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Abstract—In this paper a method for constructing a
model of a neuro-controller for implementation of control
in the presence of external disturbances for the optimal
trajectory finding on the phase plane of system states for
technological cycle of a production process is proposed.
A type of a neuro-controller based on recurrent neural
network architecture with long short-term memory blocks
as a knowledge base on the external environment, previous
states of the controller and control actions is being used.
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I. INTRODUCTION

Recently, artificial intelligence theory is being widely
applied to solving such classes of problems as classifica-
tion, clustering, prediction, approximation, data compres-
sion and other tasks [1][2][3][4]. However latest research
in this area shows, that the application of artificial neural
networks (ANNs), which are currently being considered
one of the most important research directions in the area,
is not limited only to the listed classes of problems.
Researchers and practitioners are being interested in
solving problems of complex process control in the areas
of activity which are difficult to formalize [5][6][7].

It should be noted that despite the high level of
complexity of the practical problems in this area that
can be solved by application of the artificial intelligence
methods, ANNs are a fairly effective and convenient
tool for finding solutions to these problems based on
construction of a finite set of mathematical models,
which is being considered as a single model of the object
under study as a complex technical system [8].

For this reason application of neural networks train-
ing for complex technological objects analysis provides
an important advantage over the traditional research
methods, including the simulation modeling [9], because
during the training process neural network is able to
extract complex dependencies between input and output
data, as well as provide necessary generalizations.

When analyzing the operation of complex technical
systems the existing methods of analysis often provide
insufficient effectiveness, especially in cases of project
modeling when the structure of such objects can be
altered in the process of their evolution. The reason

of this is in diversity and complexity of the practical
tasks arising at the stage of project modeling, and also
when estimating the operation reliability and safety for
potentially hazardous technical systems.

Therefore development of a new approach to analyze
complex systems at the stage of their project modeling
automation, which would allow to take into account
the changes in structural connectivity of the controlling
system when changes of technological cycle structure
occur due to failures, is a task of great importance.

Such an approach can be developed using the pro-
cedure of project modeling of the object under study,
which is based upon an adaptable structure of the control
system using the neuro-controller model, which takes
into account all the changes in the technological cycle
of production operation process.

It is known that the main task of the effective control
of the technological cycle of production consists in
implementing the sequence of universal control actions
that would allow to optimize the output parameters of
the technological system when possible changes in the
structure of the technological cycle occur. Such changes
can be the result of having the elements of potentially
hazardous production in the multicriterial control prob-
lem under consideration.

The recent research in the area shows that high-quality
analysis of the control systems operation requires taking
into account a great amount of factors, which undergo
changes during the process of operation of the object
under study. It can be achieved through implementing
adaptive control algorithms for the systems under study.

The recent trends in the use of some system-wide
principles and methods of research in various fields of
knowledge, open semantic technologies for intelligent
systems, lead to the unification of the system approach
when considering specific scientific and practical prob-
lems.

Such trends allow to hope for the future creation of
the necessary knowledge base and the software capable
of logical inference as part of the task under considera-
tion, which would allow the researcher to interact with
systems of varying degrees of complexity, disregarding
their physical nature or the limitations of some specific
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formalization.
One of the most important tasks in this area is the

task of constructing an adaptive control system for
technological cycle, which is capable of providing a
rational structure of the control loop at the given moment
of time [5]. The latter is directly related to the loop’s
restructuring during its operation and constructing the
adaptive control algorithms to optimize the technological
cycle resource consumption in real time in the presence
of external control actions.

The neural network controller modeling is effective
when a high-quality controller of the controlled system
is available [11]. In this case the neural network acts as
an approximator of its function and is trained to simulate
the effects of the controller on the controlled system. In
some situations it may be the case that the use of the
neuro-controller constructed in that way is more practical
because of the common properties of ANNs.

Results in the area of research of controlled tech-
nological systems based on constructing the models of
ANNs for providing effective control of the technological
production cycle [10][12] are given in this paper. A
method for constructing a model of neuro-controller for
technological production cycle control in the presence of
external disturbances is being proposed.

Implementation of control for the optimal trajectory
finding task in an arbitrary region of complex structure
requires a high-quality controller, which is able to adapt
its actions according to the local environmental data
available at the given moment of time. To implement
successfully pathfinding strategies it is also required to
store and take into account the data received by the
controller at the previous moments of time. Exploration
of applicability of ANNs for solving the tasks of this
class is an important research direction because of the
advantages that these models have.

In this paper a method for constructing a model of
a neuro-controller for implementation of control for the
optimal trajectory finding in the case of a dynami-
cally changing region of arbitrary configuration is being
proposed. Recurrent neural network architecture with
LSTM-blocks, which allows to store information about
the states of the system at the past moments of time that
may be significantly distant from the current moment of
time [13][14], is being used as a mathematical model.

