Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

УДК 621.793.02

Семёнов

Антон Александрович

Технология обработки поверхности стекла в плазме атмосферного разряда

АВТОРЕФЕРАТ

магистерской диссертации на соискание степени магистра технических наук

по специальности 1-41 80 01 «Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах»

Научный руководитель Котов Дмитрий Анатольевич кандидат технических наук доцент кафедры микро- и наноэлектроники Работа выполнена на кафедре микро- и наноэлекторники учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»

Научный руководитель: Котов Дмитрий Анатольевич,

кандидат технических наук, доцент кафедры микро- и наноэлекторники учреждения образования «Белорусский государственный университет информатики и

радиоэлектроники»

Рецензент: Власова Галина Александровна,

кандидат технических наук, доцент кафедры защиты информации учреждения образования «Белорусский государственный

экономический университет»

Защита диссертации состоится «29» января 2019 г. года в $9^{\underline{00}}$ часов на заседании Государственной комиссии по защите магистерских диссертаций в учреждении образования «Белорусский государственный университет информатики и радиоэлектроники» по адресу: 220013, г.Минск, ул. П.Бровки, 6, 4 уч. корп., ауд. 804, тел.: 293-89-92, e-mail: kafei@bsuir.by.

С диссертацией можно ознакомиться в библиотеке учреждения образования «Белорусский государственный университет информатики и радиоэлектроники».

ВВЕДЕНИЕ

Бурное развитие рынка мобильных телефонов, смартфонов, планшетов и других портативных электронных устройств, атрибутом которых является отображающий информацию сенсорный экран, используемый как универсальное устройство ввода-вывода, придает проблеме формирования защитных покрытий с гидрофобными свойствами статус критической.

За последнее время мировыми лидерами производства оптических элементов разработаны новые поколения стойких защитных покрытий, обладающих свойствами гидро- и олеофобности, для использования на дисплеях устройств отображения информации.

Однако для того, чтобы наносить гидро- и олеофобные покрытия различными химическими методами, например методом Ленгмюра-Блоджетт, необходим эффективный способ как очистки поверхности, так и ее активации. Для данной задачи лучше всего подходит метод обработки и модификации поверхности стекла в разряде атмосферной плазмы. Данный метод можно использовать для очистки и активации поверхности при нанесении любых покрытий, которые наносятся не вакуумными методами.

К достойным упоминания преимуществам плазмы при атмосферном давлении относятся отказ от вакуумного оборудования связанного большими существенно более затратами, простая интеграция В существующие установки, более высокие нормы процесса, продуктивность на основе возможностей в in-line процессе и возможности обработки протяженных материалов. Из-за этих существенных преимуществ исследование И оптимизация атмосферных источников плазмы рассматривается В качестве очень рационального И прибыльного направления. Использование технологии по обработке поверхности стекла в плазме атмосферного разряда позволяет обеспечить большую скорость и меньшую себестоимость по сравнению с другими видами плазменной обработки, за счет отсутствия вакуумных камер и средств создания вакуума. Данный метод имеет преимущество и перед различными химическими методами очистки. Актуальная тенденция в технике плазмы по замене процессов пониженного давления на процессы атмосферного давления будут продолжаться до момента пока это не будет выполнимо, или не будет доказано, что в определенных случаях отказ от вакуумной техники не возможен.

На сегодняшний день, уровень исследований плазменных технологий позволяет разработать беспрерывную производственную линию конвейерного типа по модификации поверхности сенсорных экранов.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

темы Обработка Актуальность магистерской диссертации. материалов под атмосферным давлением обеспечивает явные преимущества традиционной обработкой, основанной на вакуумной Плазменная обработка при высоком давлении может быть использована как в технологическом процессе по нанесению гидрофобных и олеофобных покрытий методом Лэнгмюра-Блоджетт, так и во многих промышленности.

Цель и задачи исследования. Отработка режимов технологического процесса модификации и очистки поверхности стекла.

