is found in implicit form.
The corresponding solution without this function
was founded in [14].

To find the spherical wave solutions we use
the Birkhoff theorem and present a nonstatic
spherical vacuum solution in certain coordinate
system (T,R, θ, ϕ) in the form of Schwarzschild
metric

ds2 =

(
1− 2m

R

)
dT 2 −A2(r)

(
1− 2m

R

)−1

dR2

−R2dΩ2 .

(8)

To find the solution in spherical coordinates of
(t, r, θ, ϕ) we make the coordinate transformation

t = t(T,R), r = r(T,R) , (9)

and transformation coefficients will be found from
the condition (1). The corresponding equations
connecting the variables (t, r) and (T,R) will have
a form

R

R− 2m

∂2t

∂T 2
−R−2∂R

[
(R2 − 2mR)

∂t

∂R

]
= 0 ,

(10)

R

R− 2m

∂2r

∂T 2
−R−2∂R

[
(R2 − 2mR)

∂r

∂R

]
+
2r

R2
= 0 .

(11)
We will search for the partial solution of the

equations (10, 11) in the next form

T = t, R = R(u), u = r0 ln
r

r0
− t , (12)

where r0 is a certain parameter, u is the retarded
argument, which is finite at any values of r;
the light speed and gravitational constant are
believed equal to unit. Finding with help of (8)
the transformations coefficients and substituting
its to the equations (10, 11), we find that the
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equation (10) is satisfied identically, and the
equation (11) is reduced to ordinary differential
equation for the function R(u) (that is possible
due to the choosing form of a solution):

R̈+
R

R− 2m

(
R

R− 2m
+

2

R2

)
Ṙ3

− 2(R−m)

R(R− 2m)
Ṙ2 − Ṙ = 0 , (13)

where the point denote the differentiation on the
argument u.

The metric components gik in the spherical
coordinates, are received with help of the
corresponding transformation coefficients, have a
form

g00 = 1−2m

R
− RṘ2

A2(R− 2m)
, g01 =

RṘ2

A2r(R− 2m)
,

g11 = − RṘ2

A2r2(R− 2m)
, g22 = −R2 ,

g33 = −R2 sin2 θ . (14)

The finding of the metric may be used for
investigation of a sign of gravitational radiate
density t00, which according to RTG has a form
[9]

t00 = − 1√
−γ

γikDiDkg̃
00 . (15)

The problem concerning positive definite of
gravitational energy density is not trivial, because
in RTG the expression t00 don’t possess square-
law structure relative the field functions and its
first derivatives and it contains second derivatives
too. This situation is the consequence of above
mentioned difference between spin one and spin
two description.

The choice of function A is the additional
gauge condition and it must be connect with the
demand of positive definiteness of energy density
(15). The choice of this additional conditions
is not simple and is discussed in framework of
General Relativity, for instance, in [15].

4. Fock EMT in relativistic theory
of gravity

Let us consider Fock representation for
Einstein tensor Gik

2gGik = ∂m∂n(g̃
ikg̃mn − g̃img̃kn) + Lik, (16)

where term Lik contains the first derivatives only.
Fock interpreted the expression

U ik = ∂m∂n(g̃
ikg̃mn − g̃img̃kn) (17)

as weigh +2 density of energy-momentum
pseudotensor of gravitational field, which equals
to Lik under field equations [11]. Thus, this
pseudotensor may be expressed with help the first
derivatives only. This pseudotensor is well-known
Landau–Lifshitz one [16] and it was received its
authors independently.

In relativistic theory of gravity we may to
receive corresponding tensor density, replacing
the partial derivatives to covariant ones in
Minkowski space.

tikg =
1√
−γ

DmDn(g̃
ikg̃mn − g̃img̃kn). (18)

This tensor may be received with help the
procedure regarded in sec. 1 for Lagrangian

L = R̃(g̃ik) +
1√
−f

Rijkl(fmn)g̃
ikg̃jl, (19)

where g̃ik = f̃ ik+ψ̃ik, fmn is a background metric
which is supposed equal to zero after variation.
Analogous approach was used in [17] to obtain
EMT for conform invariant scalar field. It is
essentially that under field equations this tensor
leads to the expression with the first derivatives
only.

5. Conclusions

In the frameworks of the relativistic theory
of gravitation the energy and momentum of the
gravitational field may be correctly defined in
a flat Minkowski space–time. The use of the
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flat background space–time allows to give a new
interpretation of some solutions of the Einstein
equations. In Relativistic theory of gravitation,
spherically-symmetrical wave solutions have a
physical sense as far as the temporal coordinate
of the Minkowski space–time has it. Essentially

that this wave possesses the positive-defined
energy and momentum densities, and although
the receiving solution has adequately formal
character, it illustrates the possibility of the
existence of spherical gravitational waves.
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