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Abstract—The article discusses the algorithm for finding
the entrance to an arbitrary subject domain based on the
TAPAZ-2 Semantic Classifier and the graph thus obtained.
The formulas for the exact number of vertices in the
graph are derived depending on the number of elements
in the Paradigm of Actions and the restrictions imposed
while constructing the graph. Various ways are proposed to
reduce the number of vertices in order to adapt the power of
graph combinatorics for automatic processing with modern
technical means.
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I. INTRODUCTION

TAPAZ-2 is a tool for generating a model of the
world in a form suitable for Natural Language Processing
in systems of Artificial Intelligence. The Intellectual
Knowledge Base (IKB) built in a computer combines
the Semantic Classifier — a final ordered (vector) set of
semantic primitives (actions and roles of individs) and
the Semantic Ontology — an algorithm for generating
new sense units based on the original set of primitives,
presented in the form of the Semantic Classifier Graph
[1].

An expert (intelligent) search system based on the
Semantic Classifier may consist of an intelligent search
engine that selects and reviews content on a given topic
from the Internet, and a dialog user interface that allows
the system to process user requests and transform them in
the canonized text corresponding to the machine-readable
Model of the World, and the user will confirm whether
this conversion was performed correctly, and if not, then
offer his own decoding through the Semantic Classifier.

II. DIMENSION OF THE SEMANTIC CLASSIFIER
GRAPH

Let n be the number of actions in the initial generating
list (the number of the first degree vertices) of the
Paradigm of Actions. The degree of the vertex S will
be called the number of vertices of the initial generating
list directly or indirectly participating in the generation
of this vertex. There can be several ways to generate
an intermediate vertex from the same set of vertices
of the first degree. The subgraph that specifies one of
the possible ways to generate a vertex is a binary tree,
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since exactly two ancestor vertices participate in the
generation of each child vertex. Thus, the number of
ways to generate an intermediate vertex of degree k is
expressed by the number of binary trees with the number
of leaves equal to k (the Catalan number) [2]. For k = 4,
the number of such trees is 5, all possible configurations
are shown in Fig. 1.

q :
C{ "'\ /'( ‘)\ / '

/ /R
6890

0
® o CB}J

b @
i 2 i3 i fj i2 i3 id ;. i
2 Q
{’: s L \I-..\ _)fllll .f';f‘\ \.\
e e Lo 00
i1 i2 i3 i4 i1 i2 i3 i4

Figure 1. All possible configurations of binary trees for k = 4

The number of k degree vertices is determined by the
formula (1):
Ni, = A x ¢y ¢))

where A¥ — is the number of allocations from n
vertices with respect to k [3] (that is, the set of all
the vertices of the initial list participating in generating
a vertex) and C), — is the Catalan number, which is
calculated by the formula (2) or (3):

Crng1 = % (2)
(2(n —1))!
= =Dt ®

where n is the number of leaves of a binary tree [2].

The maximum degree of a vertex in the Semantic
Classifier Graph is equal to the number of vertices in
the initial set (all vertices of the initial set participate in
generating a vertex of degree n). Thus, in order to obtain
the number of vertices in the Graph, it is necessary to
sum up the number of vertices of all degrees from 1 to
n:
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Python program code, calculating the function S(n)
by the formula (4):

from math import factorial as fact

for kin xrange(1, n +1):
A =fact{n) / fact{n - k)

C=fact(2* (k-1])/ (fact(k - 1) * fact{k))
sum+=A*C
return sum

print “36e" % 5(112)

The Paradigm of Actions, which is used to build
the Semantic Classifier Graph, contains 112 elements.
Substituting this number into formula (4) as n, we get:

S, ~ 8,2 x 10240

At present, there are no devices whose computational
capacities are capable of processing and storing a sim-
ilar amount of information, therefore it is necessary to
select the most significant part of the Graph in order to
sequentially generate, process and store this graph using
computer technology.

III. WAYS TO REDUCE VERTICES IN THE SEMANTIC
CLASSIFIER GRAPH

Now we can investigate the procedure for generating
new actions similar to that described earlier, but in which
the active action of degree k will be refined only by first-
degree actions, i.e., a vertex of degree k and a vertex of
degree 1 will always be involved in generating a vertex
of degree k + I. Such a graph is called a graph of the
standard form. Obviously, it will contain fewer vertices
than the Semantic Classifier Graph, since the graph of the
standard form is a subgraph of the Semantic Classifier
Graph. The subgraphs defining the method for generating
vertices of degree k£ have the following form (Fig. 2).

Figure 2. Subgraphs defining the generation of vertices in a graph of
the standard form

At the same time, the order in which the clarification
occurs is important: “warm by linking” is not the same
as “link by warming” [4]. We define the dimension

of the graph obtained in this way using the dynamic
programming method [5] — the number of vertices of
degree k will be expressed in terms of the number of
vertices of degree k — 1.