Для достижения поставленной цели решались следующие задачи:

- 1. Анализ устройств и технологии конвейерной обработки подложки в плазме атмосферного разряда.
 - 2. Постановка и отработка режимов экспериментального комплекса.
- 3. Экспериментальное исследование режимов обработки поверхности стекла в плазме атмосферного разряда.
- 4. Получение результатов обработки поверхности стекла габаритами 450x540 мм в установке с использованием газа N_2 и в установке, работающей на воздухе. Проведение сравнительного анализа полученных результатов.
- 5. Выработка практических рекомендаций по обработке широкоформатных подложек в плазме атмосферного разряда.

Объект и предмет исследования. Объектом исследования является разработанная установка плазмы атмосферного давления барьерного типа, которая работает на воздухе, ДЛЯ модификации поверхности диэлектрического материала, а также сама очищенная и модифицированная подложка. Предметом исследования являются зависимости и закономерности процесса формирования диэлектрического барьерного разряда, а также технологические режимы модификации очистки поверхности И формирования наноструктурированных покрытий защитных c гидрофобными свойствами.

Основные положения диссертации, выносимые на защиту. На защиту выносятся следующие основные результаты:

1. Отработаны режимы работы технологической установки по обработке 550x450 диэлектрических подложек c размерами MM атмосферного применением системы генерации диэлектрического барьерного разряда и использованием воздуха, по эффективности сравнимой с установками, работающими на Ar или N₂ и обеспечивающие снижение угла смачивания в 6 раз.

2. Разработана технология обработки широкоформатных стеклянных подложек, включающая очистку поверхности стекла в плазме атмосферного разряда и нанесение гидрофобного покрытия методом Лэнгмюра-блоджетт, при использовании которой удалось достичь уровня износостойкости более 15000 циклов истирания металлической ватой.

Личный вклад соискателя. Работа выполнялась совместно на кафедре микро- и наноэлектроники БГУИР и в научно-технической компании «ИЗОВАК разработки технологии Технологии» c целью обработки диэлектрика в плазме атмосферного разряда. Основные поверхности результаты и выводы получены соискателем самостоятельно. Аналитические исследования методов активации поверхности и формирования защитных покрытий с гидрофобными свойствами проводились соискателем лично. Разработка комплекса оборудования для проведения экспериментальных исследований проводилась совместно с научным руководителем кандидатом технических наук, доцентом Котовым Д. А. и сотрудниками компании «ИЗОВАК Технологии». Во время работы над диссертацией соискателем тестирования разработана методика функциональных защитных покрытий. Экспериментальные исследования режимов активации и очистки поверхности стекла, а также тестирование функциональных свойств экспериментальных образцов проводились соискателем лично.

Апробация результатов диссертации. Разработки и результаты, полученные в ходе выполнения магистерской диссертации, используются в мелкосерийном производстве на предприятии «Изовак Технологии».

Структура и объем диссертации. Диссертационная работа состоит из введения, общей характеристики работы, четырёх глав, заключения и списка использованных источников, включающего 36 наименований. Общий объем диссертации составляет 70 страниц.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении рассмотрены преимущества применения плазмы атмосферного разряда, а также дается обоснование актуальности темы диссертационной работы.

В первой главе приводится аналитическое исследование технологий очистки и модификации поверхности стекла. Детально рассматривались методы обработки диэлектрических поверхностей.

Во второй главе рассмотрены этапы разработки экспериментального комплекса. Были выбраны и подробно описаны установки DRPX — 1200 и Іопіz для проведения серии экспериментальных исследований, принцип работы которых заключается в создании диэлектрического барьерного разряда при атмосферном давлении. Данный лабораторный комплекс позволил провести необходимые технологические операции по обработке поверхности стекла и выявить необходимые зависимости изменения угла смачивания от выбранных режимов обработки в плазме атмосферного разряда.