II. RELATED WORK

ANNs have proven to be an effective instrument to
solve a set of various problems from different areas
of human action. The properties of the ANNs made
researchers to consider ANNs as a suitable model to
solve control tasks. Different approaches were devel-
oped to implement neural networks in the control tasks
[24][26][27] and many examples of successful appli-
cations exist [5][6][7][28]. Applications in the area of

production process control and optimization were also
developed, typically using feedforward types of neural
networks in order to solve specific tasks related to the
production operation or its aspects [25][29][31]. Some
adaptive control approaches based upon neural network
modeling were proposed for plant control and dynamic
systems control [30][26].

Recurrent neural networks research shows that it may
be useful to apply such architecture to the tasks where
processes evolving over time take place. The recur-
rent neural network architecture is capable of capturing
time dependencies therefore allowing to solve various
real-world tasks [3][4]. However while having interest-
ing potential capabilities [3][15] that can be achieved
with different variations of the recurrent architecture
[7][16][17][18][19], it also has a known problem when
the task requires taking into account the long-term depen-
dencies [14]. LSTM blocks allow the long-term storage
of data [13] and can be applied to the tasks where
long-term time dependencies must be taken into account
[20][21][22][23].

III. FORMALIZATION OF THE TASK

In the considered task of trajectory finding on the
phase plane of system states, the controlled object moves
across a two-dimensional region which is divided into
nonintersecting subregions (cells) that may be passable
or impassable. Cells beyond the edge of the region
are considered to be impassable. A passable subregion
is assigned a value of 0, while the impassable one is
assigned a value of 1. In the given region, a target
subregion is designated. It is guaranteed that a path from
the starting position of the controlled object to the target
subregion exists in the region at any stage of its evolution.
At each moment of time, the controller receives a vector
of seven elements: data on four cells adjacent to the
current position of the controlled object, the distance
to the target subregion and the direction to the target
subregion.

The result produced by the neuro-controller at a given
moment of time is a four-element vector that determines
the direction of the next move of the controlled object
in the region. The controlled object continues to move
until the target subregion is reached.

IV. ARCHITECTURE OF THE NEURO-CONTROLLER

The set of specific features of the control tasks, which
require controller to make decision within some long-
term strategy in the case of a dynamically changing envi-
ronment and availability of the local environmental data
of arbitrary nature at the given moment of time, requires
the controller to have a specific structure. A structure of
the controller, that includes encoder module for encoding
and pre-processing of the environmental data, memory
module for the long-term storage of data and decision-
making module, which determines the output signals of
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the the controller at the given moment of time, is being
proposed. The proposed general scheme of the controller
is shown in Figure 1.

Figure 1. General scheme of the controller

This implies from the point of view of the ANNs ar-
chitecture that the network will have structural elements
with the functions that can be interpreted as functions
of the listed modules. The input layers of a given neural
network can be considered as the encoder module which
preprocesses and encodes input signals. (For example,
in the case when the controller has image as input data,
a sequence of convolutional and subsampling layers that
gradually reduces dimensionality of the data and converts
it into a vector, can be considered as encoder module.) A
subnet that consists of LSTM modules can be considered
as the structural element for long-term data storage. A
subnet of arbitrary structure that is connected to the
structural elements for encoding and storing data and
includes the output layer of the network, that produces
the control signals, can be considered as the decision-
making module.

In the framework of the described approach a neuro-
controller with a recurrent architecture that contains
LSTM blocks is being considered in this paper. The
recurrent architecture with LSTM block includes three
fully-connected layers consisting of five, sixteen and four
neurons, respectively. The LSTM block has a state of
size 16 and is connected to the second layer of the
neural network through the elements of a time delay.
Its current state is passed to the input of the third layer.
There is also a feedback connection through a time delay
elements between the second layer and the first layer.
The architecture was selected experimentally as the one
that would have the minimal number of neurons in all
layers and be able to train and perform pathfinding on
the testing set. In Figure 2 the scheme of this architecture
is shown.

The choice of the recurrent architecture is based upon
the necessity to take into account time dependencies in
the environmental data available to the controller. LSTM
blocks allow the long-term storage of data. In case of the
pathfinding task it is necessary for the implementation of

the pathfinding strategies stretched upon relatively long
periods of time, required by the task.

The neuro-controller model, the training and testing
environments, and data generation process were imple-
mented in Python programming language using Tensor-
flow machine learning framework.

Figure 2. Scheme of the recurrent neural network architecture with
LSTM block.

V. GENERATING TRAINING DATA

In order to train a neural network successfully it is
important to use a large sample of data that adequately
represents a variety of real-world situations that can be
encountered by the neural network.

The neuro-controller described in this paper is used to
solve the task of pathfinding in a complex environment
of arbitrary structure that can change dynamically over
time. Therefore examples of such environments need to
be generated for training and testing.

30x30 regions with random placements of impassable
subregions were generated for the training procedure.
Cellular automaton has proven to be a suitable model
which allows implementing a gradual evolution of the
structure of the region. Parameterizing the automata in
different ways it is possible to achieve various patterns
of structural change, which will result in increase or
decrease of the amount of impassable cells in the region
over time, or have circular nature. The evolving regions
can be randomized further by selecting the lengths of
time periods (steps) in which the next change to the
region will happen.

100,000 sequences of regions of 30x30 cells with
impassable areas changing over time were generated to
be used in the training and testing process of the neuro-
controller. In Figure 3 example of a region evolving
through time is shown.