1) The number of vertices of degree 1 is n:
Ni=n (5)

2) The number of vertices of degree 2 is equal to the
number of ways to form pairs, taking into account
the order:

No=nx(n—-1) (6)

3) Fix a vertex of degree kK — 1 (for k£ > 2) and we
will successively generate new vertices from this
vertex and all the remaining vertices of the first
degree that are not active in its generation. The
number of ways to generate a vertex of degree k
from one vertex of degree k—1, taking into account
the order, is equal to:

ng=2xMn—-(k=1)=2xn—-k+1) (7

where (n — k + 1) is the number of vertices of the
first degree that are not involved in the generation
of the fixed vertex of degree k£ — 1.

Then the recurrence formula for the total number of
ways to generate a vertex of degree k is as follows:

Nk:2><(n—k‘+1)><Nk_1 (8)

4) Sum up the number of vertices of all degrees from
1 to n:

Sn=> Ni ©)
k—1

Python program code:

def 5(n):
f=[0]*(n+1)
result =[0] * (n + 1)
flil=n
result{1] =n
for k in xrange(2, n +1):
flk] = f[k-1] * (n -k +1)
ifk>2:
flkj *=2
result{k] = result[k-1] + f{k]
return result[n]

print "%e" % 5{112)

As a result of calculating the dimension of the graph
for n = 112, we obtain:

Si1o A~ 4,2 x 10219

Despite the fact that the number of vertices in such
a graph is less than in a full graph without restrictions,
it is still extremely large and cannot be processed using
modern computational tools.
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In order to further reduce the dimension of the Seman-
tic Classifier Graph, we impose an additional constraint:
we fix one active vertex of the first degree (active action)
and will consistently refine it with the rest (passive)
actions. Then the subgraph of new actions with one
active vertex will acquire the following properties:

o for any vertex of degree k, the first generating
ancestor of degree £ — 1 is a refined new action
of the active vertex, in other words, if you depict
a method of generating a vertex of degree k as a
subtree, then its first leaf will always be the active
vertex;

« any vertex in the graph can be uniquely defined by
an ordered list of first-degree vertices participating
in its generation, with the first vertex always being
the active vertex and the degree of the vertex k being
the length of this list.

Thus, the number of vertices in the graph will be
equal to the number of ordered subsets of the first degree
vertices’ set, excluding the active one (since it is always
fixed). This value is calculated by the recurrence formula

[6]:

To=1+nxT, (10)

Then the total number of vertices in the graph (taking
into account all the vertices of the first degree) is:

Sp=n—1+T,_, (11)

Python program code:

ef S(n): ,
f=[0]* (n+1)

=

print "%e" % 5{112)

As a result, the dimension of the graph for n = 112
is:

5112 ~ 4, 8 x 10180

If we build a separate graph, alternately choosing each
of the 112 actions active, we get 112 graphs, containing
in total the following number of vertices:

112

> S, =5,4x10"

n=1
which is much less than the number of vertices in
the Semantic Classifier Graph of the same 112 actions.
Although some of the possible meanings are lost, but
such a construction can significantly reduce the number
of vertices in the graph.

The Paradigm of Actions contains 56 physical and 56
information elements [7]. Let us analyze two separate
graphs constructed on these two sets. Each of them will
contain the following number of vertices:

Table I
THE DIMENSION OF SEPARATE GRAPHS OF PHYSICAL OR
INFORMATION ACTIONS

Semantic Graph of Graph with
Classifier the Standard | One Active
Graph Form Vertex
Ss6 1,6 x 10T9% [ 2,1 x 1097 | 3,4 x 1073
2% Ss6 | 3,2x 10105 [ 4,2x 1097 | 3,4x 1073

Despite the fact that the number of vertices is still
extremely high, the total number of vertices for graphs
built on half of the set of actions is significantly less
than the number of vertices for the Semantic Classifier
Graph. Thus, due to partial losses of some variants
of meanings, it is possible to significantly reduce the
amount of information to be processed.

Now we will try to reduce the number of vertices in the
Semantic Classifier Graph from another angle: instead
of the restriction on the number of generated vertices
of k degree, we introduce a restriction on the degree of
generated vertices. We will find the k degree at which
the depth of detailing of the new actions is sufficient to
achieve the required semantic power, but the number of
vertices in the graph remains within the limits allowing it
to be processed and stored by modern computing means.

Table 1I
THE DIMENSION OF GRAPHS WITH LIMITED DEPTH OF DETAILING
Depth of
detailing Semantic Classifier Graph Graph of the Standard Form
kmaz
Sn Sn x 31 Sn Sn x 31
2 12544 388864 12544 388864
3 2747584 85175104 2747584 85175104
4 748045984 | 23189425504 | 598986304 | 18568575424

Let us investigate the number of vertices in the Seman-
tic Classifier Graph and in the graph constructed by the
method of sequential detail (Table 2). Already at the level
of kpmar = 3 detailing, the number of generated vertices,
multiplied by the number of k& = 31 roles of individuals,
exceeds 85 million (compare to the Dictionary of the
modern Russian literary language in 17 volumes which
contains 120,480 words, the declared volume of the
Large Academic Dictionary of the Russian language
which consists of 150,000 words, and the available
electronic resources of the Institute of Linguistic Studies
of the Russian Academy of Sciences for 1.4 billion of
word usage which contain about 5 million Russian words
of the XVIII — XXI centuries) [8].