В была третьей главе выполнена отработка методик экспериментальных исследований по изменению краевого угла смачивания поверхности стекла в зависимости от выбранных режимов обработки установок DRPX – 1200 и Ioniz. Был проведен анализ результатов обработки поверхности стекла габаритами 550х450 мм в установках DRPX – 1200 и Ioniz в результате чего был выявлен преобладающий тип установки для получения стабильных покрытий. В результате проведенных исследований выяснилось, что в установке IonIz при скорости плазменной обработки - 16 мм/с, рабочем промежутке между каналом выхода плазмы и поверхностью подложки - 3 мм, количестве циклов 3, рабочим промежутком между электродами – 2мм, силой тока тока – 28 А и частотой генератора – 25кГц, краевой угол смачивания, который характеризует гидрофильность поверхности, уменьшился в 6 раз, а после нанесения гидрофобного покрытия Лэнгмюра-Блоджетт, полученные свойства сохранялись протяжении 15000 циклов воздействия металлической ватой в тесте на истирание.

В четвертой главе были разработаны рекомендации по использованию данной системы очистки и активации, где сообщается, что для проведения обработки поверхностей без формирования дефектов подходит плазма диффузного типа конвейерного типа. Данная обработка применяется в технологическом процессе по созданию гидрофобных и олеофобных

покрытий методом Лэнгмюра-Блоджетт и позволяет создать и сохранить необходимый уровень адгезии подложки.

В заключении кратко изложены основные результаты магистерской диссертации, приведены основные установленные зависимости и полученные выводы, подведен итог проведенной работы.

ЗАКЛЮЧЕНИЕ

В результате проведения аналитических исследований, были определены перспективные методы формирования защитных покрытий с гидрофобными свойствами и методы активации поверхности. Также был проведен аналитический обзор разрядных систем для генерации плазмы атмосферного разряда. Выполнено сравнение достоинств и недостатков различных топологий по очистке и модификации поверхности стекла.

экспериментальный Разработан комплекс ДЛЯ определения технологических режимов активации поверхности и нанесения покрытий с гидрофобными свойствами, также были разработаны a методики тестирования функциональных свойств широкоформатных стекол, которые наносят защитные покрытия с гидрофобными свойствами. В том числе были разработаны методики тестирования защитных покрытий на износостойкость: устойчивость к истиранию, воздействию окружающей среды и различных растворителей.

В ходе экспериментальных исследований определены технологические режимы активации поверхности диэлектрическим барьерным разрядом. Была отработка методик экспериментальных исследований изменению краевого угла смачивания поверхности стекла в зависимости от выбранных режимов обработки установок DRPX – 1200 и Ioniz. Был проведен анализ результатов обработки поверхности стекла габаритами 550х450 мм в установках DRPX – 1200 и Ioniz в результате чего был выявлен преобладающий тип установки для получения стабильных покрытий. При очистке и активации поверхности стекла в плазме атмосферного давления при напуске газа N_2 – адгезионная способность сохраняется дольше, чем при активации И очистке стекла В плазме атмосферного давления с использованием воздуха. Однако использование установки Ioniz, которая работает с напуском воздуха, позволяет уменьшить операционные расходы производства и все равно получить удовлетворительные результаты. В обоих случаях краевой угол смачивания, который характеризует гидрофильность поверхности, уменьшился в 6 раз, а после нанесения гидрофобного покрытия методом Лэнгмюра-Блоджетт, полученные свойства поверхности стекла сохранялись на протяжении 15000 циклов воздействия металлической ватой и более, в тесте на истирание.

Разработаны рекомендации по использованию данной системы очистки и активации.

Результаты исследований могут быть использованы для дальнейшей оптимизации технологии формирования наноструктурированных защитных

покрытий с гидрофобными свойствами, разработки новых методов активации поверхности, повышения функциональных свойств защитных покрытий, повышения износостойкости защитных покрытий.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

1. Семёнов А.А. Технология очистки и модификации поверхности стекла в плазме атмосферного разряда // 53-я научная конференция студентов, магистрантов, аспирантов БГУИР, 2017