In this paper supervised learning was used to train the
neuro-controller. A recurrent neural network is trained on
sequences of input and output signals. In order to train
the neuro-controller to implement pathfinding strategies
the sequences have to be of significant length. Sequences
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of 40 movements were used for the training procedure.
A sequence consists of a list of vectors of the local
data for the current cell in the path (network inputs,
including data on the adjacent cells, calculated distance
and direction to the target cell) and a list of corresponding
vectors of required movement to achieve the next cell in
the path (desired network outputs).

Such sequences in the task considered can be obtained
by generating example paths in the regions. For this
purpose in each region a starting cell and a target cell
were selected randomly. In order to be able to obtain
the training sequences of the required length of 40
movements it was checked that throughout the region’s
evolution the path between the cells existed and that the
shortest path between them was at least 40 movements
long. The described procedure of cells selection was
repeated several times in each region. Sometimes the
configuration of the region and evolution in its structure
made it impossible to select suitable cells. 10% of the
regions with suitable cells were used for testing after the
training was complete.

The best-first search was used to generate the paths
between the selected cells pairs in the evolving regions.
Considering the non-static nature of the regions and the
fact that only local data is available at each moment of
time to the neuro-controller, the paths were generated
dynamically. A path was regenerated started with each
point where a change in local data was triggered by the
region’s structure dynamic changes. Based on the length
of the paths generated by the described procedure one or
more training sequences were prepared based on each of
them.

60,000 training sequences of 40 movements were
obtained based on the generated paths and used for
training.

VI. TRAINING THE NEURO-CONTROLLER

During the training process such values of the network
parameters (connection weights and bias values of neu-
rons) are found that the network produces desired outputs
for the given inputs. Training can be considered a non-
linear optimization task of minimizing some loss function
specified on the training set with respect to all of the
network parameters. In this paper the supervised learning
was used, which corresponds to the situation when a
large dataset with examples of the control sequences is
available.

The neuro-controller was trained using the RMSProp
optimization algorithm to minimize the loss function.
The cross entropy function was used as the loss function.
The training set of example sequences was divided into
batches and the parameters of the neural network (all
weights and neuron biases) were corrected after pre-
senting a batch of 50 sequences. Figure 4 shows the
minimization of the loss function during first 20 epochs
of training.

Figure 3. Example of a dynamically changing over time region
generated for the neural network training.
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Figure 4. The loss function values during first 20 epochs of training
of the neuro-controller.

VII. TESTING THE TRAINED NEURO-CONTROLLER

After the training the neuro-controller was able to
find trajectory successfully on the phase plane of the
controlled system states with dynamically changing con-
figuration of the allowed states subregion. 10% of the
generated region sequences were used to perform the
testing and assess the performance of the trained neural
network. A test was considered to be successful if the
neuro-controller did not perform any forbidden actions
(moving on impassable cell) and was able to reach the
target cell in less than 60 movements. The controller
was able to generate path to the target subregion in a
reasonable time in approximately 70% of the regions in
the test set. Figure 5 shows an example of pathfinding
by the neuro-controller.

VIII. CONCLUSION

The theoretical research results described in this pa-
per provide a basis for the future development of new
effective methods of analysis and synthesis of optimal
structure of the technical systems with adaptive control.
The approach proposed by authors is applicable within
its framework to a whole variety of problems of the
optimal control structure synthesis and complex techno-
logical systems synthesis. The research results can be
used in the development of intelligent decision support
systems designed for the corresponding tasks, automation
of the technological production processes by artificial
intelligence systems, development and automation of the
designing process of new technological objects, and also
quality assessment of the production technological cycle
control in real time.

In the course of this work an approach to application
of the neuro-controller to implementation of the adaptive
control of the technological cycle was developed and
tested. The experimentation on models has shown that

Figure 5. Example of successful pathfinding by the trained neuro-
controller in a dynamically changing region.
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neuro-controller based on a recurrent neural network with
LSTM blocks can be successfully used for the adaptive
control tasks. LSTM blocks allow the neural network to
store information about the states of the system from
the past moments of time that may be significantly
distant from the current moment of time, which allows
the neural network to learn long-term dependencies and
to reproduce long sequences of reactions to random
disturbances and external influences. The possibility of
increasing the efficiency of the existing architecture
by adding additional memory modules and training on
longer data sequences depends on the specific parameters
of the modeling object operation.
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УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМ
ЦИКЛОМ ПРОИЗВОДСТВА НА ОСНОВЕ

МОДЕЛИ НЕЙРОКОНТРОЛЛЕРА

Смородин В.С., Прохоренко В.А.

Предложен способ построения модели нейрокон-
троллера для реализации управления технологическим
циклом производства при решении задачи поиска
оптимальной траектории на фазовой плоскости состо-
яний технологической системы в условиях наличия
внешних возмущений.Использован тип нейроконтрол-
лера на базе рекуррентной нейросетевой архитектуры
с модулями долгой краткосрочной памяти в качестве
базы знаний о внешней среде, предыдущих состояниях
контроллера и управляющих воздействиях на систему.
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