МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ОБРАБОТКИ СИГНАЛОВ С МНОГОПОЗИЦИОННОЙ QAM В СРЕДЕ MATLAB (SIMULINK)

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Ворона В.П., Леонович А.В.

Тарченко Н.В. – к.т.н., доцент

QAM (квадратурная амплитудная модуляция) широко используется в качестве схемы модуляции для цифровых телекоммуникационных систем. На сегодняшний день, грамотное применение QAM сопряжено с постоянным моделированием процессов обработки сигналов многопозиционной QAM. Разработанная модель позволяет смоделировать работу системы связи с частотными и фазовыми сдвигами.

Блок Coarse Frequency Compensator позволяет компенсировать частотные искажения, внесенные штатным блоком Phase/Frequency Offset из состава Simulink. Компенсация возможна благодаря грубой подстройке частоты, которая основана на спектральном анализе принятого сигнала. Алгоритм реализован при помощи такого же блока вращения фазы и частоты, при этом на вход блока подается значение частоты на которое необходимо сместить сигнал. Для расчета этой частоты необходимо возвести входной комплексный сигнал в четвертую степень. Таким образом, из сигнала исключается модулированная составляющая и остается только тон частотного сдвига. Тон частотного сдвига можно детектировать при помощи преобразования Фурье.

Блок Carrier Synchronizer представляет из себя контур фазовой автоподстройки частоты. В первую очередь он осуществляет детектирование ошибки фазы, а за тем, после прохождения фильтра, выполняет формирование сигнала компенсации

Для более тщательной проверки алгоритмов синхронизации возможна установка произвольного отношения сигнал/шум в блоке внесения аддитивного белого гауссовского шума. Кроме того, в разработанной модели существует возможность изменять относительную скорость кода в блоке сверточного кодирования. Сверточный код позволяет обнаруживать и исправлять ошибки, возникающие в канале связи. Блок декодера по алгоритму Витерби обеспечивает декодирование входящего сигнала.

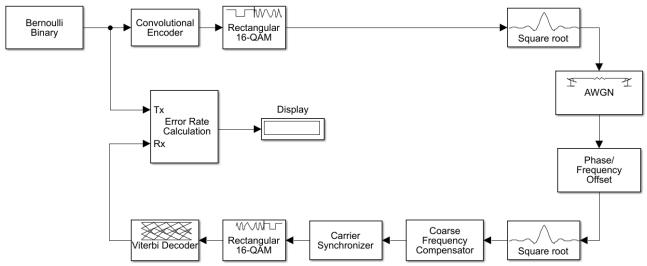


Рисунок 1 – Структурная схема системы связи с частотными и фазовыми сдвигами

Моделирование показало, что полностью разрушенное, с точки зрения фазы, на выходе приемного фильтра сигнальное созвездие, после блока компенсации частотных искажений принимает вид вращающегося созвездия. После контура ФАПЧ система полностью компенсирует все внесенные каналом искажения.

Список использованных источников:

1. Wang, Y., K. Shi, and E. Serpedi. "Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach." EURASIP Journal on Applied Signal Processing. 2004:13, pp. 1993–2001.

2. Luise, M. and R. Regiannini. "Carrier recovery in all-digital modems for burst-mode transmissions." IEEE® Transactions on Communications.Vol. 43, No. 2, 3, 4, Feb/Mar/April, 1995, pp. 1169–1178.