At the level of k., = 4 detailing, the number of
vertices of the Semantic Classifier Graph, multiplied by
the number of roles of individuals, exceeds 23 billion.
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Since the generation of separate graphs for physical and
informational actions significantly reduces the number of
values obtained, this method of calculation will increase
the possible depth of detailing. These results are pre-
sented in tab. 3, similar to tab. 2, only for a graph built
on a set of 56 vertices of the first degree:

Table IIT
THE DIMENSION OF THE GRAPHS OF PHYSICAL AND INFORMATION
PROCESSES WITH LIMITED DEPTH OF DETAILING

Depth of
detailing Semantic Classifier Graph Graph of the Standard Form
kmax
Sn Sn x 31 Sn Sn x 31
2 3136 97216 3136 97216
3 335776 10409056 335776 10409056
4 44410576 1376727856 35595616 1103464096
5 6461701456 | 200312745136 | 3702618976 | 114781188256

At the depth of k,,,, = 4 detailing, the number of
vertices in the Semantic Classifier Graph, multiplied by
the number of roles of individuals, does not exceed two
billion. Thus, we get an additional level of detailing that
improves the accuracy of calculating the subject domains.

IV. CONCLUSION

A search procedure of generating new actions through
the set of first degree actions may be represented as a
graph, a matrix, or a vector system. In the graph the
relations of active first degree action and clarifying first
degree action are represented as follows (Fig. 3):

Figure 3. TAPAZ-2 Semantic Classifier Graph

where: I — active first degree action; 2,3,4 — clarifying
first degree actions; /-a , I-b, I-c — derivative second
degree actions with /-a as the active derivative second
degree action; /-a’ and I-b’ — derivative third degree
actions with /-a’ as the active derivative third degree
action; /-a" — the active derivative fourth degree action
[4].

The total number of vertices in the TAPAZ-2 Semantic
Classifier Graph is expressed by a number of 1024,
which, of course, is too large not only for manual,
but also automatic processing. Reducing the number of
vertices is achieved in three ways:

« restrictions on the generation of vertices;

e division of the complete graph into two separate
subgraphs;

« limiting the depth of actions’ detailing.

The combination of all three methods allows you to
adjust the number of processed vertices, while, however,
some of the meanings are lost. The question of limiting
the depth of detail without significant loss of meaning
remains open for further research.

The second version of the Theory for Automatic
Generation of Knowledge Architecture (TAPAZ-2) is
one of the possible models for calculating semantics.
Despite the fact that the model does not have analogues
in calculating of the subject domains, it does not claim to
be exclusive. Linguistic semantics is versatile and allows
different ways of formalizing.

However, all methods, like Euclidean and non-
Euclidean geometry, should be consistent and effective
in its problem solving, and those who argue with that,
as Reichenbach aptly said, only “confuse a rigor of the
method with a limitation of a goal” [9].
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I'PA® CEMAHTHYECKOI'O
KIIACCUPUKATOPA TAITA3-2

A. H. Toppeii, A. M. Y10BUUeHKO

B crathe paccMaTpUBaeTCs alrOPUTM MOUCKA BXOJA B
MIPON3BOJIBHYIO MIPEMETHYIO 00JIaCTh Ha 6a3e ceMaHTHIe-
ckoro kiaccugukaropa TAITA3-2 u nonyvaeMblil TaKUM
obpaszom rpacd. BeBomsaTcs hopmyiIsl TOYHOTO KOJIMYe-
CTBa BEepUIMH B rpade B 3aBUCHMOCTH OT KOJMYECTBA
3JIEMEHTOB B Ta0JIMIle MaKPOIPOLIECCOB M OrPaHMYEHHUHA,
HaKJIa/IBIBaEMBIX TIPH rocTpoeHnd rpacda. [Ipennaraworcs
pasyinyHble CIOCOOBI COKpAIICHUs KOJMMYECTBA BEpIIMH
rpacda B 1eJIsX aIanTalii MOIITHOCTH €r0 KOMOMHATOPUKH
JUTsl aBTOMATUYECKOU 00OpabOTKU COBPEMEHHBIMU TEXHH-
YEeCKUMH CPEICTBAMH.

KimoueBsle crtoBa: Tabimma MakpoIpOLECCOB, CeMaH-
THYECKHUIl KJIacCU(UKATOp, CEMAHTHYECKAasi OHTOJIOTHS,
BepIMHA Tpaca, CTeNeHb BepIINHbI, ICKYCCTBEHHBIN WH-
TEJUIEKT.
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